II.2 Weak topologies on locally convex spaces

Theorem 6 (Mazur theorem). Let X be a LCS and let $A \subset X$ be a convex set. Then:

- (a) $\overline{A}^w = \overline{A}$.
- (b) A is closed if and only if it is weakly closed.

Corollary 7. Let X be a metrizable LCS and let (x_n) be a sequence in X weakly converging to a point $x \in X$. Then there is a sequence (y_n) in X such that

- $y_n \in \operatorname{co}\{x_k; k \geq n\}$ for each $n \in \mathbb{N}$;
- $y_n \to x$ in (the original topology of) X.

Theorem 8 (boundedness and weak boundedness). Let X be a LCS and let $A \subset X$. Then A is bounded in X if and only if it is bounded in $\sigma(X, X^*)$.

Proposition 9 (weak topology on a subspace). Let X be a LCS and let $Y \subset X$. Then the weak topology $\sigma(Y, Y^*)$ coincides with the restriction of the weak topology $\sigma(X, X^*)$ to Y.

II.3 Polars and their applications

Definition. Let X be a LCS. Let $A \subset X$ and $B \subset X^*$ be nonempty sets. We define

$$A^{\triangleright} = \{ f \in X^*; \forall x \in A : \text{Re } f(x) \le 1 \}, \quad B_{\triangleright} = \{ x \in X; \forall f \in B : \text{Re } f(x) \le 1 \},$$

$$A^{\circ} = \{ f \in X^*; \forall x \in A : |f(x)| \le 1 \}, \quad B_{\circ} = \{ x \in X; \forall f \in B : |f(x)| \le 1 \},$$

$$A^{\perp} = \{ f \in X^*; \forall x \in A : f(x) = 0 \}, \quad B_{\perp} = \{ x \in X; \forall f \in B : f(x) = 0 \}.$$

The sets A^{\triangleright} and B_{\triangleright} are called **polars** of the sets A and B, the sets A° and B_{\circ} are called **absolute polars** and the sets A^{\perp} and B_{\perp} are called **anihilators**.

Remarks:

- (1) The terminology and notaion is not unified in the literature. Sometimes 'the polar' means 'the absolute polar', our polar is sometimes denoted by A° , B_{\circ} .
- (2) If X is a Hilbert space and $A \subset X$, the symbol A^{\perp} may have two different meanings it may denote the above-defined anihilator or the orthogonal complement. It should be distinguished according to the context. However, these two possibilities are interrelated. Recall that in this case, given $x \in X$, the formula

$$f_x(y) = \langle y, x \rangle, \quad y \in X$$

defines a continuous linear functional on X and, moreover, $x \mapsto f_x$ is a (conjugate linear) isometry of X onto X^* . Then

the anihilator of $A = \{f_x; x \in \text{ the orthogonal complement of } A\}.$

(3) If X is Hausdorff and if we equip X^* by the weak* topology $\sigma(X^*, X)$, then $(X^*, w^*)^* = X$, and hence for any $B \subset X^*$ the (downward) polar $B \triangleright$ by the previous definition coincide with the polar B^{\triangleright} with respect to the space (X^*, w^*) and its dual X. Similarly for absolute polars and anihilators.

Example 10. Let X be a normed linear space. Then

- (a) $(B_X)^{\triangleright} = (B_X)^{\circ} = B_{X^*},$
- (b) $(B_{X^*})_{\triangleright} = (B_{X^*})_{\circ} = B_X$.

Proposition 11 (polar calkulus). Let X be a LCS and let $A \subset X$ be a nonempty set.

- (a) The set A^{\triangleright} is convex and contains the zero functional, A° is absolutely convex and A^{\perp} is a subspace of X^* . All the three sets are moreover weak* closed.
- (b) $A^{\perp} \subset A^{\circ} \subset A^{\triangleright}$.
- (c) If A is balanced, then $A^{\triangleright} = A^{\circ}$. If $A \subset\subset X$, then $A^{\triangleright} = A^{\circ} = A^{\perp}$.
- (d) $\{o\}^{\triangleright} = \{o\}^{\circ} = \{o\}^{\perp} = X^*, X^{\triangleright} = X^{\circ} = X^{\perp} = \{o\}.$
- (e) $(cA)^{\triangleright} = \frac{1}{c}A^{\triangleright}$ and $(cA)^{\circ} = \frac{1}{c}A^{\circ}$ whenever c > 0.
- (f) Let $(A_i)_{i\in I}$ be a nonempty family of nonempty subsets of X. Then $(\bigcup_{i\in I} A_i)^{\circ} = \bigcap_{i\in I} A_i^{\circ}$. The analogous formulas hold for polars and anihilators.

Remark: Analogous statements hold for $B \subset X^*$ and for the sets B_{\triangleright} , B_{\circ} , B_{\perp} . There are just two differences: The sets B_{\triangleright} , B_{\circ} and B_{\perp} are weakly closed and for the validity of the second statement in (d) one needs to assume that X is Hausdorff.

Theorem 12 (bipolar theorem). Let X be a LCS and let $A \subset X$ and $B \subset X^*$ be nonempty sets. Then

$$(A^{\triangleright})_{\triangleright} = \overline{\operatorname{co}}(A \cup \{\boldsymbol{o}\}) \ (= \overline{\operatorname{co}}^{\sigma(X,X^{*})}(A \cup \{\boldsymbol{o}\})), \ (B_{\triangleright})^{\triangleright} = \overline{\operatorname{co}}^{\sigma(X^{*},X)}(B \cup \{\boldsymbol{o}\}),$$

$$(A^{\circ})_{\circ} = \overline{\operatorname{aco}}A \ (= \overline{\operatorname{aco}}^{\sigma(X,X^{*})}A), \qquad (B_{\circ})^{\circ} = \overline{\operatorname{aco}}^{\sigma(X^{*},X)}B,$$

$$(A^{\perp})_{\perp} = \overline{\operatorname{span}}A \ (= \overline{\operatorname{span}}^{\sigma(X,X^{*})}A), \qquad (B_{\perp})^{\perp} = \overline{\operatorname{span}}^{\sigma(X^{*},X)}B.$$

Corollary 13. Let X and Y be normed linear spaces and let $T \in L(X,Y)$. Then $(\ker T)^{\perp} = \overline{T'(Y^*)}^{w^*}$.

Theorem 14 (Goldstine). Let X be a normed linear space and let $\varkappa: X \to X^{**}$ be the canonical embedding. Then

$$B_{X^{**}} = \overline{\varkappa(B_X)}^{\sigma(X^{**},X^*)}.$$

Theorem 15 (Banach-Alaoglu). Let X be a LCS and let $U \subset X$ be a neighborhood of \boldsymbol{o} . Then:

- (a) U° is a weak* compact subset of X^{*} (i.e., it is compact in the topology $\sigma(X^{*}, X)$).
- (b) If X is moreover separable, U° is metrizable in the topology $\sigma(X^*, X)$.

Corollary 16 (Banach-Alaoglu for normed spaces). Let X be a normed linear space. Then (B_{X^*}, w^*) is compact. If X is separable, (B_{X^*}, w^*) is moreover metrizable.

Corollary 17 (reflexivity and weak compactness). Let X be a Banach space. Then X is reflexive if and only if B_X is weakly compact. If X is reflexive and separable, (B_X, w) is moreover metrizable.

Corollary 18. Let X be a reflexive Banach space. Then each bounded sequence in X admits a weakly convergent subsequence.