
IV. Bana
h algebras and Gelfand transform

Convention: In this 
hapter all the Bana
h spa
es are 
onsidered over the 
omplex �eld (unless

the 
onverse is expli
itly stated).

Remark: The real version of the theory of this 
hapter is studied as well, but it is quite

di�erent.

IV.1 Bana
h algebras { basi
 notions and properties

De�nition.

• An algebra is a (
omplex) ve
tor spa
e A, equipped moreover with the operation of

multipli
ation · whi
h enjoys the following properties:

◦ x · (y · z) = (x · y) · z for x, y, z ∈ A;

◦ x · (y + z) = x · y + x · z for x, y, z ∈ A;

◦ (x+ y) · z = x · z + y · z for x, y, z ∈ A;

◦ α · (x · y) = (α · x) · y = x · (α · y) for α ∈ C and x, y ∈ A.

• An algebra A is said to be 
ommutative, if the multipli
ation is 
ommutative, i.e., if

◦ x · y = y · x for x, y ∈ A.

• Let A be an algebra. An element e ∈ A is said to be

◦ a left unit if e · x = x for x ∈ A;

◦ a right unit if x · e = x for x ∈ A;

◦ a unit if e · x = x · e = x for x ∈ A.

An algebra admitting a unit is 
alled unital.

• Let A be an algebra equipped moreover with a norm ‖·‖ satisfying

◦ ‖x · y‖ ≤ ‖x‖ · ‖y‖ for x, y ∈ A.

Then A is said to be a normed algebra.

• A Bana
h algebra is a normed algebra A, whi
h is 
omplete in the metri
 generated by

the norm.

Remarks:

(1) An algebra may have many left units or many right units.

(2) If an algebra has both a left unit and a right unit, they are equal. In parti
ular, any

algebra has at most one unit.

(3) If A is a nontrivial normed algebra with a unit e (nontrivial means A 6= {o}), then
‖e‖ ≥ 1.

Examples 1 (examples of Bana
h algebras).

(1) The 
omplex �eld is a unital 
ommutative Bana
h algebra.

(2) Let K be a 
ompa
t Hausdor� spa
e. Then C(K), the spa
e of all the 
omplex-valued


ontinuous fun
tions on K equipped with the supremum norm and with the pointwise

multipli
ation (i.e., (f · g)(x) = f(x) · g(x) for f, g ∈ C(K) and x ∈ K) is a unital


ommutative Bana
h algebra. Its unit is the 
onstant fun
tion equal to 1.

(3) Let T be a lo
ally 
ompa
t Hausdor� spa
e whi
h is not 
ompa
t (e.g., T = Rn
). Let

the spa
e

C
0

(T ) = {f : T → C 
ontinuous; ∀ε > 0 : {x ∈ T ; |f(x)| ≥ ε} is a 
ompa
t subset of T}
be equipped with the supremum norm and with the pointwise multipli
ation. Then

C
0

(T ) is a 
ommutative Bana
h algebra whi
h has no unit.

(4) For n ∈ N let Mn be the spa
e of all the 
omplex square matri
es of order n, equipped
with the matrix norm and with the matrix multipli
ation. Then Mn is a unital Bana
h

algebra. Its unit is the unit matrix. If n ≥ 2, Mn is not 
ommutative.



(5) Let X be a Bana
h spa
e and let L(X) be the spa
e of all the bounded linear operators

on X equipped with the operator norm. If we de�ne the multipli
ation on L(X) as the


omposition of operators (i.e., S · T = S ◦ T for S, T ∈ L(X)), then L(X) is a unital

Bana
h algebra. Its unit is the identity mapping. If dimX ≥ 2, the algebra L(X) is not


ommutative.

(6) Let X be a Bana
h spa
e and let K(X) be the spa
e of all the 
ompa
t operators on X .

Then K(X) is a 
losed subalgebra of L(X), hen
e it is a Bana
h algebra. The algebra

K(X) is unital if and only if X is �nite-dimensional. K(X) is 
ommutative if and only

if dimX = 1.

(7) The Bana
h spa
e L1

(R
n
) be
omes a 
ommutative Bana
h algebra, if we de�ne the

multipli
ation as the 
onvolution. This algebra has no unit.

(8) The Bana
h spa
e ℓ1(Z), equipped with the multipli
ation ∗ (
alled also 
onvolution)

de�ned by

(xn)n∈Z ∗ (yn)n∈Z =

(

∑

k∈Z

xkyn−k

)

n∈Z

, (xn)n∈Z, (yn)n∈Z ∈ ℓ1(Z),

is a unital 
ommutative Bana
h algebra. It unit is the 
anoni
al ve
tor e
0

.

(9) Let µ be a normalized Lebesgue measure on [0, 2π) (i.e., µ =

1

2π
λ, where λ is a Lebesgue

measure on [0, 2π)). Then the Bana
h spa
e L1

(µ), equipped with the multipli
ation ∗
(
alled also 
onvolution) de�ned by

f ∗ g(x) =

∫

[0,2π)

f(y)g((x− y) mod 2π) dµ(y)

=

1

2π

∫

[0,2π)

f(y)g((x− y) mod 2π) dy, f, g ∈ L1

(µ), x ∈ [0, 2π),

is a 
ommutative Bana
h algebra. This algebra has no unit.

Proposition 2 (adding a unit).

(a) Let A be an algebra. Let A+

denote the ve
tor spa
e A × C equipped with the multi-

pli
ation de�ned by

(x, λ) · (y, µ) = (x · y + λy + µx, λµ), (x, λ), (y, µ) ∈ A+.

Then A+

is an algebra and the element (o, 1) is its unit. Moreover, {(a, 0); a ∈ A} is a

subalgebra of A+

, whi
h is isomorphi
 to the algebra A.
(b) If A is a Bana
h algebra, then A+

is a unital Bana
h algebra, if we de�ne the norm by

‖(x, λ)‖ = ‖x‖+ |λ|, (x, λ) ∈ A+

. Moreover, {(a, 0); a ∈ A} is then a 
losed subalgebra

of A+

, whi
h is isometri
ally isomorphi
 to the Bana
h algebra A.

Remarks:

(1) The algebrai
 stru
ture of the algebra A+

is uniquely determined, for the norm on A+

it is not the 
ase. The given norm is one of the possible ones, later we will see other

possibilities, whi
h are natural in some spe
ial 
ases.

(2) The pro
edure of adding a unit is important mainly in 
ase A is not unital. However,

it has a sense also in 
ase A is unital. If A has a unit e, the unit of A+

is (o, 1) and

the element (e, 0) is not a unit anymore. This element is the unit of the subalgebra

{(a, 0), a ∈ A}.



Proposition 3 (renorming of a Bana
h algebra). Let (A, ‖·‖) be a nontrivial Bana
h algebra

with a unit e. Then there exists an equivalent norm ||| · ||| on A su
h that (A, ||| · |||) is also a

Bana
h algebra and, moreover, |||e||| = 1.

Convention: By a unital Bana
h algebra we will mean in the sequel a nontrivial Bana
h algebra,

whi
h has a unit and the unit has norm one.

Proposition 4. Let A be a Bana
h algebra. Then:

(a) x · o = o · x = o for x ∈ A.
(b) The multipli
ation is 
ontinuous as a mapping of A×A to A.

De�nition. Let A be a Bana
h algebra with a unit e.

• The element y ∈ A is said to be an inverse element (or just an inverse) of an element x ∈ A
if

x · y = y · x = e.

• An element x ∈ A is 
alled invertible if it admits an inverse.

• The set of all the invertible elements of A is denoted by G(A).

Remark. Let A be a Bana
h algebra with a unit e and let x ∈ A. If y ∈ A satis�es x · y = e,
it is 
alled a right inverse of x; if it satis�es y · x = e, it is 
alled a left inverse. An element x

an have many di�erent right inverses, or many di�erent left inverses. However, if x has both

a right inverse and a left inverse, it is invertible. Its inverse is uniquely determined and it is

simultaneuously the unique right inverse and the unique left inverse. The inverse of x is denoted

by x−1

.

Proposition 5 (on multipli
ation of invertible elements). Let A be a unital Bana
h algebra.

(a) Let x, y ∈ G(A). Then x · y ∈ G(A) and (x · y)−1

= y−1 · x−1

.

(b) G(A) equipped with the operation of multipli
ation is a group.

(
) If the elements x
1

, . . . , xn ∈ A 
ommute (i.e., xj ·xk = xk ·xj for j, k ∈ {1, . . . , n}), then
x
1

· · ·xn ∈ G(A) if and only if {x
1

, . . . , xn} ⊂ G(A).

Lemma 6 (Neumann's series). Let A be a Bana
h algebra with a unit e.

(a) Let x ∈ A su
h that ‖x‖ < 1. Then e− x ∈ G(A) and, moreover,

(e− x)−1

=

∞
∑

n=0

xn,

where the series 
onverges absolutely.

(b) If x ∈ G(A), h ∈ A and ‖h‖ < 1

‖x−1‖
, then x+ h ∈ G(A) and, moreover,

(x+ h)−1

= x−1 ·

∞
∑

n=0

(−1)

n
(h · x−1

)

n
and ‖(x+ h)−1 − x−1‖ ≤

‖x−1‖2‖h‖

1− ‖x−1‖‖h‖
.

Theorem 7 (topologi
al properties of the group of invertible elements). Let A be a unital

Bana
h algebra. Then

(1) G(A) is an open subset of A,
(2) the mapping x 7→ x−1

is a homeomorphism of G(A) onto G(A),

(3) if (xn) is a sequen
e in G(A) whi
h 
onverges in A to some x /∈ G(A), then ‖x−1

n ‖ → ∞.


