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ABSTRACT. We show that on super-reflexive spaces a Moreau-Yosida type of regularisation by infimal convolution together with a known
insertion-type theorem (a variant of Ilmanen’s lemma) easily give an approximation of a Lipschitz function by a C1;˛-smooth Lipschitz
function with the same Lipschitz constant. This is a generalisation of the well-known theorem of J.-M. Lasry and P.-L. Lions from Hilbert
spaces. It also gives a new self-contained and probably simpler proof of the Lasry-Lions theorem.

In [LL] the authors prove the following theorem: Let H be a Hilbert space, f W H ! R an L-Lipschitz function, and " > 0.
Then there is an L-Lipschitz function g 2 C 1;1.H/ satisfying supH jf � gj � ". (The original formulation in [LL] is for bounded
functions, however in this theorem the boundedness is not needed, see e.g. [HJ, Theorem 7.41].) There were attempts to generalise
this theorem to super-reflexive spaces (e.g. [C]), but adapting the techniques (especially the use of infimal convolution) from [LL]
to more general spaces proved to be very technical and the results produced are weak, namely the approximating function has
Hölder derivative only on bounded sets and there is no control whatsoever over the Lipschitz constant. We show that using an
insertion theorem we obtain a direct generalisation of the Lasry-Lions theorem; in particular the approximation by C 1;1-smooth
functions holds also e.g. in Lp spaces, p > 2. The proof is in fact very simple and arguably even simpler than the proof of the
special version from [LL]. (On Hilbert spaces our proof is essentially self-contained: The fact that k�k2 is C 1;1-smooth is almost
trivial and there is no need to invoke Lemma 3. The only external result we then use is the fact that a continuous function which is
both semiconvex and semiconcave is already smooth – this fact is used also in [LL], albeit without proof or reference.)

1. PRELIMINARIES

A modulus is a non-decreasing function ! W Œ0;C1/! Œ0;C1� continuous at 0 with !.0/ D 0. The set of all moduli will be
denoted by M. While it is useful to admit infinite values for a modulus when dealing with uniformly continuous functions, for
semiconvex functions it is more reasonable to work only with finite moduli, the set of which will be denoted by Mf.

Definition 1. LetX be a normed linear space,C � X a convex set, and ! 2Mf. We say that a function f W C ! R is semiconvex
with modulus ! (or !-semiconvex for short) if

f .�x C .1 � �/y/ � �f .x/C .1 � �/f .y/C �.1 � �/!.kx � yk/kx � yk

for every x; y 2 C and � 2 Œ0; 1�. We say that f W C ! R is !-semiconcave if �f is !-semiconvex.

For the theory and applications of !-semiconcave functions in Rn see [CS].
The next fact follows easily from the definition of !-semiconvexity ((c) as in the proof of [CS, Proposition 2.1.5]):

Fact 2. Let X be a normed linear space, C � X convex, and ! 2Mf.

(a) Let f W X ! R be !-semiconvex and ´ 2 X . Then the function x 7! f .x C ´/, x 2 X , is also !-semiconvex.
(b) Let f; g W C ! R be !-semiconvex, a; b 2 Œ0;C1/ and c 2 R. Then af C bg C c is semiconvex with modulus .aC b/!.
(c) Let fu˛g˛2� be a family of !-semiconvex functions on C . Set u D sup˛2� u˛ and assume that u.x/ < C1 for each x 2 C .

Then u is also !-semiconvex.

Let X be a normed linear space and ! 2M. By C 1;!.X/ we denote the vector space of all Fréchet differentiable f W X ! R
such that the Fréchet derivative Df is uniformly continuous with modulus C! for some C � 0. By C 1;˛.X/, 0 < ˛ � 1, we
denote the vector space of all Fréchet differentiable functions f on X such that Df is ˛-Hölder on X , i.e. C 1;˛.X/ D C 1;!.X/
for !.t/ D t˛ .

We note that if f is such that Df is uniformly continuous with modulus !, then f is both !-semiconvex and !-semiconcave
([DZ, Lemma 5.2]). The proof of our result is based on the nowadays well-known fact that for continuous functions essentially the
converse implication holds (see e.g. [KZ]). In fact, in some rudimentary form this fact is used already in [LL] on Hilbert spaces,
although there it is stated without proof or reference (see the discussion in [KZ] for historical details).

We will also make use of the following well-known result:

Lemma 3. Let X be a Banach space that has an equivalent norm � with modulus of smoothness of power type 1C ˛, ˛ 2 .0; 1�.
Then �1C˛ 2 C 1;˛.X/.
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Proof. Note that passing to an equivalent norm does not change the notion of Fréchet derivative. The mapping D� W .X; �/!
.X�; ��/ is ˛-Hölder on the unit sphere of .X; �/ (this is implicitly contained in [DGZ, Lemma IV.5.1], for an explicit argument
see e.g. [DZ, Lemma 2.6]). [DGZ, proof of Lemma IV.5.9] then yields that D.�1C˛/ W .X; �/! .X�; ��/ is ˛-Hölder. Finally,
we obtain quite easily that D.�1C˛/ W .X; k�k/! .X�; k�k�/ is also ˛-Hölder (see e.g. [JKZ, Lemma 27]).

ut

Recall that if a Banach space has norm with modulus of smoothness of some power type, then it is super-reflexive, and
conversely every super-reflexive space admits an equivalent norm with modulus of smoothness of some power type p, 1 < p � 2
(see e.g. [DGZ]).

The approximation in [LL] is based on a Moreau-Yosida regularisation defined by a so-called infimal convolution (this notion
goes back to Felix Hausdorff around 1919):

Definition 4. Let X be a vector space and f; g W X ! R. We define the infimal convolution of f and g by

.f � g/.x/ D inf
y2X

�
f .y/C g.x � y/

�
:

Note that f � g D g � f .

Fact 5. Let X be a normed linear space, f; g W X ! R, and suppose that f is uniformly continuous with modulus ! 2M. Then
the function f � g is uniformly continuous with modulus ! provided that it is everywhere finite.

Proof. The function f � g D g � f is an infimum of a system of functions that are all uniformly continuous with modulus !.
ut

Fact 6. LetX be a normed linear space and let f W X ! R be uniformly continuous with modulus ! 2M. Let  W Œ0;C1/! R
be such that  .0/ D 0. Then g D f � . B k�k/ satisfies f � g � f � ", where " D supı2Œ0;C1/

�
!.ı/ �  .ı/

�
.

Proof. Fix x 2 X . Then g.x/ � f .x/C  
�
kx � xk

�
D f .x/. On the other hand,

f .x/ � g.x/ D f .x/ � inf
y2X

�
f .y/C  

�
kx � yk

��
D f .x/C sup

y2X

�
�f .y/ �  

�
kx � yk

��
D sup
y2X

�
f .x/ � f .y/ �  

�
kx � yk

��
� sup
y2X

�
!

�
kx � yk

�
�  

�
kx � yk

��
� sup
ı2Œ0;C1/

�
!.ı/ �  .ı/

�
D ":

ut

2. THE RESULTS

A powerful ingredient of our proof is the following insertion result, which is essentially known. It is a slightly modified [K,
Theorem 3.1]:

Proposition 7. Let X be a normed linear space. Let f1; f2 W X ! R and !1; !2 2Mf, � 2M be such that f1 is !1-semiconvex
and uniformly continuous with modulus � , f2 is !2-semiconcave, and f1 � f2. Denote by S the set of all s W X ! R which
are !1-semiconvex, uniformly continuous with modulus � , and satisfy s � f2. Then the function f W X ! R defined by
f .x/ D sups2S s.x/ is !1-semiconvex, !2-semiconcave, uniformly continuous with modulus � , and satisfies f1 � f � f2.

The proof is just a copy of the ingenious proof of Václav Kryštof with obvious negligible modifications. However since the
proof is very short, we include the full version for reader’s convenience. This also makes our note quite self-contained (at least in
the case of a Hilbert space).

Proof. By the assumptions f1 2 S and so f is well-defined and clearly f1 � f � f2. It is well-known that f is then uniformly
continuous with modulus � . By Fact 2(c) the function f is !1-semiconvex. It remains to show that f is !2-semiconcave. Fix
u; v 2 X and � 2 Œ0; 1�. Set w D �uC .1 � �/v and define a function s W X ! R by

s.x/ D �f .x � w C u/C .1 � �/f .x � w C v/ � �.1 � �/!2.ku � vk/ku � vk for x 2 X .

By Fact 2(a) and (b) the function s is !1-semiconvex and it is clearly uniformly continuous with modulus � . Since f2 is
!2-semiconcave, it follows that

s.x/ � �f2.x � w C u/C .1 � �/f2.x � w C v/ � �.1 � �/!2.ku � vk/ku � vk

� f2
�
�.x � w C u/C .1 � �/.x � w C v/

�
D f2.x/

for every x 2 X . Hence s 2 S and consequently s � f . So

f .�uC .1 � �/v/ � s.w/ D �f .u/C .1 � �/f .v/ � �.1 � �/!2.ku � vk/ku � vk:

ut

Corollary 8. Let X be a normed linear space, ! 2 Mf, � 2 M, and let f1; f2 W X ! R be such that f1 is !-semiconvex,
f2 is !-semiconcave, and f1 � f2. If one of the functions f1, f2 is uniformly continuous with modulus � , then there exists
f 2 C 1;!.X/ that is uniformly continuous with modulus � and f1 � f � f2. Moreover, Df is uniformly continuous with
modulus 4!.
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Proof. By Proposition 7 there is f W X ! R that is uniformly continuous with modulus � , it is both !-semiconvex and
!-semiconcave, and f1 � f � f2. (In case that f1 is not uniformly continuous with modulus � we use Proposition 7 on �f2
and �f1.) Then f 2 C 1.X/ and Df is uniformly continuous with modulus 4! by [KZ, Corollary 4.3].

ut

Theorem 9. Let X be a Banach space that has an equivalent norm with modulus of smoothness of power type 1C ˛, ˛ 2 .0; 1�.
Let f W X ! R be an L-Lipschitz function. Then for each " > 0 there is an L-Lipschitz function g 2 C 1;˛.X/ such that
supX jf � gj � ".

Proof. Let � be the equivalent norm with modulus of smoothness of power type 1C ˛ and let A > 0 be such that k�k � A�. Then
f is AL-Lipschitz on the space .X; �/. Let c > 0 be such that ALt � ct1C˛ � " for each t � 0 (we can take e.g. c D .AL/1C˛

"˛
;

then ALt � ct1C˛ � ALt � " for t � "
AL

and ALt � ct1C˛ D t .AL � ct˛/ � 0 for t � "
AL

). Set f2 D f � c�1C˛ C " and
f1 D �.�f � c�1C˛/ � ". Fact 6 used on the space .X; �/ implies that f � f2 � f C ". Fact 5 used on the space .X; k�k/ then
implies that f2 is L-Lipschitz. Since �1C˛ is C 1;˛-smooth (Lemma 3), it follows that �1C˛ is !-semiconcave with !.t/ D kt˛

for some k � 0 ([DZ, Lemma 5.2]). Consequently, f2 is c!-semiconcave (Fact 2(b), (c)). Similarly, f1 is c!-semiconvex and
f � " � f1 � f . It follows that f � " � f1 � f2 � f C ". By Corollary 8 there is g 2 C 1;˛.X/ that is L-Lipschitz and
f1 � g � f2, which implies that supX jf � gj � ".

ut

From [HJ, Theorem 7.86] we obtain the following corollary:

Corollary 10. Let X be a super-reflexive Banach space and ˝ � X an open set. Then for any L-Lipschitz function f W ˝ ! R,
any continuous function " W ˝ ! RC, and any � > 1 there is an �L-Lipschitz function g 2 C 1.˝/ such that jf .x/�g.x/j < ".x/
for all x 2 ˝.

I would like to thank Luděk Zajíček for comments that helped to improve the presentation of the paper.
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[KZ] Václav Kryštof and Luděk Zajíček, Functions on a convex set which are both !-semiconvex and !-semiconcave, J. Convex Analysis. 29 (2022), 837–856.
[LL] Jean-Michel Lasry and Pierre-Louis Lions, A remark on regularization in Hilbert spaces, Israel J. Math. 55 (1986), no. 3, 257–266.

CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS, DEPARTMENT OF MATHEMATICAL ANALYSIS, SOKOLOVSKÁ 83, 186 75 PRAHA 8,
CZECH REPUBLIC

E-mail address: johanis@karlin.mff.cuni.cz


	1. Preliminaries
	2. The results
	References

