
II.2 Weak topologies on lo
ally 
onvex spa
es

Theorem 6 (Mazur theorem). Let X be a LCS and let A ⊂ X be a 
onvex set. Then:

(a) A
w
= A.

(b) A is 
losed if and only if it is weakly 
losed.

Corollary 7. Let X be a metrizable LCS and let (xn) be a sequen
e in X weakly 
onverging

to a point x ∈ X . Then there is a sequen
e (yn) in X su
h that

• yn ∈ 
o{xk; k ≥ n} for ea
h n ∈ N;

• yn → x in (the original topology of) X .

Theorem 8 (boundedness and weak boundedness). Let X be a LCS and let A ⊂ X . Then

A is bounded in X if and only if it is bounded in σ(X,X∗
).

Proposition 9 (weak topology on a subspa
e). Let X be a LCS and let Y ⊂⊂ X . Then the

weak topology σ(Y, Y ∗
) 
oin
ides with the restri
tion of the weak topology σ(X,X∗

) to Y .

II.3 Polars and their appli
ations

De�nition. Let X be a LCS. Let A ⊂ X and B ⊂ X∗
be nonempty sets. We de�ne

A⊲
= {f ∈ X∗

; ∀x ∈ A : Re f(x) ≤ 1}, B⊲ = {x ∈ X ; ∀f ∈ B : Re f(x) ≤ 1},

A◦
= {f ∈ X∗

; ∀x ∈ A : |f(x)| ≤ 1}, B◦ = {x ∈ X ; ∀f ∈ B : |f(x)| ≤ 1},

A⊥
= {f ∈ X∗

; ∀x ∈ A : f(x) = 0}, B⊥ = {x ∈ X ; ∀f ∈ B : f(x) = 0}.

The sets A⊲
and B⊲ are 
alled polars of the sets A and B, the sets A◦

and B◦ are 
alled absolute

polars and the sets A⊥
and B⊥ are 
alled anihilators.

Remarks:

(1) The terminology and notaion is not uni�ed in the literature. Sometimes `the polar'

means `the absolute polar', our polar is sometimes denoted by A◦
, B◦.

(2) If X is a Hilbert spa
e and A ⊂ X , the symbol A⊥
may have two di�erent meanings {

it may denote the above-de�ned anihilator or the orthogonal 
omplement. It should be

distinguished a

ording to the 
ontext. However, these two possibilities are interrelated.

Re
all that in this 
ase, given x ∈ X , the formula

fx(y) = 〈y, x〉 , y ∈ X

de�nes a 
ontinuous linear fun
tional on X and, moreover, x 7→ fx is a (
onjugate linear)

isometry of X onto X∗
. Then

the anihilator of A = {fx;x ∈ the orthogonal 
omplement of A}.

(3) If X is Hausdor� and if we equip X∗
by the weak* topology σ(X∗, X), then (X∗, w∗

)

∗
=

X , and hen
e for any B ⊂ X∗
the (downward) polar B⊲ by the previous de�nition


oin
ide with the polar B⊲
with respe
t to the spa
e (X∗, w∗

) and its dual X . Similarly

for absolute polars and anihilators.

Example 10. Let X be a normed linear spa
e. Then

(a) (BX)

⊲
= (BX)

◦
= BX∗

,

(b) (BX∗
)⊲ = (BX∗

)◦ = BX .



Proposition 11 (polar 
alkulus). Let X be a LCS and let A ⊂ X be a nonempty set.

(a) The set A⊲
is 
onvex and 
ontains the zero fun
tional, A◦

is absolutely 
onvex and A⊥

is a subspa
e of X∗
. All the three sets are moreover weak* 
losed.

(b) A⊥ ⊂ A◦ ⊂ A⊲
.

(
) If A is balan
ed, then A⊲
= A◦

. If A ⊂⊂ X , then A⊲
= A◦

= A⊥
.

(d) {o}⊲ = {o}◦ = {o}⊥ = X∗
, X⊲

= X◦
= X⊥

= {o}.
(e) (cA)⊲ = 1

c
A⊲

and (cA)◦ = 1

c
A◦

whenever c > 0.

(f) Let (Ai)i∈I be a nonempty family of nonempty subsets of X . Then

(
⋃

i∈I Ai

)◦
=

⋂

i∈I A
◦
i . The analogous formulas hold for polars and anihilators.

Remark: Analogous statements hold for B ⊂ X∗
and for the sets B⊲, B◦, B⊥. There are just

two di�eren
es: The sets B⊲, B◦ and B⊥ are weakly 
losed and for the validity of the se
ond

statement in (d) one needs to assume that X is Hausdor�.

Theorem 12 (bipolar theorem). Let X be a LCS and let A ⊂ X and B ⊂ X∗
be nonempty

sets. Then

(A⊲
)⊲ = 
o(A ∪ {o}) (= 
o

σ(X,X∗

)

(A ∪ {o})), (B⊲)
⊲
= 
o

σ(X∗,X)

(B ∪ {o}),

(A◦
)◦ = a
oA (= a
o

σ(X,X∗

)A), (B◦)
◦
= a
o

σ(X∗,X)B,

(A⊥
)⊥ = spanA (= span

σ(X,X∗

)A), (B⊥)
⊥
= span

σ(X∗,X)B.

Corollary 13. Let X and Y be normed linear spa
es and let T ∈ L(X, Y ). Then (kerT )⊥ =

T ′
(Y ∗

)

w∗

.

Theorem 14 (Goldstine). Let X be a normed linear spa
e and let κ : X → X∗∗
be the


anoni
al embedding. Then

BX∗∗
= κ(BX)

σ(X∗∗,X∗

)

.

Theorem 15 (Bana
h-Alaoglu). Let X be a LCS and let U ⊂ X be a neighborhood of o.

Then:

(a) U◦
is a weak* 
ompa
t subset of X∗

(i.e., it is 
ompa
t in the topology σ(X∗, X)).

(b) If X is moreover separable, U◦
is metrizable in the topology σ(X∗, X).

Corollary 16 (Bana
h-Alaoglu for normed spa
es). Let X be a normed linear spa
e. Then

(BX∗ , w∗
) is 
ompa
t. If X is separable, (BX∗ , w∗

) is moreover metrizable.

Corollary 17 (re
exivity and weak 
ompa
tness). Let X be a Bana
h spa
e. Then X

is re
exive if and only if BX is weakly 
ompa
t. If X is re
exive and separable, (BX , w) is

moreover metrizable.

Corollary 18. Let X be a re
exive Bana
h spa
e. Then ea
h bounded sequen
e in X admits

a weakly 
onvergent subsequen
e.


