
SMOOTH PARTITIONS OF UNITY ON BANACH SPACES
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ABSTRACT. We show a new characterisation of the existence of smooth partitions of unity on a Banach space. This leads to a slight
generalisation of some as well as a very easy recovery of most of the known results using a unified treatment.

Smooth partitions of unity are an important tool in the theory of smooth approximations (see [HJ, Chapter 7]), smooth extensions,
theory of manifolds, and other areas. Clearly a necessary condition for a Banach space to admit smooth partitions of unity is the
existence of a smooth bump function. The sufficiency of this condition for a general Banach space is still an open problem. A
positive answer was established in many cases, the most important of which are the following (i.e. if one of the conditions below is
fulfilled, then the existence of a smooth bump function on X implies that X admits smooth partitions of unity):

(i) X has an SPRI (separable “projectional resolution of the identity”), [GTWZ].
(ii) X belongs to a P -class, [H].

(iii) X D C.K/ for K compact, [HH].
(iv) X has a subspace Y isomorphic to c0.� / such that X=Y admits smooth partitions of unity, [DGZ1].
(v) X� is weakly compactly generated (WCG), [M].

For the definition and basic properties of an SPRI see [F, Definition 6.2.6 ff.] or [HMVZ, Theorem 3.46]; for the definition of a
P -class see p. 3.

The original proofs of the results (i), (iv), and (v) use Toruńczyk’s characterisation of the existence of smooth partitions of unity
by non-linear homeomorphic embedding into c0.� / with smooth component functions (see e.g. [HJ, Proposition 7.60]). The other
two results use the following theorem of Richard Haydon:

Theorem 1 ([H], see also [HJ, Theorem 7.53]). Let X be a normed linear space that admits a C k-smooth bump function,
k 2 N [ f1g. Let � be a set and ˚ W X ! c0.� / a continuous mapping such that for every 
 2 � the function e�
 B ˚ is
C k-smooth. For each finite F � � let PF 2 C k.X IX/ be such that the space spanPF .X/ admits locally finite Ck-partitions
of unity. Assume that for each x 2 X and each " > 0 there exists ı > 0 such that kx � PF .x/k < " if we set F D f
 2 � I
j˚.x/.
/j � ıg. Then X admits locally finite and � -uniformly discrete Ck-partitions of unity.

While pondering the applicability of Haydon’s theorem we were led to another characterisation of the existence of smooth
partitions of unity (Theorem 2). This characterisation allows very easy recovery of all the results above except for the C.K/ case.
In fact, an immediate consequence is a (at least formal) generalisation of (i), (ii), and (v) given in Corollary 6, which puts all these
results under a common roof (this is either obvious or shown in Theorem 10 and Corollary 9). There is also another tiny advantage
for the insight into the problem when using Theorem 1: All the original proofs that use Toruńczyk’s characterisation (of course
they all come from the same workshop) at some point invoke the completeness of the underlying space, but as we shall see here,
the completeness is completely irrelevant to the problem.

Before we start, we fix some notation. By U.x; r/, resp. B.x; r/ we denote the open, resp. closed ball centred at x with
radius r . For a function f W X ! R we denote suppo f D f

�1.R n f0g/. For other unfamiliar notation or terminology see [HJ] or
[FHHMZ].

Now, the reason that Haydon’s theorem can be successfully used to prove the wonderful result (iii) is that there is a rich supply
of projections of norm one on an Asplund C.K/ space (formed by restrictions to clopen subsets of K). So what do we have on
an arbitrary Banach space? The projections onto one-dimensional subspaces, of course. This observation leads to the following
characterisation:

Theorem 2. Let X be a normed linear space and k 2 N [ f1g. The following statements are equivalent:
(i) X admits locally finite and � -uniformly discrete Ck-partitions of unity.

(ii) X admits a C k-smooth bump and there are a set � , a continuous ˚ W X ! c0.� / such that e�
 B ˚ 2 C
k.X/ for every


 2 � , and fx
ng
2�;n2N � X such that x 2 span fx
nI ˚.x/.
/ ¤ 0; n 2 Ng for every x 2 X .

Notice that the condition (ii) resembles a property of a strong Markushevich basis.
Before delving into the proof of Theorem 2 we make a short technical intermission. Applications of Theorem 1 involve

constructions of continuous mappings into c0.� /. To avoid repeating the same argument in several of these constructions we will
make use of the following simple lemma.
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1



2 MICHAL JOHANIS

Lemma 3. LetX be a topological space,� a set, and˚ W X ! RN�� . Suppose that all the component functions x 7! ˚.x/.n; 
/

are continuous, limn!1˚.x/.n; 
/ D 0 locally uniformly in x 2 X and uniformly in 
 2 � , and for each fixed n 2 N, x 2 X ,
and " > 0 there are a neighbourhood U of x and a finite F � � such that j˚.y/.n; 
/j < " whenever y 2 U and 
 2 � n F .
Then ˚ is a continuous mapping into c0.N � � /.

Proof. Fix x 2 X and " > 0. There are n0 2 N and a neighbourhoodU of x such that j˚.y/.n; 
/j < "
2

whenever n > n0, y 2 U ,
and 
 2 � . For each n 2 N, n � n0 there are a neighbourhood Vn � U of x and a finite Fn � � such that j˚.y/.n; 
/j < "

2

whenever y 2 Vn and 
 2 � n Fn. Put F D
S
n�n0
fng � Fn and V D

T
n�n0

Vn. Then F is finite and j˚.y/.n; 
/j < "
2

whenever y 2 V and .n; 
/ 2 N � � n F . This shows that ˚ maps into c0.N � � /. The continuity of ˚ follows from the
fact that j˚.y/.n; 
/ � ˚.x/.n; 
/j < " whenever y 2 V and .n; 
/ 2 N � � n F , and from the continuity of the functions
y 7! ˚.y/.n; 
/, .n; 
/ 2 F .

ut

Proof of Theorem 2. For the purpose of the proof let us consider the following intermediate statement:
(ii)’ X admits a C k-smooth bump and there are a set �, a continuous 	 W X ! c0.�/ such that e�

�
B 	 2 C k.X/ for every

� 2 �, and fx�g�2� � X such that x 2 fx�I 	.x/.�/ ¤ 0g for every x 2 X .
(ii)’)(i) By the assumption there are functions hn 2 C k.X I Œ0; 1�/ such that suppo hn � U.0; 1

n
/ and hn.0/ > 0. Set

� D N �� and define ˚ W X ! `1.� / by

˚.x/.n; �/ D
1

n
hn.x � x�/	.x/.�/:

Then ˚ is a continuous mapping into c0.� / by Lemma 3. Clearly, e�
.n;�/
B ˚ 2 C k.X/ for each .n; �/ 2 � . Next, for each

finite non-empty F � � set m.F / D maxfn 2 NI .n; �/ 2 F for some � 2 �g, let ˛.F / 2 � be chosen arbitrarily such
that

�
m.F /; ˛.F /

�
2 F , and let PF W X ! X be the linear projection onto spanfx˛.F /g of norm at most one. We also set

P; D 0. We show that the assumptions of Theorem 1 are satisfied. Each one-dimensional subspace of X admits locally finite
Ck-partitions of unity ([HJ, Corollary 7.50]). Given x 2 X and " > 0 find m 2 N such that 1

m
�

"
2

. By the assumption
there is ˛ 2 � such that 	.x/.˛/ ¤ 0 and x˛ is so close to x that hm.x � x˛/ > 0. If we set ı D j˚.x/.m; ˛/j and
F D f.n; �/ 2 � I j˚.x/.n; �/j � ıg, then .m; ˛/ 2 F and hence m.F / � m. Further,

ˇ̌
˚.x/

�
m.F /; ˛.F /

�ˇ̌
� ı > 0, and in

particular hm.F /.x � x˛.F // > 0. It follows that kx � x˛.F /k < 1
m.F /

�
1
m
�

"
2

. Note that PF .x˛.F // D x˛.F / and therefore
kx � PF .x/k � kx � x˛.F /k C kPF .x˛.F // � PF .x/k < ".

(ii))(ii)’ Put � D c
Q
00.� � N/, i.e. the set of all vectors in c00.� � N/ with rational coordinates. For each � 2 � set

x� D
P

2�;n2N �.
; n/x
n. Clearly, fx�I � 2 �g D spanQfx
nI 
 2 �; n 2 Ng. Further, let q W Q! N be some one-to-one

mapping with q.0/ D 1 and put m.�/ D maxfn 2 NI �.
; n/ ¤ 0 for some 
 2 � g for � 2 � n f0g and m.0/ D 1. Finally,
define 	 W X ! R� by

	.x/.�/ D
1

m.�/
Q

2�;n2N q

�
�.
; n/

� Y

2� W 9n;�.
;n/¤0

˚.x/.
/:

We claim that 	 is actually a continuous mapping into c0.�/.
Indeed, fix x 2 X and " > 0. Since ˚ is continuous, there are a neighbourhood U of x and a finite set H � � such

that k˚.y/k < k˚.x/k C 1 and j˚.y/.
/j < 1 for each y 2 U and 
 2 � n H . Note that
Q

2� W 9n;�.
;n/¤0j˚.y/.
/j �

.k˚.x/k C 1/jH j for any y 2 U and � 2 �, and the same holds if we omit any one of the factors in the product. Next, there are a
neighbourhood V of x, V � U , and a finite set E � � such that j˚.y/.
/j < "=.k˚.x/kC 1/jH j for each y 2 V and 
 2 � nE.
Let N 2 N be such that 1

N
< "=.k˚.x/k C 1/jH j. Put

F D
˚
� 2 �I supp� � E � f1; : : : ; N g and q

�
�.
; n/

�
� N for all 
 2 � , n 2 N

	
and note that F is finite. Now if y 2 V and � 2 � n F , then j	.y/.�/j < ". It easily follows that 	 is a continuous mapping
into c0.�/.

Clearly, e�
�
B 	 2 C k.X/ for every � 2 �. Finally, given x 2 X and a neighbourhood U of x, by the assumption there is

� 2 � such that x� 2 U and ˚.x/.
/ ¤ 0 if �.
; n/ ¤ 0 for some n 2 N. Consequently, 	.x/.�/ ¤ 0.
(i))(ii) The existence of a C k-smooth bump is clear (just take a partition of unity subordinated to a covering of X by U.0; 2/

and X n B.0; 1/). Next, for each n 2 N let f'n�g�2� be a locally finite Ck-partition of unity on X subordinated to the uniform
covering of X by open balls of radius 1

n
(clearly f'n�g can be constructed by scaling the domains of f'1�g so that the index set is

always the same). Without loss of generality we may assume that all the functions 'n� are non-zero. We put � D N �� and
define ˚ W X ! `1.� / by

˚.x/.n; �/ D
1

n
'n�.x/:

Then ˚ is a continuous mapping into c0.� / by Lemma 3. To finish, choose any xn� in each suppo 'n�. Fix x 2 X and ı > 0. Let
n 2 N be such that 2

n
< ı. There is � 2 � such that x 2 suppo 'n�. Then ˚.x/.n; �/ > 0 and kx � xn�k < 2

n
< ı. It follows

that x 2 fxn�I ˚.x/.n; �/ ¤ 0g.
ut
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As a first application we show how the above characterisation can be used to rather easily obtain the result (iv) from the
introduction. Not only that our proof is substantially shorter than the original, but it also does not use any fancy tools like lifting,
Bartle-Graves selectors, etc. The stripped-down proof clearly exposes the three main ideas behind it: the use of linear functionals
on the subspace Y , so that they can be extended to the whole space; the use of a fundamental biorthogonal system in Y , which
allows to link these extensions to functionals on X=Y ; and the crucial property of the norm on c0.� /: if we drop all small
coordinates, the vector stays close.

Corollary 4 ([DGZ1]). Let X be a normed linear space and Y � X a subspace isomorphic to c0.� / for some � . If X=Y admits
locally finite Ck-partitions of unity for some k 2 N [ f1g, then X admits locally finite and � -uniformly discrete Ck-partitions of
unity.

Proof. By extending the equivalent norm from Y we may assume without loss of generality that Y is actually isometric to c0.� /.
Let Q W X ! X=Y be the canonical quotient mapping. Let f.e
 If
 /g
2� be the canonical basis of c0.� / and further assume
that each f
 is actually a norm-one functional on X (use the Hahn-Banach theorem). For each n 2 N let f n�g�2� be a locally
finite Ck-partition of unity on X=Y subordinated to the uniform covering of X=Y by open balls of radius 1

n
(clearly f n�g can be

constructed by scaling the domains of f 1�g so that the index set is always the same). Without loss of generality we may assume
that all the functions  n� are non-zero. Choose ´n� 2 suppo  n� and xn� 2 X such that Q.xn�/ D ´n�. Let �n 2 C1

�
RI Œ0; 1

n
�
�
,

n 2 N be Lipschitz functions satisfying �n.t/ D 0 if and only if jt j � 2
n

. We define a mapping ˚ W X ! `1.N���� [N��/
by

˚.x/.n; �; 
/ D �n
�
f
 .x � xn�/

�
 n�

�
Q.x/

�
;

˚.x/.n; �/ D
1

n
 n�

�
Q.x/

�
:

First we show that ˚ is actually a continuous mapping into c0.N � � � � [ N � �/. Fix x 2 X and " > 0. Clearly,
0 � ˚.y/.n; �; 
/ < " and 0 � ˚.y/.n; �/ < " for n > 1

"
and all � 2 �, 
 2 � , y 2 X . Now fix n 2 Œ1; 1

"
�. Since f n�g�2� is

locally finite, there is a neighbourhood V of Q.x/ and a finite F � � such that  n� D 0 on V for � 2 � n F . Further, there is a
neighbourhood U of x such that Q.U / � V . Then clearly ˚.y/.n; �; 
/ D ˚.y/.n; �/ D 0 for y 2 U and � 2 � n F , 
 2 � .
Now fix � 2 F . Assume that  n�.Q.x// ¤ 0. Then kQ.x/ � ´n�k < 2

n
. Put H D f
 2 � I jf
 .x � xn�/j � 2

n
g. We claim

that H is finite. Indeed, if H is infinite, then by the w�-compactness there is a w�-accumulation point f 2 BX� of ff
g
2H .
Then f �Y D 0, since f.e
 If
 /g is a fundamental biorthogonal system in Y . In particular, f can be considered also as a member
of .X=Y /�, and so 2

n
� jf .x � xn�/j D jf .Q.x/ � ´n�/j � kQ.x/ � ´n�k <

2
n

, a contradiction. Thus ˚.x/.n; �; 
/ D 0 for

 2 � nH . Since the family of functions y 7! ˚.y/.n; �; 
/, 
 2 � , is equi-continuous, there is a neighbourhood W of x such
that j˚.y/.n; �; 
/j < " whenever y 2 W and 
 2 � nH . Thus we may apply Lemma 3.

Next, we set xn�
 D e
 . Fix any x 2 X and " > 0. There is n 2 N, n � 8
"
, and � 2 � such that  n�.Q.x// > 0 and

kQ.x/ � ´n�k <
"
4

. Thus there is u 2 Y such that kx � xn� � uk < "
4

. Put F D f
 2 � I jf
 .u/j > "
2
g, which is a finite set

(possibly empty), and v D
P

2F f
 .u/e
 . Then ku � vk � "

2
(we have the supremum norm here) and so kx � .xn� C v/k �

kx�xn��ukCku� vk < ". Note that jf
 .x�xn�/j � jf
 .u/j � jf
 .x�xn��u/j > "
2
�kx�xn��uk >

"
4
�

2
n

for 
 2 F .
Consequently, ˚.x/.n; �; 
/ > 0 for 
 2 F . It follows that x 2 span

�
fxn�I ˚.x/.n; �/ ¤ 0g [ fxn�
 I ˚.x/.n; �; 
/ ¤ 0g

�
.

Each component of ˚ is clearly C k-smooth and the space X admits a C k-smooth bump by [DGZ1, Proposition 1]. Thus we
may conclude the proof by using Theorem 2.

ut

Before going further, we review some notions useful in the study of the (linear) structure of non-separable Banach spaces.
Let X be a class of Banach spaces. We say that X is a P -class if for every non-separable X 2 X there exists a projectional
resolution of the identity fP˛g˛2Œ!;�� on X such that .P˛C1 �P˛/.X/ 2 X for all ˛ < �. We say that X is a P -class if for every
non-separable X 2 X there exists a projectional resolution of the identity fP˛g˛2Œ!;�� on X such that P˛.X/ 2 X for all ˛ < �.
Note that if a class X admits PRI and is closed under complemented subspaces, then X is both P -class and P -class. Therefore
reflexive, WCG, WCD, and WLD are all both P -classes and P -classes, as are 1-Plichko spaces ([HMVZ, Theorem 5.63]; proof
of [KKL, Theorem 17.6] combined with [KKL, Theorem 17.16]), spaces with a 1-projectional skeleton (Ondřej Kalenda, private
communication; [KKL, Theorem 17.6]), and duals of Asplund spaces ([DGZ, Remark VI.3.5]). Recall that any space from a
P -class has an SPRI ([HMVZ, Theorem 3.46]), and any space with an SPRI has a strong Markushevich basis (folklore, see also
[HMVZ, Theorem 5.1] or the proof of Theorem 8).

Although the characterisations of the existence of smooth partitions of unity are inherently non-linear, in all the results from the
introduction, except for the C.K/ case, the constructions are based on the linear structure in a substantial way. Keeping this in
mind, Theorem 2 naturally suggests the following definition:

Definition 5. Let X be a normed linear space. We say that a system f.x
 If
 /g
2� � X �X� is a fundamental coordinate system
if T .x/ D .f
 .x//
2� is a bounded linear operator from X to c0.� / and x 2 spanfx
 I f
 .x/ ¤ 0g for each x 2 X .

Note that the operator T from the definition is necessarily one-to-one and ff
g
2� is bounded (by kT k). The following
corollary of Theorem 2 is now obvious.
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Corollary 6. Let X be a normed linear space with a fundamental coordinate system and such that it admits a C k-smooth bump,
k 2 N [ f1g. Then X admits locally finite and � -uniformly discrete Ck-partitions of unity.

IfX has a strong Markushevich basis, then it also has a fundamental coordinate system (take normalised coordinate functionals).
Thus we have an immediate generalisation of the result (i). On the other hand, as we shall see below (Corollary 9), the space JLp ,
1 < p <1, has a fundamental coordinate system but it does not have a Markushevich basis ([HMVZ, Corollary 4.20]).

In connection with Corollary 6 and Corollary 4 we remark that the space C.K/, where K is a Ciesielski-Pol compact, does not
continuously linearly inject into any c0.� / (and so it does not have a fundamental coordinate system), although it has a subspace Y
isometric to c0.�1/ such that the quotient C.K/=Y is isomorphic to c0.�2/, [DGZ, Theorem VI.8.8.3].

Concerning the result (i) we note that for spaces with an SPRI we do not have to rely on the full construction of a strong
Markushevich basis (which is rather hard): Let fP˛g˛2Œ!;�/ be an SPRI on X . For each ˛ 2 Œ!; �/ put Q˛ D P˛C1 � P˛ ,
let fy˛ngn2N be a dense subset of the separable space Q˛.X/, and let fg˛kgk2N � Q˛.X/

� be separating for Q˛.X/. Put
f˛k D g˛k BQ˛=.kg˛k BQ˛k C 1/, � D Œ!; �/�N �N, and define T W X ! `1.� / by T .x/.˛; k; n/ D 1

kn
f˛k.x/. Then T

is clearly a bounded linear operator.
Further, set x
 D y˛n for 
 D .˛; k; n/ 2 � . Fix x 2 X . Since Q˛.x/ ¤ 0 if and only if there is k 2 N such that

g˛k.Q˛.x// ¤ 0, which is equivalent to f˛k.x/ ¤ 0, we have

x 2 spanfQ˛.x/I ˛ 2 Œ!; �/g D spanfQ˛.x/I ˛ 2 Œ!; �/;Q˛.x/ ¤ 0g

� span
˚
fy˛ngn2N I ˛ 2 Œ!; �/; 9k 2 N W f˛k.x/ ¤ 0

	
D spanfy˛nI n 2 N; ˛ 2 Œ!; �/; 9k 2 N W T .x/.˛; k; n/ ¤ 0g D spanfx
 I T .x/.
/ ¤ 0g:

Note that Qˇ B Q˛ D 0 for ˇ ¤ ˛. Hence, given ˛ 2 Œ!; �/ and n 2 N, we have T .y˛n/.ˇ; k;m/ D 1
km
fˇk.y˛n/ D

1
km
fˇk.Q˛.y˛n// D

1
km
gˇk

�
Qˇ

�
Q˛.y˛n/

��
=.kgˇk BQˇk C 1/ D 0 for ˇ ¤ ˛. Also, jT .y˛n/.˛; k;m/j D 1

km
jf˛k.y˛n/j �

1
km
ky˛nk. Therefore T .y˛n/ 2 c0.� /. Since we have seen above that X D spanfy˛nI ˛ 2 Œ!; �/; n 2 Ng, it follows that T

maps into c0.� / and so X has a fundamental coordinate system.
We proceed by deducing the result (v) from Corollary 9 and the result (ii) from Theorem 10. We start with an easy observation.

Fact 7. Let X be a normed linear space and f.x
 If
 /g
2� � X �X�. Then x 2 spanfx
 I f
 .x/ ¤ 0g for every x 2 X if and
only if f 2 spanw

�

ff
 I f .x
 / ¤ 0g for every f 2 X�.

Proof. ) Assume that it is not true for some f 2 X�. Denote A D f
 2 � I f .x
 / ¤ 0g. By the separation theorem
there is x 2 X such that f .x/ ¤ 0 and f
 .x/ D 0 for each 
 2 A. It follows that x 2 spanfx
 I f
 .x/ ¤ 0g � spanfx
 I

 2 � n Ag � ff g?, a contradiction.
( Assume that it is not true for some x 2 X . Denote A D f
 2 � I f
 .x/ ¤ 0g. By the separation theorem there is

f 2 X� such that f .x/ ¤ 0 and f .x
 / D 0 for each 
 2 A. It follows that f 2 spanw
�

ff
 I f .x
 / ¤ 0g � spanw
�

ff
 I


 2 � n Ag � fxg?, a contradiction.
ut

The first part of the next theorem is probably folklore among experts. We include the proof for the convenience of the reader.

Theorem 8. Let X be a WCG Banach space and let K � X be a weakly compact convex symmetric set that generates X . Then X
has a strong Markushevich basis f.x
 If
 /g
2� � K �X�. Such a basis has the following properties: T .f / D .f .x
 //
2� is a
bounded linear operator from X� to c0.� / and f 2 spanw

�

ff
 I f .x
 / ¤ 0g for each f 2 X�.

Proof. We prove the first part by transfinite induction on densX . Suppose first that X is separable. Let f´ngn2N � K be a dense
set in K and fhngn2N a norming set in X�. Note that spanf´ng D X . By [FHHMZ, Theorem 4.59] there is a Markushevich basis
f.ynIgn/gn2N of X such that spanfyng D spanf´ng and spanfgng D spanfhng. In particular, this basis is norming. Hence by
[HMVZ, Theorem 1.42] there is a strong Markushevich basis f.xnIfn/gn2N of X such that fxng � spanfyng D spanf´ng. Since
spanf´ng �

S
n2N nK, by scaling we may assume that fxng � K.

Now assume that densX > ! and the statement is true for all WCG spaces of density less than densX . By [FHHMZ,
Theorem 13.6] there is a PRI fP˛g˛2Œ!;�� on X such that P˛.K/ � K for each ˛ 2 Œ!; ��. Denote Q˛ D P˛C1 � P˛ . For
each ˛ 2 Œ!; �/ the space Q˛.X/ is of density at most card˛ < densX and is generated by the weakly compact convex
symmetric set 1

2
Q˛.K/. Thus by the inductive hypothesis Q˛.X/ has a strong Markushevich basis f.x˛
 Ig

˛

 /g
2�˛ such that

fx˛
 g
2�˛ �
1
2
Q˛.K/ � K. Put f ˛
 D g

˛

 BQ˛ . We claim that f.x˛
 If

˛

 /g˛2Œ!;�/;
2�˛ is a strong Markushevich basis of X .

Indeed,Q˛.x
ˇ
� / D Q˛.Qˇ .x

ˇ
� // D 0 and hence f ˛
 .x

ˇ
� / D g

˛

 .Q˛.x

ˇ
� // D 0 for ˛ ¤ ˇ. Further, f ˛
 .x

˛
� / D g

˛

 .Q˛.x

˛
� // D

g˛
 .x
˛
� / D ı
;� (the Kronecker delta). Now fix any x 2 X . Then Q˛.x/ 2 spanfx˛
 I 
 2 �˛ W g

˛

 .Q˛.x// ¤ 0g D spanfx˛
 I


 2 �˛ W f
˛

 .x/ ¤ 0g. Hence x 2 spanfQ˛.x/I ˛ 2 Œ!; �/g � span

S
˛2Œ!;�/ spanfx˛
 I 
 2 �˛ W f

˛

 .x/ ¤ 0g � spanfx˛
 I

˛ 2 Œ!; �/; 
 2 �˛ W f
˛

 .x/ ¤ 0g. Finally, note that this strongness property implies that the biorthogonal system is total.

To prove the second part of the theorem, denote by � the topology on X� given by the uniform convergence on K. Put T .f / D
.f .x
 //
2� for f 2 X�. Then T is clearly a bounded linear operator from X� to `1.� /. Since kT .f /k D sup
2� jf .x
 /j �
supx2K jf .x/j, the operator T is moreover �-k�k continuous. Further, T .f˛/ 2 c00.� / for every ˛ 2 � . By the Mackey-Arens
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theorem, span�ff˛g D spanw
�

ff˛g D X
�. Consequently, T .X�/ D T .span�ff˛g/ � spanfT .f˛/g � c0.� /. The rest follows

from Fact 7.
ut

We remark that the heart of the construction of a strong Markushevich basis lies in the separable case and is seriously difficult.
The strongness of the PRI then arranges the rest. However, for our purpose (the second part of the previous theorem), the full
strongness (and even the biorthogonality) of the Markushevich basis is not necessary. It would be sufficient to carry the required
properties through the transfinite induction and use just the strongness provided by the PRI. The weak compactness is indispensable
though.

Corollary 9. Let X be a normed linear space such that X� is WCG. Then X has a fundamental coordinate system.

Proof. Let f.f
 IF
 /g
2� � X� � X�� be a Markushevich basis from Theorem 8. Note that ff
g
2� is bounded. Fix 
 2 � .

Then by the Goldstine theorem F
 2 B
w�

for some ball B � X . Since X� has the property C ([FHHMZ, Definition 14.32,
Theorem 14.31]), by [FHHMZ, Theorem 14.37] there is a countable set fx
ngn2N � B such that F
 2 convw

�

fx
ngn2N . We
claim that f.x
nI 1nf
 /g
2�;n2N is a fundamental coordinate system.

Indeed, T .x/ D
�
1
n
f
 .x/

�

2�;n2N

is a bounded linear operator fromX to c0.� �N/, since .f
 .x//
2� 2 c0.� / by Theorem 8.

Fix x 2 X and denote A D fx
nI f
 .x/ ¤ 0; n 2 Ng. Theorem 8 implies that F 2 spanw
�

fF
 I F.f
 / ¤ 0g for any F 2 X��

and so
x 2 spanw

�

fF
 I f
 .x/ ¤ 0g � spanw
�
[


2� W f
 .x/¤0

convw
�

fx
ngn2N D spanw
�

A:

But since x 2 X and spanA � X , this means that x 2 spanw A D spanA.
ut

We note that there is a Banach space X such that it is a second dual space, it has an equivalent C 1-smooth norm, X� is a
subspace of a Hilbert-generated space (in particular a subspace of a WCG space), and there is no bounded linear one-to-one
operator from X to c0.� /, [AM]. Therefore there is no hope for generalising the result (v) beyond the dual being WCG using the
approach above (or the original proof as well – both result in a linear injection into c0.� /).

Theorem 10. Every Banach space that belongs to a P -class has a fundamental coordinate system.

Proof. Let X be a P -class and X 2 X. We use transfinite induction on densX . If X is separable, then we can use the existence of
a strong Markushevich basis. However, this difficult result is not necessary. A direct construction is as follows: Let fyngn2N � X

be dense in X and let fgngn2N � X
� be such that it separates the points of X and kgnk � 1

n
. For k; n 2 N put xkn D yn and

fkn D
1
n
gk . Then f.xkn; fkn/gk;n2N is a fundamental coordinate system: Fix x 2 X . Then jfkn.x/j � 1

nk
kxk. Also, there is

m 2 N such that gm.x/ ¤ 0 and so x 2 spanfynI n 2 Ng D spanfxmnI n 2 Ng � spanfxknI fkn.x/ ¤ 0g.
Now assume that densX > ! and every space in X of density less than densX has a fundamental coordinate system.

Let fP˛g˛2Œ!;�� be a PRI on X such that P˛.X/ 2 X for ˛ 2 Œ!; �/. Put Q˛ D P˛C1 � P˛ . By the inductive hypothesis,
for each ˛ 2 Œ!; �/ there is a fundamental coordinate system f.x˛
 Ig

˛

 /g
2�˛ on P˛.X/ and there is K˛ > 0 such that

fg˛
 g
2�˛ � B.0;K˛/. Since Q˛.X/ � P˛C1.X/, we may set f ˛C1
 D
1

K˛C1
g˛C1
 BQ˛ and note that kf ˛C1
 k � 2. We claim

that f.x˛C1
 If ˛C1
 /g˛2Œ!;�/;
2�˛C1 is a fundamental coordinate system on X .
Indeed, the formula T .x/ D .f ˛C1
 .x//˛2Œ!;�/;
2�˛C1 clearly defines a bounded linear operator from X to `1.� /, where

� D
S
˛2Œ!;�/f˛g � �˛C1. Now fix x 2 X and " > 0. Then the set A D f˛ 2 Œ!; �/I kQ˛.x/k > "g is finite. So,

jf ˛C1
 .x/j � 1
K˛C1

kg˛C1
 kkQ˛.x/k � " whenever ˛ 2 Œ!; �/ n A and 
 2 �˛C1. On the other hand, if ˛ 2 A, then the set

f
 2 �˛C1I jf
˛C1

 .x/j > "g D

˚

 2 �˛C1I jg

˛C1

 .Q˛.x//j > K˛C1"

	
is finite by the definition of a fundamental coordinate

system. Finally, as Q˛.x/ 2 P˛C1.X/, the assumption yields Q˛.x/ 2 spanfx˛C1
 I g˛C1
 .Q˛.x// ¤ 0g D spanfx˛C1
 I

f ˛C1
 .x/ ¤ 0g. Therefore x 2 spanfQ˛.x/I ˛ 2 Œ!; �/g � span
S
˛2Œ!;�/ spanfx˛C1
 I f ˛C1
 .x/ ¤ 0g � spanfx˛C1
 I

f ˛C1
 .x/ ¤ 0g.
ut
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