2. proseminář (27. 2. 2007)

Co jsme dělali?

Mluvili jsme o tom, co to vlastně ta teorie čísel je, a zmínili se o několika významných tvrzeních (prvočíselná věta, velká Fermatova věta, věta o 4 čtvercích, Dirichletova věta o aritmetické posloupnosti) a některých hypotézách (Goldbachova hypotéza, otázka existence nekonečně mnoha prvočíselných dvojčat).

Pak jsme, nejspíš podobně jako Pythagoras, dokázali, že $\sqrt{2}$ je iracionální. To vedlo k definici algebraického čísla.

Příklady

- -1. $\sqrt{2}$ není racionální číslo. 0. $\sqrt{2}+\sqrt{3}$ je algebraické a iracionální číslo; najdi polynom, jehož je kořenem.
- 1. Dokaž, že následující čísla jsou algebraická a iracionální; pro každé z nich najdi polynom, jehož je kořenem.
 - a) $1 + \sqrt{2}$
 - b) $\sqrt{3} + \sqrt{5}$
 - c) $\sqrt{[3]2 + \sqrt{6}}$
 - **2.** Pro která $n \in \mathbb{N}$ a $q \in \mathbb{Q}^+$ je $\sqrt{[n]q}$ racionální?
 - **3.** Je číslo 0, 123456789101112131415... racionální?
- 4. Dokaž, že Goldbachova hypotéza (tvrzení, že každé sudé číslo ≥ 4 je součtem dvou prvočísel) je ekvivalentní s tvrzením, že každé sudé číslo ≥ 6 je součtem tří prvočísel.

Těžší příklady

- 1. Dokaž, že součet a součin dvou algebraických čísel je zase algebraické číslo.
- **2.** Dokaž, že existují iracionální čísla a, b taková, že a^b je racionální.