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ABSTRACT. We show that a Ck-smooth mapping on an open subset of Rn, k 2 N [ f0;1g, can be approximated in a fine topology
and together with its derivatives by a restriction of a holomorphic mapping with explicitly described domain. As a corollary we obtain a
generalisation of the Carleman-Scheinberg theorem on approximation by entire functions.

First we fix some notation. By B.x; r/ we denote the closed ball centred at x with radius r > 0. Let X , Y be normed linear
spaces and U � X an open set. Recall that a norm of a polynomial P W X ! Y is defined by kP k D suph2BX

kP.h/k. For
a mapping f W U ! Y we denote by dkf .x/ the kth Fréchet differential of f at x 2 U , i.e. the k-homogeneous polynomial
associated to the kth Fréchet derivative of f at x. For convenience we denote d0f D f and accordingly by C 0-smooth mapping
we mean a continuous mapping.

Let G � Cn be an open set and let Z be a complex Banach space. Recall that a mapping f W G ! Z is holomorphic if it
is Fréchet differentiable in G, and that this is equivalent to f being analytic, i.e. locally expandable into a power series (see
e.g. [Hi]). By H.GIZ/ we denote the space of holomorphic mappings from G to Z. By C!.U IY / we denote the space of
real-analytic mappings from an open U � Rn to a real Banach space Y . For a real Banach space Y we denote by QY its Taylor
complexification, i.e. a complex Banach space which can be described as Y C iY and with a norm k´k D kRe ´C i Im ´k D

supt2Œ0;2��kcos.t/Re ´C sin.t/ Im ´k; see e.g. [FHHMZ, Section 2.1]. Clearly, zRn is isomorphic to Cn. Throughout the paper
we will be using the Euclidean norm on Cn.

In his seminal paper [W] Hassler Whitney proved among other things that a C k-smooth function on an open subset of Rn can
be approximated in a fine topology and together with its derivatives by a real-analytic function. His proof however is quite technical
and settles for real analyticity of the approximating functions, not dealing with the domain of their holomorphic extensions. Earlier,
Torsten Carleman in [C] showed that any function continuous on R can be uniformly approximated by a restriction of an entire
holomorphic function. The usual proofs of this result employ some relatively advanced techniques of complex analysis, e.g.
Runge’s approximation theorem. Surprisingly, this kind of proof appears even in recent books, although for example Stephen
Scheinberg in [S] gave an ingenious short proof of the Carleman theorem and moreover generalised it for continuous functions
on Rn (and the approximation is in a fine topology); the methods are used also earlier by Lothar Hoischen and in fact go even
back to Karl Weierstraß. When comparing the results of Whitney and Carleman-Scheinberg, an immediate question arises: Can
the approximation by entire functions (or even mappings) be done so that simultaneously also the derivatives are approximated?
What about the domain of the approximation when the continuous function is not defined on the whole Rn? The first question
is treated e.g. in [K], where the approximation on R of the first derivative is achieved, and further in [Ho] and [FG], where the
approximation of higher derivatives is proved on R, resp. Rn. The second question is studied e.g. in [N], where the so-called
Carleman sets in C are studied.

We combine the techniques of Whitney and Scheinberg and by explicitly estimating the domain of holomorphy of the extension
of the real-analytic approximating mappings we prove the following slight generalisation of the Whitney approximation theorem:

Theorem 1. Let Y be a real Banach space, ˝ � Rn open, k 2 N [ f0;1g, f 2 C k.˝IY /, and " 2 C.˝IRC/. Put
G D

˚
´ 2 CnI kIm ´k < dist.Re ´;Rn n ˝/

	
. Then there is a mapping g 2 H.GI QY / such that g�˝ 2 C!.˝IY / and

kd jf .x/ � d j.g�˝/.x/k < ".x/ for all x 2 ˝, 0 � j � minfk; 1=".x/g.

In particular if ˝ D Rn, then g is an entire mapping and we obtain the Frih-Gauthier version of the Carleman-Scheinberg
theorem with approximations also for the derivatives.

For the proof we introduce some more notation. Let X be a set, Y a normed linear space, f W X ! Y , and S � X . We denote
kf kS D supx2Skf .x/k. LetX , Y be normed linear spaces,˝ � X open, and f 2 C k.˝IY / for some k 2 N[f0g. For S � ˝
we define

kf kS;k D

kX
jD0

sup
x2S

kd jf .x/k:

Clearly k�kS;k is a semi-norm on the subspace of C k.˝IY / consisting of mappings with all derivatives up to k bounded on S .

Lemma 2. Let X , Y be normed linear spaces, ˝ � X open, k 2 N [ f0g, ' 2 C k.˝/, f 2 C k.˝IY /, and S � ˝. Then

k'f kS;k �

�
k�
k
2

��k'kS;kkf kS;k :
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Proof. Fix x 2 ˝ and 0 � j � k. By the Leibniz formula

kd j.'f /.x/k �

jX
lD0

�
j

l

�

d j�l'.x/ � d lf .x/

 � jX
lD0

�
j

l

�

d j�l'.x/

 � 

d lf .x/

 � � j�
j
2

�� jX
lD0



d j�l'.x/

 � 

d lf .x/

:
Therefore

k'f kS;k �

kX
jD0

�
j�
j
2

�� jX
lD0



d j�l'


S



d lf 


S
�

�
k�
k
2

�� kX
jD0

jX
lD0



d j�l'


S



d lf 


S

�

�
k�
k
2

�� kX
jD0

kX
lD0



d j'


S



d lf 


S
D

�
k�
k
2

��k'kS;kkf kS;k :
ut

To slightly shorten our notation we denote Ng D g�M\Rn for g W M ! Y , where M � Cn and Y is a Banach space.

Lemma 3. Let Y be a real Banach space, k 2 N [f0g, f 2 C k.RnIY / with compact support, and " > 0. Then there is an entire
mapping g 2 H.CnI QY / such that Ng maps into Y , kf � NgkRn;k < ", and kgkG < ", where

G D
˚
´ 2 Cn

I kIm ´k2 < dist.Re ´; suppf /2 � "2
	
:

Proof. Put 	�.´/ D exp
�
��

Pn
jD1 ´

2
j

�
for ´ 2 Cn and for � > 0 define g� W Cn ! QY by the Bochner integral

g�.´/ D
1

c�

Z
Rn

	�.´ � u/f .u/ du;

where c� D
R

Rn 	�.u/ du D
�
�
�

�n
2 . Using standard theorems on integrals dependent on a parameter we obtain g� 2 H.CnI QY /.

Obviously xg� maps into Y . Using the uniform continuity of d jf on Rn for 0 � j � k it is standard to check that kf � xg�kRn;k < "

for � large enough.
For any ´ 2 G we can estimate

kg�.´/k �
1

c�

Z
Rn

j	�.´ � u/jkf .u/k du D
1

c�

Z
Rn

exp
�
��

nX
jD1

Re. j́ � uj /2
�
kf .u/k du

D
1

c�

Z
suppf

exp
�
��

nX
jD1

�
.Re j́ � uj /

2
� .Im j́ /

2
��
kf .u/k du

D
1

c�

Z
suppf

exp
�
��
�
kRe ´ � uk2 � kIm ´k2

��
kf .u/k du �

1

c�
exp

�
��"2

� Z
suppf

kf .u/k du:

Clearly, kg�kG < " is satisfied for � large enough.
ut

Proof of Theorem 1. Define K�1 D K0 D ;, Kj D fx 2 RnI dist.x;Rn n ˝/ � 2�j g \ B.0; j /, Lj D Kj n IntKj�1,
and Uj D .IntKjC1/ n Kj�2 for j 2 N. Note that Kj � KjC1, Lj is compact, Uj � ˝ is an open neighbourhood of Lj ,
˝ D

S1
jD1Lj , and Lj \ Ul D ; for l > j C 1. There are functions 'j 2 C1.RnI Œ0; 1�/, j 2 N, satisfying supp'j � Uj

(hence supp'j is compact) and 'j D 1 on a neighbourhood of Lj .
Further, we put "0 D 1, "j D minf"j�1;minx2Lj

".x/g, k0 D 0, kj D k if k <1, and finally kj Dmaxfkj�1; Œmaxx2Lj

1
".x/

�g

if k D 1. Notice that the sequence f"j g1jD1 is non-increasing, while the sequence fkj g1jD1 is non-decreasing. Put Mj D

�kj
k'j kRn;kj

, where �l D
�
l

Œ l
2 �

�
. For each j 2 N let ıj > 0 be such that

ıj .1CMjC1/ <
"j

2j
: (1)

For each j 2 N we define inductively mappings fj 2 C k.RnIY / and gj 2 H.CnI QY / such that xgj maps into Y as follows:
We put fj D 0 on Rn n˝ and

fj D 'j �

�
f �

j�1X
lD1

xgl

�
(2)

on ˝. Then fj 2 C k.RnIY / and since supp'j is compact, so is suppfj . By Lemma 3 there is a mapping gj 2 H.CnI QY / such
that xgj maps into Y ,

kfj � xgj kRn;kj
< ıj ; (3)

and kgj kGj
< 1

2j , where Gj D
˚
´ 2 CnI kIm ´k2 < dist.Re ´; suppfj /2 � 1

4j

	
.
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Put

g D

1X
jD1

gj : (4)

Fix any ´ 2 G and put ı D 1
2

min
˚
dist.Re ´;Rn n ˝/ � kIm ´k; 1

	
. (We note that the minimum here is to cater for the case

when dist.Re ´;Rn n ˝/ D C1, i.e. ˝ D Rn.) Further, put V D
˚
w 2 CnI kRew � Re ´k C kImw � Im ´k < ı

	
, which

is a neighbourhood of ´. Let j0 2 N be such that 2�j0 < ı
2

and kRe ´k C kIm ´k C 3
2
ı � j0. We claim that V � Gj for all

j � j0 C 2. Indeed, pick any w 2 V . Since j0 is chosen so that URn

�
Re ´; kIm ´k C 3

2
ı
�
� Kj0

, we have

kImwk � kIm ´k C kImw � Im ´k < kIm ´k C ı � kRew � Re ´k

� kIm ´k C ı C dist.Rew;Rn nKj0
/ � dist.Re ´;Rn nKj0

/ � dist.Rew;Rn nKj0
/ �

ı

2
:

Hence, using the fact that .a � b/2 � a2 � b2 whenever a; b 2 R, a � b � 0, and b � 0,

kImwk2 � dist.Rew;Rn nKj0
/2 �

ı2

4
� dist.Rew;Rn nKj�2/2 �

ı2

4
� dist.Rew;Uj /2 �

ı2

4

� dist.Rew; suppfj /2 �
ı2

4
< dist.Rew; suppfj /2 �

1

4j

and the claim follows. This means that kgj kV < 1

2j for j � j0C2. Therefore the series (4) converges absolutely locally uniformly
on G and so g 2 H.GI QY /. Obviously since each xgj maps into Y , so does Ng.

To show the approximation property of the mapping Ng fix x 2 ˝ and 0 � l � minfk; 1=".x/g. There is p 2 N such that
x 2 Lp . Hence l � kp and "p � ".x/. Since 'p D 1 on a neighbourhood of Lp , by (2) and (3) we have




f �

pX
jD1

xgj







Lp ;kp

D kfp � xgpkLp ;kp
< ıp: (5)

From Lemma 2, the fact that the sequences fkj g and f�j g are non-decreasing, (3), and (5) we obtain

kgpC1kLp ;kp
� kgpC1 � fpC1kLp ;kp

C kfpC1kLp ;kp
� kgpC1 � fpC1kLp ;kp

C �kp
k'pC1kLp ;kp






f �
pX
jD1

xgj







Lp ;kp

� kgpC1 � fpC1kRn;kpC1
C �kpC1

k'pC1kRn;kpC1






f �
pX
jD1

xgj







Lp ;kp

< ıpC1 CMpC1ıp:

Finally, for j > p C 1 we have Uj \ Lp D ; and since suppfj � Uj , fj D 0 on a neighbourhood of Lp . Hence

k xgj kLp ;kp
D k xgj � fj kLp ;kp

� k xgj � fj kRn;kj
< ıj :

Putting all this together with (1) yields

kd lf .x/ � d l Ng.x/k D






d lf .x/ �
1X
jD1

d l xgj .x/






 �





d lf .x/ �

pX
jD1

d l xgj .x/






C
1X

jDpC1

kd l xgj .x/k

�






f �
pX
jD1

xgj







Lp ;kp

C

1X
jDpC1

k xgj kLp ;kp
< ıp.1CMpC1/C

1X
jDpC1

ıj

�

1X
jDp

ıj .1CMjC1/ <

1X
jDp

"j

2j
�

1X
jDp

"p

2j
� "p � ".x/:

We note that the first equality follows from the fact that the series (4) is a locally uniformly convergent series of holomorphic
mappings.

ut
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