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ABSTRACT. We show that the dual of every infinite-dimensional Lipschitz-free Banach space contains an isometric copy of `1 and that it
is often the case that a Lipschitz-free Banach space contains a 1-complemented subspace isometric to `1. Even though we do not know
whether the latter is true for every infinite-dimensional Lipschitz-free Banach space, we show that the space is never rotund. In the last
section we survey the relations between isometric embeddability of `1 intoX� and containment of a good copy of `1 inX for a general
Banach spaceX .

INTRODUCTION

Given a metric space M it is possible to construct a Banach space F .M/ in such a way that the metric structure of M
corresponds to the linear structure of F .M/. This space F .M/ is usually called the Lipschitz-free space over M . The study of
Lipschitz-free spaces is well-motivated: using this notion many interesting results have been proved, e.g. if a separable Banach
space Y is isometric (not necessarily linearly) to a subset of a Banach space X , then Y is already linearly isometric to a subspace
of X , [GK, Corollary 3.3]. We refer to [CDW, Section 1] and to the end of this section for some more details concerning the
construction and basic properties of these spaces. Although Lipschitz-free spaces are easy to define, their structure even for
separable metric spaces M is poorly understood to this day. The study of the linear structure of Lipschitz-free spaces over metric
spaces has become an active field of study, see [CDW] and references therein.

The dual F .M/� is linearly isometric to the space of Lipschitz functions Lip0.M/. Recently it was shown in [CDW, Theorem 1]
that for every infinite metric space M the space `1 is isomorphic to a subspace of Lip0.M/, which is by a classical result of
Bessaga and Pełczyński equivalent to the fact that F .M/ contains a complemented subspace isomorphic to `1. However, the
authors of this result confessed that they do not know whether `1 embeds isometrically into Lip0.M/, see [CDW, p. 2]. In this
note we show that this is the case.

Let us recall that an ultrametric space is a metric space .M; �/ such that �.x; y/ � maxf�.x; ´/; �.´; y/g for every x; y; ´ 2M .
Our main result is the following:

Theorem 1. Let M be an infinite metric space. Then Lip0.M/ contains a subspace isometric to `1. If moreover the completion
of M has an accumulation point or contains an infinite ultrametric space, then F .M/ contains a 1-complemented subspace
isometric to `1.

The first part of this result is contained in Theorem 5, the ultrametric case is contained in Proposition 9. The case of ultrametric
spaces is interesting in connection with [CD, Theorem 2] and [DKP, Corollary 6], where it is proved that for every separable
ultrametric space M the space F .M/ is isomorphic to `1 but it is never isometric to `1.

Our main result is not only a technical improvement of [CDW, Theorem 1]. There are some consequences for the structure of a
general Lipschitz-free Banach space which could not be deduced from the isomorphic variant [CDW, Theorem 1], see Corollary 6.
As mentioned above, it is a classical result that for any Banach space X its dual X� has a subspace isomorphic to `1 if and only if
`1 is isomorphic to a complemented subspace of X . In connection with Theorem 1 we are naturally interested in an isometric
variant of this result and we surveyed the relation between “isometric embedding of `1 into the dual” and “containing as good
copy of `1 as possible” for a general Banach space. We collected several general results which are available at the last section of
this note. Many implications and counterexamples are known; nevertheless, several implications are up to our knowledge unknown.
For example, the following seems to be open:

Question 1. Let X be a (separable) Banach space such that X� has a subspace isometric to `1. Does X contain a 1-complemented
subspace isomorphic to `1?

It is not true in general that isometric embedding of `1 into X� implies isometric embedding of `1 into X (see Section 3).
Therefore, it is of some interest to find out whether `1 embeds isometrically into every Lipschitz-free Banach space over an infinite
metric space. The case when M has an accumulation point is covered by Theorem 1.

Question 2. Let M be an infinite uniformly discrete metric space. Does F .M/ contain a subspace isometric to `1?
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In particular, for a few concrete metric spaces for which the answer is not known to us see Remark 10.
Even though we do not know the answer to Question 2, we show that F .M/ is never rotund, which supports the conjecture that

the answer to Question 2 is positive. Recall that a normed linear space X is rotund if kx C yk < 2 for any x; y 2 SX , x ¤ y.

Proposition 2. Let M be a metric space of cardinality at least 3. Then F .M/ is not rotund.

This result is interesting also for finite metric spaces: No Lipschitz-free space over an ultrametric space is isometric to `1.� /,
see [DKP, Corollary 6]. Hence e.g. ifM is the ultrametric space f0; x; yg with metric defined by �.x; y/ D �.x; 0/ D �.y; 0/ D 1,
then F .M/ is not isometric to `21, however, it is not rotund.

As a consequence of Proposition 2 it follows that the free space norm is quite rare, as the non-rotund norms are of the first
category in the metric space of all equivalent norms, provided that there is at least one equivalent rotund norm on the space; [FZZ],
see [DGZ, Theorem II.4.1].

Let us recall some basic facts concerning the Lipschitz-free spaces (for the proofs we refer to [CDW, Section 1]). Let .M; �; 0/
be a pointed metric space, i.e. a metric space with a distinguished “base point” denoted by 0. Consider the space Lip0.M/

of all real-valued Lipschitz functions that map 0 2 M to 0 2 R. It has a vector space structure and the minimal Lipschitz
constant of f 2 Lip0.M/ given by kf kLip D sup

n
jf .x/�f .y/j
�.x;y/

I x; y 2M;x ¤ y
o

gives rise to a norm on Lip0.M/. The
space

�
Lip0.M/; k�kLip

�
is then a Banach space. For any x 2 M we denote by ıx 2 Lip0.M/� the evaluation functional, i.e.

hıx ; f i D f .x/ for every f 2 Lip0.M/. Let F .M/ be the closure of the linear span of fıx I x 2M g with the dual space norm
denoted simply by k�k. It is easy to see that kıx � ıyk D �.x; y/ for any x; y 2 M . This means that M can be considered as a
metric subspace of F .M/ via the isometric embedding x 7! ıx . The space F .M/ is usually called the Lipschitz-free Banach
space over M and it is uniquely characterised by the following universal property:

Let X be a Banach space and suppose that L W M ! X is a Lipschitz mapping satisfying L.0/ D 0. Then there exists a unique
linear operator bL W F .M/! X extending L, i.e. the following diagram commutes:

M
L //

ı

��

X

F .M/
bL
<<

Moreover, kbLk D kLkLip, where kLkLip denotes the minimal Lipschitz constant of L.
Using this universal property of F .M/ for X D R it can be rather easily shown that F .M/� is linearly isometric to Lip0.M/.

It is immediate that the w� topology on bounded subsets of Lip0.M/ is the topology of pointwise convergence.
Further, observe that it does not matter how the point 0 2 M is chosen: Let e 2 M be another base point and denote

N D .M; �; e/. Then T W Lip0.M/ ! Lip0.N / defined by T .f / D f � f .e/ is a linear isometry onto that is also w�–w�

continuous (by the Banach-Dieudonné theorem). Thus T is a dual operator to T ��F .N/ W F .N /! F .M/, which is therefore a
linear isometry onto.

Similarly, we may without loss of generality assume that M is complete: Denote by N the completion of M . Then
T W Lip0.N / ! Lip0.M/ defined by T .f / D f �M is a linear isometry onto that is also w�–w� continuous. So, as above,
the spaces F .N / and F .M/ are linearly isometric.

It is also easy to observe that if N is a subspace of a metric space M , then F .N / is linearly isometric to a subspace of
F .M/. Using this together with the universal property of F .M/ we can see that the metric structure of M corresponds to the
linear structure of F .M/. For example, if N is bi-Lipschitz equivalent (resp. isometric) to a subset of M , then F .N / is linearly
isomorphic (resp. linearly isometric) to a subspace of F .M/.

The notation and terminology we use are relatively standard. If M is a metric space, x 2M and r � 0, we denote by U.x; r/
the open ball centred at x with radius r .

1. ISOMETRIC EMBEDDING OF `1 INTO Lip0.M/

In this section we prove Theorem 5 and mention some consequences for the structure of a general Lipschitz-free Banach space,
see Corollary 6. Our main tool throughout is Lemma 4, which allows us to embed isometrically `1 into Lip0.M/, resp. `1 into
F .M/.

For a mapping f W X ! Y , where X is a set and Y a vector space, we denote suppo f D f
�1.Y n f0g/.

Lemma 3. Let X , Y be normed linear spaces, � a set, and let f
 W X ! Y be L-Lipschitz for each 
 2 � . Suppose that the
collection fsuppo f
g
2� is disjoint. Then f D

P

2� f
 is L-Lipschitz.

Proof. Note that the sum is pointwise finite and so the mapping f is well-defined. Pick x; y 2 X . In case that f .x/ D 0, let

 2 � be such that f .y/ D f
 .y/. Then f
 .x/ D 0 and hence kf .x/ � f .y/k D kf
 .x/ � f
 .y/k � Lkx � yk. Now suppose
that x 2 suppo f˛ , y 2 suppo fˇ for some ˛; ˇ 2 � . Since the line segment Œx; y� is connected and suppo f˛ , suppo fˇ are open
and disjoint, there is ´ 2 Œx; y� n .suppo f˛ [ suppo fˇ /. Then

kf .x/ � f .y/k D kf˛.x/ � fˇ .y/k D kf˛.x/ � f˛.´/C fˇ .´/ � fˇ .y/k � kf˛.x/ � f˛.´/k C kfˇ .´/ � fˇ .y/k

� Lkx � ´k C Lk´ � yk D Lkx � yk:
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ut

Lemma 4. Let .M; �/ be a metric space such that there are sequences fxng �M and frng � Œ0;C1/ satisfying �.xm; xn/ �
rm C rn for all m; n 2 N, m ¤ n, and

lim
n!1

r2n C r2nC1

�.x2n; x2nC1/
D 1:

Then Lip0.M/ contains a subspace isometric to `1.
If moreover even r2n C r2nC1 D �.x2n; x2nC1/ for each n 2 N, then F .M/ contains a 1-complemented subspace isometric

to `1.

Proof. We may assume that 0 D x1. We considerM as a metric subspace ofX D F .M/. Set gn.x/ D maxfrn�kx�xnk; 0g for
x 2 X , n 2 N. The functions gn are clearly 1-Lipschitz, fsuppo gngn2N D fU.xn; rn/gn2N is a disjoint collection, and gn.0/ D 0
for each n > 1. Further, let fnk

l
g1
lD1
� N, k 2 N be disjoint increasing sequences. Finally, we set fk D

P1
lD1 g2nk

l
� g2nk

l
C1 in

the pointwise convergence on X . By Lemma 3, each fk , k 2 N, is a 1-Lipschitz function.
Now let .ak/ 2 `1 and consider g D

P1
kD1 akfk in the pointwise convergence on X . Then g is k.ak/k-Lipschitz by Lemma 3

and clearly the same holds for h D g�M . Hence h 2 Lip0.M/ and khk � k.ak/k. On the other hand,

khk � sup
n2N

jh.x2n/ � h.x2nC1/j

�.x2n; x2nC1/
D sup
n2N

jg.x2n/ � g.x2nC1/j

�.x2n; x2nC1/
� sup
k;l2N

ˇ̌
g.x2nk

l
/ � g.x2nk

l
C1/

ˇ̌
�.x2nk

l
; x2nk

l
C1/

D sup
k;l2N

ˇ̌
akr2nk

l
C akr2nk

l
C1

ˇ̌
�.x2nk

l
; x2nk

l
C1/

D sup
k2N
jakj sup

l2N

r2nk
l
C r2nk

l
C1

�.x2nk
l
; x2nk

l
C1/
D sup
k2N
jakj D k.ak/k:

The mapping .ak/ 7! h described above is therefore a linear isometry from `1 into Lip0.M/.

For the moreover part it suffices to take only fn D g2n � g2nC1. Further, we set en D
ıx2n

�ıx2nC1

�.x2n;x2nC1/
. It is easy to see that

f.enIfn�M /g is a bi-normalised biorthogonal system. Let us verify that feng is 1-equivalent to the canonical basis of `1. Pick any
a1; : : : ; aN 2 R and consider x D

PN
nD1 anen. Then clearly kxk �

PN
nD1janj. On the other hand, put g D

PN
nD1 sgn an �fn�M .

By the above we have g 2 Lip0.M/ and kgk � 1. Thus, kxk � jhg; xij D
ˇ̌PN

nD1 anhg; eni
ˇ̌
D
PN
nD1janj.

To finish the proof it remains to find a projection of norm 1 from X onto spanfenI n 2 Ng. Define r W X ! spanfenI n 2 Ng
by r.x/ D

P1
nD1 fn.x/en. Then r is a 1-Lipschitz mapping by Lemma 3 and clearly r.0/ D 0. By the universal property of

X D F .M/ there is a linear operator P W X ! spanfenI n 2 Ng such that P B ı D r�M and kP k � 1. In order to see that P is
a projection onto spanfenI n 2 Ng observe that P.en/ D en for every n 2 N:

P.en/ D
P.ıx2n

/ � P.ıx2nC1
/

�.x2n; x2nC1/
D
r.x2n/ � r.x2nC1/

�.x2n; x2nC1/
D
fn.x2n/en � fn.x2nC1/en

�.x2n; x2nC1/

D
g2n.x2n/en C g2nC1.x2nC1/en

�.x2n; x2nC1/
D

r2n C r2nC1

�.x2n; x2nC1/
en D en:

ut

Theorem 5. Let M be an infinite metric space. Then Lip0.M/ contains a subspace isometric to `1. If moreover the completion
of M has an accumulation point, then F .M/ contains a 1-complemented subspace isometric to `1.

Proof. Let � be the metric on M . Without loss of generality we may assume that M is complete. We distinguish three cases:
M has an accumulation point, M contains a bounded uniformly separated sequence, and M is unbounded. This covers all the
possibilities, since if M does not have an accumulation point, then it is not totally bounded.

So suppose first that M has an accumulation point. Then there is a sequence fxng1nD2 �M of distinct points converging to
some x1 2 M . By passing to a subsequence we may assume that either �.xm; xn/ D �.xm; x1/C �.xn; x1/ for all m; n > 1,
m ¤ n, or �.x2n; x2nC1/ < �.x2n; x1/ C �.x2nC1; x1/ for all n 2 N. In the first case we can take rn D �.xn; x1/. In the
second case we put ın D 1

2

�
�.x2n; x1/C �.x2nC1; x1/ � �.x2n; x2nC1/

�
> 0. By passing to a subsequence we may assume that

�.xm; x1/ �
1
2
ın for all m; n 2 N, m > 2nC 1. We set r1 D 0, r2n D �.x2n; x1/ � ın, and r2nC1 D �.x2nC1; x1/ � ın. It is

easy to see that in both cases the assumptions of Lemma 4 are satisfied. Indeed, in the second case

rm C r2nCi < �.xm; x1/C �.x2nCi ; x1/ � ın � �.xm; x1/C �.x2nCi ; x1/ � 2�.xm; x1/ � �.xm; x2nCi /

for m > 2nC 1 and i 2 f0; 1g.
Suppose now that M contains a bounded uniformly separated sequence fyng. Using the boundedness we construct inductively

increasing sequences fnk
l
g1
lD1
� N such that fnkC1

l
g is a subsequence of fnk

l
g, nkC11 > nk1 , and such that liml!1 �.ynk

1
; ynk

l
/ D

dk for each k 2 N. By our assumption the sequence fdkg is bounded and inf dk > 0, hence there is d 2 .0;C1/ and an
increasing sequence fkpg � N such that d

�
1 � 1

2p

�
< dkp

< d
�
1C 1

2p

�
for each p 2 N. Finally, we inductively find increasing

sequences fpsg � N, flsg � N satisfying p1 D 1, d
�
1 � 1

2ps

�
< �.y

n
kps
1

; y
n

kps
l

/ < d
�
1C 1

2ps

�
for l � ls , and n

kpsC1

1 � n
kps

ls
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for each s 2 N. Now we set xs D y
n

kps
1

for s 2 N and note that d
�
1� 1

2m

�
< �.xm; xn/ < d

�
1C 1

2m

�
for all m; n 2 N, n > m.

Therefore if we set rn D d
2

�
1 � 1

n

�
, then rm C rn D d

�
1 � 1

2m
�

1
2n

�
< d

�
1 � 1

2m

�
< �.xm; xn/ for n > m and

r2n C r2nC1

�.x2n; x2nC1/
D
d
�
1 � 1

4n
�

1
2.2nC1/

�
�.x2n; x2nC1/

>
d
�
1 � 1

4n
�

1
2.2nC1/

�
d
�
1C 1

4n

� ! 1:

Hence again the assumptions of Lemma 4 are satisfied.
Finally, assume that M is unbounded. We construct inductively sequences fxng �M and frng � .0;C1/. Pick any x1 2M

and r1 > 0. In the induction step we find xnC1 2 M such that �.xnC1; xn/ > nmaxf�.xn; xk/ C rk I k D 1; : : : ; ng and put
rnC1 D �.xnC1; xn/ �maxf�.xn; xk/C rk I k D 1; : : : ; ng. Then rm C rn D rm C �.xn; xn�1/ �maxf�.xn�1; xk/C rk I 1 �
k < ng � rm C �.xn; xn�1/ � �.xn�1; xm/ � rm � �.xm; xn/ for n > m and

r2n C r2nC1

�.x2n; x2nC1/
D
r2n C �.x2nC1; x2n/ �maxf�.x2n; xk/C rk I 1 � k � 2ng

�.x2n; x2nC1/
> 1 �

1

2n
! 1:

An application of Lemma 4 finishes the proof.
ut

Theorem 5 has the following corollary.

Corollary 6. Let M be an infinite metric space. Then F .M/ does not have the fixed point property.

Proof. Theorem 5 implies that F .M/� has a subspace isometric to `1. It follows that F .M/ has a subspace asymptotically
isometric to `1, see [DGH] or Section 3. Consequently, F .M/ does not have the fixed point property by [DLT, Theorem 2.3].

ut

2. ISOMETRIC EMBEDDING OF `1 INTO F .M/

In order to prove Theorem 1, thanks to Theorem 5 it remains to consider the ultrametric case (Proposition 9). We embed `1
using Lemma 4 again. Further, we show that Lipschitz-free space over a metric space of cardinality at least 3 is never rotund
(Proposition 2). This follows from Lemma 11, where we compute kaıx C bıyk for every x; y 2 M and a; b 2 R in a general
Lipschitz-free space.

First we turn our attention to the result concerning the ultrametric spaces. In the case that M is unbounded we will use the
following lemma, whose idea is the same as in the case of a convergent sequence in the proof of Theorem 5.

Lemma 7. Let .M; �/ be a metric space such that there is a sequence fxng �M with

�.x2n; x1/C �.x2nC1; x1/ � �.x2n; x2nC1/!1:

Then F .M/ contains a 1-complemented subspace isometric to `1.

Proof. Put ın D 1
2

�
�.x2n; x1/C �.x2nC1; x1/ � �.x2n; x2nC1/

�
for n 2 N. By passing to a subsequence we may assume that

ım � 2�.xn; x1/ for all m; n 2 N, n < 2m. We set r1 D 0, r2n D �.x2n; x1/ � ın, and r2nC1 D �.x2nC1; x1/ � ın. Now it is
easy to see that the assumptions of Lemma 4 are satisfied. Indeed,

r2mCi C rn � �.x2mCi ; x1/ � ım C �.xn; x1/ � �.x2mCi ; x1/ � 2�.xn; x1/C �.xn; x1/ � �.x2mCi ; xn/

for 2m > n and i 2 f0; 1g.
ut

Lemma 8. Let .M; �/ be a metric space such that there is a bounded sequence fxng �M of distinct points with the following
properties: f�.xk ; xn/g1nDkC1 is non-decreasing for each k 2 N, limn!1 �.xk ; xn/ D dk , and fdkg is non-increasing. Then
F .M/ contains a 1-complemented subspace isometric to `1.

Proof. Let us denote d D limk!1 dk . By passing to a subsequence we may assume that one of the following three cases holds:
a) fdkg is decreasing, or b) fdkg is constant and f�.xk ; xn/g1nDkC1 are increasing for every k 2 N, or c) �.xk ; xn/ D d for every
k; n 2 N, k ¤ n.

In the case c) we set rn D d
2

and apply Lemma 4.
Now consider the case b). By passing to a further subsequence we may assume that �.x1; x2/ � 1

2
d and �.xk ; xnC1/ �

1
2
d C 1

2
�.xn�1; xn/ for k < nC 1. We then set r1 D 0 and r2n D r2nC1 D 1

2
�.x2n; x2nC1/. Since

r2mCi C r2nCj D
1

2
�.x2m; x2mC1/C

1

2
�.x2n; x2nC1/ �

1

2
d C

1

2
�.x2n; x2nC1/ � �.x2nCj ; x2nC2/ � �.x2nCj ; x2mCi /

for all m > n and i; j 2 f0; 1g, and

r1 C r2mCi D
1

2
�.x2m; x2mC1/ �

1

2
d � �.x1; x2/ � �.x1; x2mCi /

for all m 2 N and i 2 f0; 1g, it is easy to see that the assumptions of Lemma 4 are satisfied.
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Finally, we consider the case a). By passing to a subsequence we may assume that for each n > k the following inequalities
hold:

d � dkC1 �
3

4
d C

1

4
dk �

1

2
d C

1

2
dk �

1

4
d C

3

4
dk � �.xk ; xn/ � dk : (1)

We set r1 D 0, r2n D �.x2n; x2nC1/ � 1
2
d2nC1, and r2nC1 D 1

2
d2nC1. Using (1) we obtain r2mC1 � r2m � d2m � 1

2
d2mC1 �

d2m �
1
2
d � d2nC2 �

1
2
d for all m > n. Hence, using (1) again,

r2mCi C r2n � d2nC2 �
1

2
d C �.x2n; x2nC1/ �

1

2
d2nC1 � �.x2n; x2nC1/ � �.x2n; x2mCi /

and

r2mCi C r2nC1 � d2nC2 �
1

2
d C

1

2
d2nC1 �

3

4
d C

1

4
d2nC1 �

1

2
d C

1

2
d2nC1 D

1

4
d C

3

4
d2nC1 � �.x2nC1; x2mCi /

for all m > n and i 2 f0; 1g. Also,

r1 C r2mC1 � r1 C r2m � d2m � d2 � �.x1; x2m/ � �.x1; x2mC1/:

for m 2 N. Thus the assumptions of Lemma 4 are satisfied.
ut

We will use the following property of ultrametric spaces, which is easy to see: If x; y; ´ 2 M and �.x; y/ ¤ �.y; ´/, then
�.x; ´/ D maxf�.x; y/; �.y; ´/g.

Proposition 9. Suppose that a metric space .M; �/ contains an infinite ultrametric subspace. Then the space F .M/ contains a
1-complemented subspace isometric to `1.

Proof. Let N �M be an infinite ultrametric space. If N is unbounded, then there is a sequence fxng � N such that f�.x1; xn/g
is increasing and �.x1; xn/!1. Since N is ultrametric, �.x2n; x2nC1/ D �.x1; x2nC1/ for every n 2 N and so we can apply
Lemma 7.

If N is bounded, then it contains a bounded sequence fxng of distinct points. By passing to a subsequence we may assume that
either f�.x1; xn/g1nD2 is increasing, or f�.x1; xn/g1nD2 is decreasing, or f�.xk ; xn/g1nDkC1 is constant for each k 2 N. We show
that in each of these cases we can use Lemma 8.

If f�.x1; xn/g1nD2 is increasing, then �.xk ; xn/ D maxf�.x1; xk/; �.x1; xn/g D �.x1; xn/ for every n > k � 1. Conse-
quently, limn!1 �.xk ; xn/ D limn!1 �.x1; xn/ and we can apply Lemma 8. If f�.x1; xn/g1nD2 is decreasing, then �.xk ; xn/ D
maxf�.x1; xk/; �.x1; xn/g D �.x1; xk/ for n > k > 1. Consequently, limn!1 �.xk ; xn/ D �.x1; xk/ and, after discarding x1,
we can apply Lemma 8 again. Finally, if f�.xk ; xn/g1nDkC1 is constant for each k 2 N, we denote dk D limn!1 �.xk ; xn/ D

�.xk ; xkC1/ D �.xk ; xkC2/. Then dkC1 D �.xkC1; xkC2/ � maxf�.xk ; xkC1/; �.xk ; xkC2/g D dk . Hence fdkg is non-
increasing and an application of Lemma 8 finishes the proof.

ut

Remark 10. We do not know whether `1 embeds isometrically into the Lipschitz-free space over a general infinite metric space.
Below we show examples of metric spaces where it is impossible to find rns needed in Lemma 4. Compare these examples with
Lemma 7 and Lemma 8. In all of the examples M D fxng. The metrics on M are defined for n > k by

� �.xk ; xn/ D k C n �
1
k

� �.xk ; xn/ D 2 �
1
k

� �.xk ; xn/ D 2 �
1
k
C

1
n

� �.xk ; xn/ D 2 �
1
k
�

1
2n

� �.xk ; xn/ D 1C
1
n

� �.xk ; xn/ D 1C
1
2k
C

1
n

Now we turn our attention to the proof of Proposition 2.

Lemma 11. Let .M; �; 0/ be a pointed metric space and let k�k be the canonical norm on F .M/. Then for every x; y 2M and
a; b 2 R

kaıx C bıyk D

�
�.x; 0/jaj C �.y; 0/jbj if ab � 0,
�.x; 0/jaj C

�
�.x; y/ � �.x; 0/

�
jbj if ab � 0 and jbj � jaj,�

�.x; y/ � �.y; 0/
�
jaj C �.y; 0/jbj if ab � 0 and jbj � jaj.

See Fig. 1. This immediately implies Proposition 2. Indeed, it suffices to pick any x; y 2 M , x ¤ y, x ¤ 0, y ¤ 0, take
u D ıx

�.x;0/
and v D ıy

�.y;0/
, and note that u ¤ v since ıx and ıy are linearly independent.
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FIGURE 1. Unit ball of F .M/ on spanfıx ; ıyg.

Proof. Let f 2 Lip0.M/ be a function with kf k � 1. Then jf .x/j � �.x; 0/, jf .y/j � �.y; 0/, and jf .x/ � f .y/j � �.x; y/.
On the other hand, given u; v 2 R with juj � �.x; 0/, jvj � �.y; 0/, and ju � vj � �.x; y/ there is f 2 Lip0.M/ with kf k � 1,
f .x/ D u, and f .y/ D v. Hence, if we define g.u; v/ D jauC bvj for u; v 2 R, then

kaıx C bıyk D sup
f 2Lip0.M/
kf k�1

jhf; aıx C bıyij D sup
f 2Lip0.M/
kf k�1

jaf .x/C bf .y/j D sup
A

g.u; v/;

where A D
˚
Œu; v� 2 R2I juj � �.x; 0/; jvj � �.y; 0/; ju � vj � �.x; y/

	
. Since ��.x; 0/ � �.y; 0/ � �.x; y/ � �.x; 0/ and

��.y; 0/ � �.x; y/ � �.x; 0/ � �.y; 0/, the set A looks like in Fig. 2. The function g is continuous and convex and the set A is

FIGURE 2. The set A.

convex and compact, and so by the Bauer maximum principle g attains its maximum on A at some extreme point of A. Therefore

kaıx C bıyk D max
n
ja�.x; 0/C b�.y; 0/j;

ˇ̌
a�.x; 0/C b

�
�.x; 0/ � �.x; y/

�ˇ̌
;
ˇ̌
a
�
�.y; 0/ � �.x; y/

�
C b�.y; 0/

ˇ̌o
:

The first case is ab � 0. By the symmetry we can assume that a � 0 and b � 0. Since �.x; 0/ � �.x; y/ � �.y; 0/, we have
a�.x; 0/ C b

�
�.x; 0/ � �.x; y/

�
� a�.x; 0/ C b�.y; 0/. On the other hand, 2a�.x; 0/ C b

�
�.y; 0/ C �.x; 0/ � �.x; y/

�
� 0

and so �a�.x; 0/ � b
�
�.x; 0/ � �.x; y/

�
� a�.x; 0/C b�.y; 0/. Consequently,

ˇ̌
a�.x; 0/C b

�
�.x; 0/ � �.x; y/

�ˇ̌
� a�.x; 0/C

b�.y; 0/. Since this estimate holds for any x; y 2 M and a; b � 0, by interchanging x with y and a with b we obtainˇ̌
b�.y; 0/C a

�
�.y; 0/ � �.x; y/

�ˇ̌
� a�.x; 0/C b�.y; 0/. Therefore in this case kaıx C bıyk D a�.x; 0/C b�.y; 0/.

Now assume that ab � 0. By the symmetry we can assume that a � 0 and b � 0. The second case is then �b � a.
We have a�.x; 0/ � b

�
�.x; y/ � �.x; 0/

�
� �b

�
�.x; 0/C �.x; y/ � �.x; 0/

�
� 0 and so

ˇ̌
a�.x; 0/C b

�
�.x; 0/ � �.x; y/

�ˇ̌
D

a�.x; 0/ � b
�
�.x; y/ � �.x; 0/

�
. Further, the inequality �b

�
�.x; y/ � �.x; 0/ C �.y; 0/

�
� 0 implies a�.x; 0/ C b�.y; 0/ �

a�.x; 0/ � b
�
�.x; y/ � �.x; 0/

�
and the inequality 2a�.x; 0/ � b

�
�.x; y/ � �.x; 0/ � �.y; 0/

�
� �2b�.x; 0/ � b

�
�.x; y/ �

�.x; 0/ � �.y; 0/
�
D �b

�
�.x; y/ C �.x; 0/ � �.y; 0/

�
� 0 implies �a�.x; 0/ � b�.y; 0/ � a�.x; 0/ � b

�
�.x; y/ � �.x; 0/

�
.

Consequently, ja�.x; 0/C b�.y; 0/j � a�.x; 0/ � b
�
�.x; y/ � �.x; 0/

�
.

Similarly, since a C b � 0, the inequality .a C b/�.x; 0/ C .a C b/�.y; 0/ � .a C b/�.x; y/ implies �a
�
�.y; 0/ �

�.x; y/
�
� b�.y; 0/ � a�.x; 0/ � b

�
�.x; y/ � �.x; 0/

�
and the inequality .aC b/�.y; 0/ � .aC b/�.x; 0/C .aC b/�.x; y/ �

.a C b/�.x; 0/ C .a � b/�.x; y/ implies a
�
�.y; 0/ � �.x; y/

�
C b�.y; 0/ � a�.x; 0/ � b

�
�.x; y/ � �.x; 0/

�
. Consequently,ˇ̌

a
�
�.y; 0/ � �.x; y/

�
C b�.y; 0/

ˇ̌
� a�.x; 0/�b

�
�.x; y/��.x; 0/

�
. Therefore in this case kaıxCbıyk D a�.x; 0/�b

�
�.x; y/�

�.x; 0/
�
.

The last case follows by interchanging x with y and a with b.
ut
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3. EMBEDDING OF `1 INTO BANACH SPACES

Here we gather some relations between various types of embedding of `1 into a general Banach space.

Definition 12. We say that a Banach space X is asymptotically isometric to `1 if there are a Schauder basis fxng of X and a
sequence f"ng � .0; 1/, "n ! 0 such that

1X
nD1

.1 � "n/janj �







1X
nD1

anxn






 �
1X
nD1

janj

for any .an/ 2 `1.

Definition 13. We say that a subspace Y of a Banach space X is asymptotically 1-complemented in X if there are a Schauder
basis fxng of Y and a projection P of X onto Y such that k.IdY � Pn/ B P k ! 1, where Pn are the projections associated with
fxng.

The following picture shows relations between various types of embedding. The black arrows denote implications that hold, the
red arrows denote implications that do not hold, the green arrows denote implications that are unknown to us.

X D `1
//

��

X is asymptotically
isometric to `1

//

��

7/

��

))

X is isomorphic to `1

��

9/

��

~~

X has a 1-complemented
subspace isometric to `1

//
,,

��

6/

11

X has a 1-complemented
subspace asymptotically

isometric to `1

++

4/

��

8" > 0 X has a
1-complemented subspace
.1C "/-isomorphic to `1

//

��

8/

��

X has a 1-complemented
subspace isomorphic to `1

��

X� has a subspace
isometric to `1

5/

��

22

X has an asymptotically
1-complemented subspace

isometric to `1

//

��

11/

55

33

X has an asymptotically
1-complemented subspace

asymptotically isometric to `1

//

��

8" > 0 X has an asymptotically
1-complemented subspace
.1C "/-isomorphic to `1

//

��

X has an asymptotically
1-complemented subspace

isomorphic to `1

8" > 0 X has a
.1C "/-complemented subspace

isometric to `1

//

��

11

8" > 0 X has a
.1C "/-complemented subspace

asymptotically isometric to `1

//

��

8" > 0 X has a
.1C "/-complemented subspace
.1C "/-isomorphic to `1

`1 � X
�

ii
2/))

**
3/

jj

X has a
complemented subspace

isometric to `1

//

��

55

X has a
complemented subspace

asymptotically isometric to `1

��

X has a
complemented subspace

isomorphic to `1

11

��

X has a subspace
isometric to `1

//

10/

22

X has a subspace
asymptotically isometric to `1

// 8" > 0 X has a subspace
.1C "/-isomorphic to `1

oo
1/

// X has a subspace
isomorphic to `1

��

We remark that all the counterexamples for the red arrows are separable.
The implications without numbers should be trivial. For the numbered implications, the arguments follow:
1) James’s distortion theorem, [LT, Proposition 2.e.3]
2) Bessaga, Pełczyński, [FHHMZ, Theorem 4.44]
3) [DRT, Theorem 5]
4) Let P be the projection of X onto Y � X of norm 1, and let fxng be the basis of Y from Definition 12. Define T W Y ! `1

by T
�P1

nD1 anxn
�
D
P1
nD1.1� "n/anen and put S D T BP . Then kT k � 1 and hence also kSk � 1. Further, kS.xn/� enk D

k.1 � "n/en � enk D "n ! 0. An application of [D, Theorem 1] finishes the proof.
5) By [D, Theorem 1], X has a quotient X=Z isometric to `1. Denote by q W X ! X=Z the canonical quotient mapping. Let

feng be the canonical basis of X=Z. Let f"ng � .0; 1/ be a decreasing sequence satisfying "n ! 0. For each n 2 N we find
xn 2 X such that q.xn/ D en and kxnk < 1C "n. Then

NX
nD1

janj D







NX
nD1

anen






 D






NX
nD1

anq.xn/






 D





q
 
NX
nD1

anxn

!




 �






NX
nD1

anxn






 �
NX
nD1

janjkxnk �

NX
nD1

.1C "n/janj:
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Hence Y D spanfxng is asymptotically isometric to `1.
Further, define T W X=Z ! Y by T

�P1
nD1 anen

�
D
P1
nD1 anxn and put P D T B q. Then P is clearly a projection from X

onto Y . Moreover, denoting by ffng the functionals biorthogonal to feng,

k.IdY � Pn/ B P.x/k D






.IdY � Pn/ B T
 
1X
iD1

fi .q.x//ei

!




 D






1X

iDnC1

fi .q.x//xi






 �
1X

iDnC1

.1C "i /jfi .q.x//j

� .1C "n/

1X
iDnC1

jfi .q.x//j � .1C "n/

1X
iD1

jfi .q.x//j D .1C "n/kq.x/k � .1C "n/kxk:

6) X D `1 ˚ `2
7) Let X D .`1; jjj�jjj/, where jjjxjjj2 D kxk21 C

P1
nD1

1
2n x

2
n. Then jjj�jjj is rotund, so X does not contain a subspace isometric

to `1.
8) and 9) [DLT, Example 2.8]
10) X D C.Œ0; 1�/. By Pełczyński’s theorem [HMVZ, Theorem 7.6] every non-reflexive complemented subspace of C.Œ0; 1�/

contains c0.
11) This follows from the proof of [JR, Proposition 4] together with [D, Theorem 1].

We suspect that none of the green implications hold.
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