A REMARK ON THE APPROXIMATION THEOREMS OF WHITNEY AND CARLEMAN-SCHEINBERG
MICHAL JOHANIS

ABSTRACT. We show that a CX -smooth mapping on an open subset of R, k € N U {0, 0o}, can be approximated in a fine topology
and together with its derivatives by a restriction of a holomorphic mapping with explicitly described domain. As a corollary we obtain a
generalisation of the Carleman-Scheinberg theorem on approximation by entire functions.

First we fix some notation. By B(x, r) we denote the closed ball centred at x with radius » > 0. Let X, Y be normed linear
spaces and U C X an open set. Recall that a norm of a polynomial P: X — Y is defined by || P|| = sup,ep, || P(/)]|. For
amapping f: U — Y we denote by d¥ f(x) the kth Fréchet differential of f at x € U, i.e. the k-homogeneous polynomial
associated to the kth Fréchet derivative of f at x. For convenience we denote d°f = f and accordingly by C °-smooth mapping
we mean a continuous mapping.

Let G C C” be an open set and let Z be a complex Banach space. Recall that a mapping f: G — Z is holomorphic if it
is Fréchet differentiable in G, and that this is equivalent to f being analytic, i.e. locally expandable into a power series (see
e.g. [Hil)). By H(G; Z) we denote the space of holomorphic mappings from G to Z. By C®(U;Y) we denote the space of
real-analytic mappings from an open U C R” to a real Banach space Y. For a real Banach space Y we denote by Y its Taylor
complexification, i.e. a complex Banach space which can be described as Y + iY and with anorm ||z|| = |[Rez + i Imz]| =
SUp; (0,271 1Ic0s(#) Re z + sin(z) Im z[; see e.g. [FHHMZ, Section 2.1]. Clearly, R” is isomorphic to C”. Throughout the paper
we will be using the Euclidean norm on C”.

In his seminal paper [W] Hassler Whitney proved among other things that a C¥-smooth function on an open subset of R” can
be approximated in a fine topology and together with its derivatives by a real-analytic function. His proof however is quite technical
and settles for real analyticity of the approximating functions, not dealing with the domain of their holomorphic extensions. Earlier,
Torsten Carleman in [C] showed that any function continuous on R can be uniformly approximated by a restriction of an entire
holomorphic function. The usual proofs of this result employ some relatively advanced techniques of complex analysis, e.g.
Runge’s approximation theorem. Surprisingly, this kind of proof appears even in recent books, although for example Stephen
Scheinberg in [S] gave an ingenious short proof of the Carleman theorem and moreover generalised it for continuous functions
on R” (and the approximation is in a fine topology); the methods are used also earlier by Lothar Hoischen and in fact go even
back to Karl Weierstra. When comparing the results of Whitney and Carleman-Scheinberg, an immediate question arises: Can
the approximation by entire functions (or even mappings) be done so that simultaneously also the derivatives are approximated?
What about the domain of the approximation when the continuous function is not defined on the whole R”? The first question
is treated e.g. in [KI], where the approximation on R of the first derivative is achieved, and further in [Ho| and [FG], where the
approximation of higher derivatives is proved on R, resp. R”. The second question is studied e.g. in [N], where the so-called
Carleman sets in C are studied.

We combine the techniques of Whitney and Scheinberg and by explicitly estimating the domain of holomorphy of the extension
of the real-analytic approximating mappings we prove the following slight generalisation of the Whitney approximation theorem:
Theorem 1. Let Y be a real Banach space, 2 C R open, k € N U {0,00}, f € CK(2:Y), and ¢ € C(2;R"). Put
G = {z e C"; |Imz|| < dist(Rez,R" \ .Q)} Then there is a mapping g € H(G;Y) such that g} o € C®(2;Y) and
ld?f(x) —d/(gt)x)| < e(x)forall x € 2,0 < j < min{k, 1/e(x)}.

In particular if £2 = R”, then g is an entire mapping and we obtain the Frih-Gauthier version of the Carleman-Scheinberg
theorem with approximations also for the derivatives.

For the proof we introduce some more notation. Let X be a set, Y a normed linear space, f: X — Y, and S C X. We denote
| flls = supes|lf(x)]. Let X, Y be normed linear spaces, 2 C X open, and f € C¥(£2;Y) for some k € N U{0}. For S C 2
we define

k
1 £llsa =D suplld’ f(0)]l.
=0 x€S
Clearly ||-|| s« is a semi-norm on the subspace of C k(§2:Y) consisting of mappings with all derivatives up to k bounded on S.

Lemma 2. Let X, Y be normed linear spaces, 2 C X open, k € N U{0}, ¢ € C*¥(), f € C¥(2;Y), and S C 2. Then

k
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Proof. Fix x € 2 and 0 < j < k. By the Leibniz formula

J

e = Y- (1)1 o -d' o] < > (7)1 el -Jatseol = (] ]) ZHd’ o) [d' 0]

1= 1=0
Therefore

Sl el = ([’g])_Zindf-lwnsnd’fns

=0

||¢f||s,ks§(’%'
({f)»>

j=0I=

\_/
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To slightly shorten our notation we denote g = g Masnrn for g: M — Y, where M C C" and Y is a Banach space.

Lemma 3. Let Y be a real Banach space, k € NU{0}, f € C k(R™; Y) with compact support, and & > 0. Then there is an entire
mapping g € H(C";Y) such that g mapsinto Y, | f — g|lrnx <& and | g|lc < & where

G ={z eC"; |Imz|? < dist(Rez,supp f)*> —&°}.

Proof. Put W, (z) = exp(—k Y_7_, zf) for z € C" and for k > 0 define g, : C" — ¥ by the Bochner integral
1
@ == [ w-wswan
Cr JR?

where ¢ = [pn Wie(u) du = (%) %. Using standard theorems on integrals dependent on a parameter we obtain g, € H(C";Y).
Obviously g, maps into Y. Using the uniform continuity of d/ f on R” for 0 < j < k itis standard to check that || f — ¢ |rrx < €
for k large enough.

For any z € G we can estimate

lec@l = o [ 1w —wil el = [ exp(—x;1 Re(z; = u)? ) L) du

n

1
= exp(—'f > (Rez; —uj) (Iij)z))llf(u)ll du
Cx Jsupp f j=1
1 1
== exp (—« ([Rez —ul|* — [lIm 2 %)) [ £ (u) | du < — exp (—ke?) / I/ o)l du.
K Jsupp f Cie supp f

Clearly, ||g«llg < € is satisfied for x large enough.
O

Proof of Theorem([I} Define K_; = Ko = 9, K; = {x € R"; dist(x,R" \ £2) > 27/} N B(0,/), L; = K; \ IntK;_q,
and U; = (IntKj41) \ Kj—» for j € N. Note that K; C K;41, L; is compact, U; C §2 is an open neighbourhood of L,
2 = U;”;l Lij,and L; N Uy = @ for! > j + 1. There are functions ¢; € C*°(R";[0,1]), j € N, satisfying supp¢; C U;
(hence supp ¢; is compact) and ¢; = 1 on a neighbourhood of L;.

Further, we puteg = 1,&; = min{sj_l,minxeLj e(x)}, ko = 0,k; = kifk < oo, and finally k; =max{k;_;, [maxxeLj ﬁ]}
if k = oo. Notice that the sequence {&;}72, is non-increasing, while the sequence {k;}72, is non-decreasing. Put M; =

vi; 197 |Rm i, » where vy = ([%]) For each j € N let §; > 0 be such that
&
8]'(] =+ Mj+1) < 2—§ (1)

For each j € N we define inductively mappings f; € C k(R™;Y) and gj € H(C"; Y) such that gj maps into Y as follows:
We put f; = 0onR” \ £ and

ji-1
Ji=9j- (f - 571) (2
I=1

on £2. Then f; € Ck(R”;Y) and since supp ; is compact, so is supp fj. By Lemmathere is a mapping g; € H(C"; Y) such
that g; mapsinto Y,

Ifi — & llrnk;, <6js 3)

and ||g;llg; < 57, where G; = {z € C"; |[Imz]|* < dist(Re z,supp f;)* — ;7 }.
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Put
o0
g=> g “
=1

Fix any z € G and put § = %min{dist(Rez, R"\ £2) — |[Imz], 1}. (We note that the minimum here is to cater for the case
when dist(Re z, R” \ 2) = 400, i.e. 2 = R".) Further, put V = {w € C"; |Rew —Rez| + |[Imw — Imz| < 8}, which
is a neighbourhood of z. Let jo € N be such that 2770 < % and |[Rez|| + |[Imz]|| + %8 < jo. We claim that V' C G; for all

Jj = jo + 2. Indeed, pick any w € V. Since jj is chosen so that Urn (Re Z, |[Imz|| + %5) C Kj,, we have
Imw] < Imz| + [Imw —Imz| < [Imz] + § — [[Rew — Re z||

]
< |Imz|| + & + dist(Rew,R" \ Kj,) —dist(Rez,R" \ Kj,) < dist(Rew,R" \ Kj,) — 3

Hence, using the fact that (a — b)?> < a® —b? whenevera,b e R,a—b > 0,and b > 0,

82 52 52

[Tmw]||? < dist(Rew, R" \ Kj,)* — 7= dist(Rew, R" \ Kj_»)* — 7= dist(Re w, U;)* — T
. 2 52 . 2 1
< dist(Re w, supp f;)* — T < dist(Re w, supp fj)~ — i}

and the claim follows. This means that ||g; ||y < 2% for j > jo+ 2. Therefore the series (@) converges absolutely locally uniformly

onG andso g € H(G:Y). Obviously since each g; maps into Y, so does g.
To show the approximation property of the mapping g fix x € §£2 and 0 </ < min{k, 1/e(x)}. There is p € N such that
X € L. Hencel <k, and ¢, < &(x). Since ¢, = 1 on a neighbourhood of L, by (Z) and (3) we have

p
f=2281 =Bl <5 )
j=1 Lp,kp
From Lemma the fact that the sequences {k; } and {v;} are non-decreasing, (3), and (3)) we obtain
p
I8t lLpky < 18o51 = forilliydep + 1 fot1llLp by < 18071 — fot1llLpky + Vi loptt L,y | /=D &
J=1 Lp.kp
P

<871 — for1lRnkpsr + iy l0pt1IRmdeyi | [ — Y & < Spt1 + Mpi15p.
Jj=1 Lp,kp

Finally, for j > p + 1 we have U; N L, = @ and since supp f; C U;, f; = 0 on a neighbourhood of L,. Hence
I8l kp = 185 = FillLykp = 185 = JillRrk; <65
Putting all this together with (I)) yields

[ele] D [ele]
d'fx)=> d'g)| < |d'fx) =Y d'gm|+ D ld'g ]
=1 Jj=1

J=p+1

ld'f(x) —d'g(x)ll

IA

D e} e’}
=& + Y NG,k <&+ Mpr) + Y 5
j=1 Lp.kp, Jj=p+1 j=p+1

o0

o0 o0
&j €
=280+ M) <} or S ) SE e S ).
j=p ji=p j=pr
We note that the first equality follows from the fact that the series @) is a locally uniformly convergent series of holomorphic
mappings.
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