IV. Banach algebras and Gelfand transform
Convention: In this chapter all the Banach spaces are considered over the complex field (unless
the converse is explicitly stated).

Remark: The real version of the theory of this chapter is studied as well, but it is quite
different.

IV.1 Banach algebras — basic notions and properties

Definition.

e An algebra is a (complex) vector space A, equipped moreover with the operation of
multiplication - which enjoys the following properties:
ox-(y-z)=(x-y) zforzy,z€ A,
ox-(y+z)=x-y+x-zforazyzeA;
o (x4y) - z=x-2+4+y-zforxy zE A
oa-(x-y)=(a-z)-y=x-(a-y) fora € Cand z,y € A.
An algebra A is said to be commutative, if the multiplication is commutative, i.e., if
ox-y=y-x for x,y € A.
Let A be an algebra. An element e € A is said to be
o a left unit if e - x = x for x € A;
o a right unit if x - e = x for x € A;
oauntife-z=xz-e=ux for z € A.
An algebra admitting a unit is called unital.
Let A be an algebra equipped moreover with a norm ||-|| satisfying
o llo -yl < llz] - lyll for @,y € A.
Then A is said to be a normed algebra.
A Banach algebra is a normed algebra A, which is complete in the metric generated by
the norm.

Remarks:

(1) An algebra may have many left units or many right units.

(2) If an algebra has both a left unit and a right unit, they are equal. In particular, any
algebra has at most one unit.

(3) If A is a nontrivial normed algebra with a unit e (nontrivial means A # {o0}), then
el > 1.

Examples 1 (examples of Banach algebras).

(1) The complex field is a unital commutative Banach algebra.

(2) Let K be a compact Hausdorff space. Then C(K), the space of all the complex-valued
continuous functions on K equipped with the supremum norm and with the pointwise
multiplication (i.e., (f - g)(x) = f(x) - g(z) for f,g € C(K) and x € K) is a unital
commutative Banach algebra. Its unit is the constant function equal to 1.

(3) Let T be a locally compact Hausdorff space which is not compact (e.g., T = R"™). Let
the space

Co(T)={f:T — C continuous; Ve > 0 :{z € T;|f(x)| > €} is a compact subset of T'}
be equipped with the supremum norm and with the pointwise multiplication. Then
Co(T) is a commutative Banach algebra which has no unit.

(4) For n € N let M,, be the space of all the complex square matrices of order n, equipped
with the matrix norm and with the matrix multiplication. Then M, is a unital Banach
algebra. Its unit is the unit matrix. If n > 2, M,, is not commutative.



(5) Let X be a Banach space and let L(X) be the space of all the bounded linear operators
on X equipped with the operator norm. If we define the multiplication on L(X) as the
composition of operators (i.e., S-T = SoT for S,T € L(X)), then L(X) is a unital
Banach algebra. Its unit is the identity mapping. If dim X > 2, the algebra L(X) is not
commutative.

(6) Let X be a Banach space and let K(X) be the space of all the compact operators on X.
Then K(X) is a closed subalgebra of L(X), hence it is a Banach algebra. The algebra
K (X) is unital if and only if X is finite-dimensional. K(X) is commutative if and only
ifdim X = 1.

(7) The Banach space L'(R™) becomes a commutative Banach algebra, if we define the
multiplication as the convolution. This algebra has no unit.

(8) The Banach space (*(Z), equipped with the multiplication * (called also convolution)
defined by

keEZ

('xn)nGZ * (yn)nGZ = (Z ~73k:yn—k:> ) (wn)HG% (yn)nGZ € 61(2)7

is a unital commutative Banach algebra. It unit is the canonical vector ey.

(9) Let p be a normalized Lebesgue measure on [0, 27) (i.e., p = 5=\, where X is a Lebesgue
measure on [0,27)). Then the Banach space L'(u), equipped with the multiplication *
(called also convolution) defined by

fxg(x) =/[02 )f(y)g((w—y) mod 27) dyu(y)
1

= o fW)g((x—y) mod 2r)dy, f,g€ L' (), €l0,2n),
T Jlo,27)

is a commutative Banach algebra. This algebra has no unit.

Proposition 2 (adding a unit).
(a) Let A be an algebra. Let AY denote the vector space A x C equipped with the multi-
plication defined by

(@A) (g, 1) = (- y+ Xy + pa, M), (2, X), (y, p) € AT

Then AY is an algebra and the element (o, 1) is its unit. Moreover, {(a,0);a € A} is a
subalgebra of AT, which is isomorphic to the algebra A.

(b) If A is a Banach algebra, then A% is a unital Banach algebra, if we define the norm by
(2, N)|| = ||z|| + |\, (z,\) € A*. Moreover, {(a,0);a € A} is then a closed subalgebra
of AT, which is isometrically isomorphic to the Banach algebra A.

Remarks:

(1) The algebraic structure of the algebra A™ is uniquely determined, for the norm on A™
it is not the case. The given norm is one of the possible ones, later we will see other
possibilities, which are natural in some special cases.

(2) The procedure of adding a unit is important mainly in case A is not unital. However,
it has a sense also in case A is unital. If A has a unit e, the unit of AT is (o,1) and
the element (e,0) is not a unit anymore. This element is the unit of the subalgebra

{(a,0),a € A}.



Proposition 3 (renorming of a Banach algebra).  Let (A, ||-||) be a nontrivial Banach algebra
with a unit e. Then there exists an equivalent norm ||| - ||| on A such that (A, ||| -|||) is also a
Banach algebra and, moreover, |||e]|| = 1.

Convention: By a unital Banach algebra we will mean in the sequel a nontrivial Banach algebra,
which has a unit and the unit has norm one.

Proposition 4. Let A be a Banach algebra. Then:
(a) x-o=0-x=o0 forx € A.
(b) The multiplication is continuous as a mapping of A x A to A.

Definition. Let A be a Banach algebra with a unit e.
e The element y € A is said to be an inverse element (or just an inverse) of an element = € A
if
TYy=y-r=e.
e An element z € A is called invertible if it admits an inverse.
e The set of all the invertible elements of A is denoted by G(A).

Remark. Let A be a Banach algebra with a unit e and let x € A. If y € A satisfies x -y = e,
it is called a right inverse of x; if it satisfies y - © = e, it is called a left inverse. An element x
can have many different right inverses, or many different left inverses. However, if x has both
a right inverse and a left inverse, it is invertible. Its inverse is uniquely determined and it is
simultaneuously the unique right inverse and the unique left inverse. The inverse of x is denoted
by 2~ L.
Proposition 5 (on multiplication of invertible elements). Let A be a unital Banach algebra.

(a) Let x,y € G(A). Then z-y € G(A) and (z-y) ' =y~ .-z L

(b) G(A) equipped with the operation of multiplication is a group.

(c) If the elements z1,...,z, € A commute (i.e., z;-x =z} -x; for j,k € {1,...,n}), then

x1-- Ty € G(A) if and only if {z1,...,z,} C G(A).

Lemma 6 (Neumann’s series). Let A be a Banach algebra with a unit e.
(a) Let x € A such that ||z|| < 1. Then e — xz € G(A) and, moreover,

oo
(e—x) ! = Zw”,
n=0

where the series converges absolutely.
(b) If x € G(A), h € A and ||h| < Hw—fl”, then x + h € G(A) and, moreover,

> —1(2 h
(w+h) =27t ) (D"(hea™)" and @ h) T T < ”_xux—wuubu'
n=0

Theorem 7 (topological properties of the group of invertible elements). Let A be a unital
Banach algebra. Then

(1) G(A) is an open subset of A,
(2) the mapping x + x~! is a homeomorphism of G(A) onto G(A),
(3) if (z,,) is a sequence in G(A) which converges in A to some x ¢ G(A), then ||z || — oo.



