I.2 Continuous and bounded linear mappings

Proposition 6. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be TVS over \mathbb{F} and let $L: X \to Y$ be a linear mapping. The following assertions are equivalent:

- (i) L is continuous.
- (ii) L is continuous at o.
- (iii) L is uniformly continuous, i.e.,

$$\forall U \in \mathcal{U}(\mathbf{o}) \,\exists V \in \mathcal{T}(\mathbf{o}) \,\forall x, y \in X : x - y \in V \Rightarrow L(x) - L(y) \in U.$$

Proposition 7. Let (X, \mathcal{T}) be a TVS over \mathbb{F} and let $L: X \to \mathbb{F}$ be a linear mapping. The following assertions are equivalent:

- (i) L is continuous.
- (ii) $\ker L$ is a closed subspace of X.
- (iii) There exists $U \in \mathcal{T}(\mathbf{o})$ such that L(U) is a bounded subset of \mathbb{F} .

If L is discontinuous, then $\ker L$ is a dense subspace of X.

Definition. Let (X, \mathcal{T}) be a TVS and let $A \subset X$. The set A is said to be **bounded** in (X, \mathcal{T}) , if for any $U \in \mathcal{T}(o)$ there exists $\lambda > 0$ such that $A \subset \lambda U$.

Proposition 8. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be TVS over \mathbb{F} and let $L: X \to Y$ be a linear mapping. Consider the following two assertions:

- (i) L is continuous.
- (ii) For any bounded subset $A \subset X$ its image L(A) is bounded in Y (i.e., L is a bounded mapping).

Then (i) \Rightarrow (ii). In case \mathcal{T} is generated by a translation invariant metric on X, then (i) \Leftrightarrow (ii).

Remark. It follows from Theorem 12 in Section I.4 that, whenever a TVS (X, \mathcal{T}) is metrizable, i.e., the topology \mathcal{T} is generated by a metric, then this metric can be chosen to be translation invariant.

Definition. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be TVS over \mathbb{F} and let $L: X \to Y$ be a linear mapping. The mapping L is said to be

- an isomorphism of X into Y if L is continuous, one-to-one and L^{-1} is continuous on L(X);
- an isomorphism of X onto Y, if L is continuous, one-to-one, onto and L^{-1} is continuous on Y.

The spaces X and Y are said to be **isomorphic** if there is an isomorphism of X onto Y.

I.3 Spaces of finite and infinite dimension

Proposition 9. Let X be a HTVS of finite dimension.

- (a) If Y is any TVS and $L: X \to Y$ is any linear mapping, then L is continuous.
- (b) The space X is isomorphic to \mathbb{F}^n , where $n = \dim X$.

Corollary 10. Let X be a HTVS. Then any its finite-dimensional subspace is closed.

Definition. Let (X, \mathcal{T}) be a TVS and let $A \subset X$. The set A is said to be **totally bounded** (or **precompact**), if for any $U \in \mathcal{T}(o)$ there exists a finite set $F \subset X$ such that $A \subset F + U$.

Remark: Any compact set in any TVS is totally bounded. Any totally bounded set is bounded.

Theorem 11. Let X be a HTVS. The following assertions are equivalent:

- (i) $\dim X < \infty$.
- (ii) There exists a compact neighborhood of zero in X.
- (iii) There exists a totally bounded neighborhood of zero in X.