
A FACTORISATION APPROACH TO BATES’S THEOREM

MICHAL JOHANIS

ABSTRACT. We give a proof of theorem of S. M. Bates on smooth surjections between separable Banach spaces using a factorisation
through an Orlicz sequence space. We believe that this approach is less technical and more transparent than the original proof.

It was shown by Sean Michael Bates [B] that every separable Banach space Y is a range of a C 1-smooth surjection f W X ! Y

from any infinite dimensional Banach space X . Moreover, if the space X has property B (defined below), then the surjection can
be C1-smooth with all derivatives bounded on bounded sets. Independently, Petr Hájek [H2] showed that in certain cases the
surjection can be even a polynomial. More precisely, he used the well-known fact that any separable Banach space is a quotient
of `1 and then a factorisation

X
T
! p̀

P
! `1

S
! Y;

where S is a bounded linear surjection, P is a polynomial, and T is a non-compact bounded linear operator. One of the key
observations is that there is a rather thin set A � `1 such that S.A/ still contains a unit ball and A is in the image of P B T . The
condition for the existence of a polynomial surjection is then the existence of an operator T above.

Inspired by Hájek’s approach we show that there are even thinner sets in `1 still leading to a surjection (Corollary 4), which
combined with the observation that property B gives a non-compact linear operator into an Orlicz space hM (Proposition 2) leads
to the factorisation

X
T
! hM

˚
! `1

S
! Y;

where ˚ is a rather simple C1-smooth mapping (Lemma 6). Thus we obtain a different, and perhaps easier, proof of Bates’s
theorem (Corollary 7). We do not claim that the proof is extremely short, but we believe that it is rather straightforward, transparent,
and mostly non-technical, except perhaps the “insertion” Lemma 5, which belongs to the analysis of functions of one variable. In
fact, the proof could be considerably condensed by putting all the intermediate lemmata together and disposing of the notion and
theory of Orlicz spaces altogether, but that would only obscure the main ideas that are ultimately combined, and which can be
perhaps of independent interest.

First we fix some notation. LetX be a normed linear space. By B.x; r/, resp. U.x; r/ we denote the closed, resp. open ball in X
centred at x 2 X with radius r � 0. It will be convenient to use U.x;C1/ D B.x;C1/ D X . If X has a Schauder basis feng
and x D

P1
nD1 xnen 2 X , then by supp x we denote the support of x, i.e. the set fn 2 NI xn ¤ 0g. If fxng is a sequence in X ,

then xn.j / denotes the j th coordinate of xn 2 X .
ByDkf .x/ we denote the kth Fréchet derivative of f at x and byDkf .x/Œh1; : : : ; hk � we denote its evaluation at the directions

h1; : : : ; hk . By C1.X IY / we denote the space of C1-smooth mappings from X to Y and by C1.X IY / we denote the space of
C1-smooth mappings from X to Y that have all derivatives bounded on bounded sets.

Next we recall some basic facts about Orlicz sequence spaces hM . A function M W R! Œ0;C1/ is called an Orlicz function
if it is even, convex, non-decreasing on Œ0;C1/, M.0/ D 0, and if M is not constant. An Orlicz sequence space hM is a linear
subspace of `1 (with real or complex scalars) consisting of x 2 `1 satisfying

P1
nD1M.jxnj=�/ < C1 for all � > 0, equipped

with the norm given by the Minkowski functional of fx 2 hM I
P1
nD1M.jxnj/ � 1g. With this norm the space hM is a Banach

space and the canonical basis vectors feng1nD1 form a symmetric Schauder basis of hM . Further, x 7!
P1
nD1M.jxnj/ is continuous

on hM and
P1
nD1M.jxnj/ � kxk for x 2 BhM

, while
P1
nD1M.jxnj/ � kxk for x 2 hM , kxk > 1. If M is such that M.t/ D 0

for some t > 0, then it is called a degenerate Orlicz function. The associated space hM is then isomorphic to c0. In connection
with this and Proposition 2 we remark that c0 does not have property B ([B], cf. [HJ, Proposition 6.38]) and there is no C 2-smooth
surjection from c0 onto `2 ([H1], see also [HJ, Chapter 6]). For more on the Orlicz sequence spaces see e.g. [LT, Chapter 4], for
their smoothness properties see [HJ, Section 5.9].

Now we turn to producing the building blocks of the aforementioned factorisation.

Definition 1. We say that a Banach space X has property B if X� contains a normalised sequence ffng1nD1 such that for every
" > 0 there is k."/ � 0 such that cardfn 2 NI jfn.x/j > "g � k."/ for any x 2 BX .

Note that the sequence ffng from the definition above is in particular w�-null.
A key observation that allows us to do the factorisation is the following.

Proposition 2. A Banach space X has property B if and only if there are a non-degenerate Orlicz function M and a bounded
linear operator T W X ! hM such that T .BX / contains the canonical basis of hM .
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Proof. ( Denote by f.enIfn/g1nD1 the canonical basis of hM . Note that if y 2 BhM
, then

P1
nD1M.jfn.y/j/ � 1 and hence

cardfnI jfn.y/j > ıg < 1=M.ı/ for each ı > 0. Let fxng � BX be such that T .xn/ D en. Notice that kT �.fn/k �
T �.fn/.xn/ D fn.T .xn// D fn.en/ D 1. Put gn D T �.fn/=kT �.fn/k. Now pick any x 2 BX . Then jgn.x/j D

ˇ̌̌
T �.fn/.x/
kT �.fn/k

ˇ̌̌
Dˇ̌̌

fn.T .x//
kT �.fn/k

ˇ̌̌
� jfn.T .x//j and hence

cardfn 2 NI jgn.x/j > "g � cardfn 2 NI jfn.T .x//j > "g D card
n
n 2 NI

ˇ̌̌
fn

�
T.x/
kT k

�ˇ̌̌
> "
kT k

o
<

1

M
�
"
kT k

� ;
since T.x/

kT k
2 BhM

.
)We may assume without loss of generality that the function " 7! k."/ is positive and non-increasing. Further, according to

[HJ, Theorem 3.56] by passing to a subsequence we may assume that there is a semi-normalised sequence fxng � X such that
f.xnIfn/g

1
nD1 is a biorthogonal system. Let f"ng1nD1 � .0; 1/ be any sequence decreasing to 0. Let g W Œ0; "1�! R be a function

affine on each Œ"nC1; "n� and satisfying g."n/ D 1
n2 � 1=k

� "nC1

nC1

�
, g.0/ D 0. Let M be the convex envelope of g. It is easily seen

that M can be extended to a non-degenerate Orlicz function. We define T W X ! `1 by T .x/ D .fn.x//n2N . Then T is clearly a
linear operator. Further, if x 2 B.0; �/, then cardfn 2 NI jfn.x/j > "g D cardfn 2 NI jfn.

x
�
/j > "

�
g � k. "

�
/, and so if � � 1,

then (putting "0 D �)
1X
nD1

M.jfn.x/j/ D

1X
nD1

X
fi I "n<jfi .x/j�"n�1g

M.jfi .x/j/ �

1X
nD1

M."n�1/k
�"n
�

�
�

X
n��

M."n�1/k
�"n
�

�
C

X
n>�

M."n�1/k
�"n
n

�
�

X
n��

M."n�1/k
�"n
�

�
C

X
n>�

1

.n � 1/2
< C1:

It follows that T actually maps into hM and that it is bounded. It is clear that T maps the vectors fxng onto the canonical basis
of hM . By scaling T if necessary we can achieve that the canonical basis is contained in T .BX /.

ut

The following lemma, which is also behind the Open mapping theorem, is a slight modification of [HJ, Fact 6.64]; here we give
“the right” formulation, although for the factorisation we do not need its full strength.

Lemma 3. Let Y be a normed linear space over K, fy
g
2� a dense subset of BY , and let f�ng1nD1 � K n f0g. For each
y 2 U

�
0;
P1
nD1j�nj

�
there is a sequence f
ng1nD1 of distinct elements of � such that y D

P1
nD1 �ny
n

. If � D N, then f
ng
can be chosen to be increasing.

Proof. First we choose N 2 N such that R D
PN
nD1j�nj � kyk. Since j�nj

�nR
y 2 BY , for each n D 1; : : : ; N we can find


n 2 � n f
1; : : : ; 
n�1g such that


 j�nj

�nR
y � y
n



 < j�NC1j

N j�nj
. Hence




y � NX

nD1

�ny
n






 D






PN
nD1j�nj

R
y �

NX
nD1

�ny
n






 D





 NX
nD1

�n
j�nj

�nR
y �

NX
nD1

�ny
n






 � NX
nD1

j�nj





 j�nj�nR
y � y
n





 < j�NC1j: (1)

We proceed by induction: we find a sequence f
ng1nDNC1 � � such that


y �Pn

kD1 �ky
k



 < min
˚
j�nC1j;

1
n

	
for every n > N .

Let n > N . Then ´ D 1
�n

�
y �

Pn�1
kD1 �ky
k

�
2 BY by the inductive assumption (or by (1) if n D N C 1) and so there is


n 2 � n f
1; : : : ; 
n�1g such that k´ � y
n
k < min

˚
j�nC1j;

1
n

	
=j�nj, which finishes the construction. In case that � D N we

can of course always choose 
n > 
n�1.
ut

Let X be a Banach space with a sub-symmetric Schauder basis. To each x D .xn/ 2 X we associate a subset Sx � X called
the spreading of x by Sx D

˚P1
kD1 xkenk

I fnkg
1
kD1
� N increasing

	
. The next corollary is an improvement of the well-known

fact that any separable Banach space is a quotient of `1.

Corollary 4. Let Y be a separable Banach space. Then there exists a bounded linear operator T W `1 ! Y such that T .Sx/ �
U.0; kxk/ whenever x 2 `1 is such that supp x D N.

Proof. Let fyng be a dense subset of BY . Define T W `1 ! Y by T .x/ D
P1
nD1 xnyn. The conclusion now follows from

Lemma 3.
ut

The following lemma is an “insertion” type result that will be needed for the construction of the smooth mapping from hM
to `1.

Lemma 5. Let vk W Œ0;C1/ ! Œ0;C1/, k 2 N0, be non-decreasing functions positive on .0;C1/. There are an even
' 2 C1.R/ positive on R n f0g and constants Ck > 0 such that

ˇ̌
'.k/.t/

ˇ̌
� Ckvk.jt j/ for every t 2 R and k 2 N0. If moreover

lim inf
t!C1

v0.t/
t
> 0, then ' can be chosen so that lim

t!C1
'.t/ D C1.
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Proof. Without loss of generality we may assume that limt!0C vk.t/ D 0 for each k 2 N0. Let  n 2 C1.R/ be non-negative,
such that supp n D

�
1
nC2

; 1
n

�
, n 2 N0, and let  0 be constant on Œ1;C1/. For each n 2 N0 we find an > 0 such that

an max
ˇ̌
 .k/n

ˇ̌
�
1

2
vk

� 1

nC 2

�
for each k 2 f0; : : : ; ng. (2)

Next we put C0 D 1 and for each k 2 N we find Ck � 1 such that

max
ˇ̌
an 

.k/
n

ˇ̌
�
1

2
Ckvk

� 1

nC 2

�
for each n 2 f0; : : : ; k � 1g. (3)

It follows that
ˇ̌
an 

.k/
n .t/

ˇ̌
�

1
2
Ckvk.t/ for every t � 0 and n; k 2 N0: indeed, for a fixed n and t � 1

nC2
all the derivatives of  n

are zero, while for t � 1
nC2

we use (2) for k � n and (3) for k > n. Now it suffices to put '.t/ D
P1
nD0 an n.jt j/ for t 2 R.

Then '.k/.t/ D an 
.k/
n .t/C anC1 

.k/
nC1.t/ for t 2

�
1
nC2

; 1
nC1

�
, and so

ˇ̌
'.k/.t/

ˇ̌
� Ckvk.jt j/ for t ¤ 0. From this estimate we

also conclude by induction that '.k/.0/ D 0 for k 2 N0 and that ' 2 C1.R/.
Finally, suppose that moreover lim inft!C1

v0.t/
t
> 0. Then we can take  0 to be affine and increasing on Œ1;C1/. We will

also replace (2) for n D 0 by ja0 0.t/j � 1
2
v0.t/ for t � 0. The rest of the proof is the same.

ut

Next we construct the main part of the factorisation.

Lemma 6. Let M be a non-degenerate Orlicz function. Then there is a mapping ˚ 2 C1.hM I `1/, where the spaces are real,
with the following properties:

(i) supp˚.x/ D supp x for any x 2 hM ,
(ii) ˚.Sx/ D S˚.x/ for any x 2 hM ,

(iii) limn!1˚.xn/.1/ D C1 whenever fxng � hM satisfies limn!1 xn.1/ D C1.

Proof. Without loss of generality we may assume thatM.1/ D 1. By Lemma 5 there are an even function ' 2 C1.R/ positive on
R n f0g with limt!C1 '.t/ D C1, and constants Ck > 0 such that j'.k/.t/j � CkM. t

kC1
/ for every t 2 R, k 2 N0. We define

˚ W hM ! `1 by ˚.x/ D .'.xn//. Notice that
P1
nD1j'.xn/j � C0

P1
nD1M.xn/ < C1 for any x D .xn/ 2 hM and so indeed

˚ maps into `1. Moreover, ˚ is locally bounded, since the estimate on the right-hand side is continuous on hM . The mapping ˚
clearly has properties (i)–(iii).

To see the smoothness of ˚ , consider " D ."n/
N
nD1 2 f�1; 1g

N � `�1 . Let ffng be the canonical coordinate functionals
on hM and notice that kfnk D 1. Then " B ˚ D

PN
nD1 "n' B fn is clearly C1-smooth and Dk." B ˚/.x/Œh1; : : : ; hk � DPN

nD1 "n'
.k/.fn.x// � fn.h1/ � � � fn.hk/ ([HJ, Corollary 1.117]). Therefore, for a fixed k 2 N and x 2 U.0; k/ we have

kDk." B ˚/.x/k �
PN
nD1j'

.k/.fn.x//j � Ck
PN
nD1M

�
fn.x/
kC1

�
� Ck . Consequently, Dk�1." B ˚/ is Ck-Lipschitz on U.0; k/.

Since all such " form a norming set for `1, it follows that ˚ is C k�1-smooth with the .k � 1/th derivative Lipschitz (and hence
bounded) on U.0; k/, [HJ, Corollary 1.131]. As this holds for every k 2 N, we finally conclude that ˚ 2 C1.hM I `1/.

ut

Finally, we can put all together to recover Bates’s theorem.

Corollary 7 (S. M. Bates). If X is a real Banach space with property B then for any separable Banach space Y there is a
surjection f 2 C1.X IY /.

Proof. Let T W X ! hM be the linear operator from Proposition 2, let˚ W hM ! `1 be the smooth mapping from Lemma 6, and let
V W `1 ! Y be the linear operator from Corollary 4. We set f D V B˚ BT . Then f 2 C1.X IY / by [HJ, Proposition 1.128]. Now
let fxng � BX be such that T .xn/ D en, where feng is the canonical basis of hM . Put v D

P1
nD1

1
2n en and A D

˚P1
kD1

1

2k xnk
I

fnkg
1
kD1
� N increasing

	
. Note that Snv D T .nA/ for n 2 N. Further, denote ´n D ˚.nv/. Then supp ´n D suppnv D N,

S´n
D ˚.Snv/ D ˚.T .nA//, and ´n.1/!C1 as nv.1/!C1. Consequently,

Y D

1[
nD1

U
�
0; k´nk

�
�

1[
nD1

V.S´n
/ D

1[
nD1

V
�
˚
�
T .nA/

��
D

1[
nD1

f .nA/:

ut

We close the paper by a few final remarks. When we write down the composition of the constructed mappings, the final formula
for the surjection is

f .x/ D

1X
nD1

'.fn.x//yn;

where fyng is a dense subset of BY and fn 2 X� are suitably chosen functionals so that f is onto. It is easily checked that the
derivative of f is given by Df.x/Œh� D

P1
nD1 '

0.fn.x//fn.h/yn. Therefore the derivative at most points (those with sufficiently
many non-zero fn-coordinates) has infinite-dimensional range. This is in sharp contrast with the original proof of Bates, where he
explicitly stresses that his surjection is highly singular: its derivative is of rank at most 1 at every point.
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The last remark concerns non-separable spaces. The original paper contains also a non-separable version of Corollary 7: Let �
be an infinite cardinal. If X is a real Banach space with property B�, then for any Banach space Y of density at most � there
is a surjection f 2 C1.X IY /. (We say that a Banach space X has property B� if there is A � SX� of cardinality � such that
for every " > 0 there is k."/ � 0 such that cardff 2 AI jf .x/j > "g � k."/ for any x 2 BX . We note that the property B� is
called .�/1 in the Bates’s paper and that the separable version is perhaps better known in the formulation due to E. Odell and
H. Rosenthal: the property B D B! is equivalent to the existence of a normalised weakly null hereditarily Banach-Saks sequence
in X�, see [B, Lemma 3.2].)

Our factorisation approach works almost verbatim also in this non-separable setting except for the crucial step in the proof of
Proposition 2, where we use [HJ, Theorem 3.56] to obtain the canonical basis in the range of T . To replicate this step we would
need a non-separable version of [HJ, Theorem 3.56]. This version is true for � > !1, but unfortunately at present we can show it
for � D !1 only under additional set-theoretic axiom MA!1

. The details can be found in [HJ2].
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