
ON PEANO’S THEOREM IN BANACH SPACES

PETR HÁJEK AND MICHAL JOHANIS

ABSTRACT. We show that if X is an infinite-dimensional separable Banach space (or more generally a Banach space with an infinite-
dimensional separable quotient) then there is a continuous mapping f W X ! X such that the autonomous differential equation x0 D f .x/

has no solution at any point.

In order to put our results into context, let us start by formulating the classical theorem of Peano.

Theorem 1 (Peano). Let X D Rn, f W R � X ! X be a continuous mapping, t0 2 R, x0 2 X . Then the ordinary differential
equation

x0 D f .t; x/ (1)

together with an initial condition
x.t0/ D x0 (2)

has a solution on some open interval containing t0.

Using an infinite-dimensional Banach space X D c0, Dieudonné [D] constructed a counterexample to Theorem 1. Many
counterexamples in various infinite-dimensional Banach spaces followed, e.g. [LL], [B], [H], [Y], [G1], and [C] for every non-
reflexive Banach space. Finally, Godunov in [G3] proved that Theorem 1 is false in every infinite-dimensional Banach space. More
precisely, for every infinite-dimensional Banach space X , t0 2 R, x0 2 X , there exists a continuous mapping f W R �X ! X ,
such that there exists no solution to the initial value problem (1), (2). Nevertheless, the above constructions are in fact showing the
failure of the condition (2), and the constructed examples have many solutions on intervals not containing the given time t0.

Moreover, Lasota and Yorke [LY] (see also Vidossich [V]) proved that for every Banach space X and every initial condition
t0 2 R, x0 2 X the set of all continuous mappings f W R � X ! X such that the initial value problem (1), (2) has a local
solution is a generic set. More precisely, putting the topology of uniform convergence on the space of all continuous mappings
f W R �X ! X , the set of mappings admitting a solution has a complement of the first Baire category.

In view of these results, in infinite-dimensional Banach spaces it is natural to consider a weaker form of Peano’s theorem:

Theorem 2 (weak form of Peano’s theorem). Let X D Rn, f W R � X ! X be a continuous mapping. Then the ordinary
differential equation

x0 D f .t; x/

has a solution on some open interval.

Showing the failure of this theorem in infinite-dimensional Banach spaces is clearly a harder problem. In [G2], Godunov
constructed a counterexample to Theorem 2 in the Hilbert space. Finally, Shkarin [S] proved that Theorem 2 fails for every
Banach space X that has a complemented subspace with an unconditional Schauder basis. (To be more precise, Shkarin’s result is
even stronger as it contains a precise quantitative information on the modulus of continuity of f – we refer the reader to [S]).
Shkarin’s result applies to many “classical” Banach spaces, such as Lp , 1 � p <1, or C Œ0; 1�. However, there exist separable
reflexive Banach spaces that contain no unconditional basic sequence ([F]). Note that the dual of such space has no quotient with
an unconditional Schauder basis. Similarly, the classical non-separable Banach space `1 is also not covered by [S] (because all of
its complemented subspaces are again isomorphic to `1, a result of Rosenthal, see [LT]).

The main result of this note, Theorem 8, states that if X is a Banach space with an infinite-dimensional separable quotient
(in particular every infinite-dimensional separable Banach space, of course) then Theorem 2 fails to be true for some continuous
mapping f . A slightly stronger result holds, namely there is a continuous mapping f W X ! X such that the autonomous
differential equation x0 D f .x/ has no solution at any point. We note that the question whether every Banach space has a separable
quotient is one of the outstanding problems of the Banach space theory. It is known to hold in all reasonable classes of Banach
spaces, such as reflexive, weakly compactly generated, C.K/ whereK is a compact space ([HMVZ], Corollary 5.43, Exercise 5.8),
etc. We refer to [F–Z], [LT], [DGZ] and [DMNZ] for background in Banach space theory and differential equations.

Let S denote a class of Banach spaces such that X 2 S whenever there is a continuous mapping f W R�X ! X for which the
equation x0 D f .t; x/ has no solutions. We start with two lemmata. The first one allows us to construct autonomous equations
from the general ones.
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Lemma 3. Let X be a Banach space such that it has a proper complemented subspace of class S . Then there is a continuous
mapping f W X ! X such that the autonomous equation x0 D f .x/ has no solutions.

Proof. The idea of the proof comes from [S].
Let Y be a proper subspace of X complemented by a projection P such that Y 2 S . Let g W R � Y ! Y be a continuous

mapping such that the equation y0 D g.t; y/ has no solutions. Pick e 2 kerP , e ¤ 0, and find ' 2 Y ? such that '.e/ D 1. Define
a mapping f W X ! X by

f .x/ D e C g.'.x/; P x/:

Obviously f is continuous.
Suppose the equation x0 D f .x/ has a solution, i.e. there is an open interval I and a mapping x W I ! X satisfying

x0.t/ D f .x.t// for every t 2 I . Then�
'.x.t//

�0
D '.x0.t// D '

�
f .x.t//

�
D '.e/ D 1 for t 2 I ,

and hence '.x.t// D t C c for t 2 I and some c 2 R. Now define a mapping y W I C c ! Y by y.t/ D Px.t � c/. Then

y0.t/ D Px0.t � c/ D Pf .x.t � c// D g
�
'.x.t � c//; P x.t � c/

�
D g.t; y.t// for t 2 I C c,

which is a contradiction.
ut

The second lemma allows us to prove our theorem for spaces with a Schauder basis and then extend the result to much larger
class.

Lemma 4. Let X be a Banach space with a quotient from S . Then X 2 S .

Proof. Let Q W X ! Y be a quotient mapping such that Y 2 S and let g W R � Y ! Y be a continuous mapping such that the
equation y0 D g.t; y/ has no solutions.

Let 	 W Y ! X be a continuous Bartle-Graves selector, i.e. Q	.y/ D y for every y 2 Y (see [DGZ, Lemma VII.3.2]). Define
the mapping f W R�X ! X by f .t; x/ D 	.g.t;Qx//. Obviously f is continuous. Moreover, if x W I ! X is a solution of the
equation x0 D f .t; x/, then the mapping y D Q ı x satisfies

y0.t/ D Qx0.t/ D Qf.t; x.t// D Q	
�
g.t;Qx.t//

�
D g.t; y.t// for t 2 I ,

which is a contradiction.
ut

From now on we will be dealing with Banach spaces that have a Schauder basis. Let Pk , k 2 N, denote the canonical projections
associated with a Schauder basis. We put P0 D 0, R0 D I , and Rkx D x � Pkx, Qkx D x � Pk�1x for k 2 N.

The next lemma is perhaps of independent interest. It is an analogue of the estimate for the norm of perturbed vector in a
space with an unconditional Schauder basis. Notice however, that without unconditionality we are allowed only to take monotone
perturbations.

Lemma 5. Let fenIfng be a Schauder basis of a Banach space X and let f˛ng � Œ0; 1� be a real sequence. Suppose that one of
these conditions hold:
(a) kRnk D 1 for each n 2 N and f˛ng is non-decreasing,
(b) kPnk D 1 for each n 2 N (i.e. feng is a monotone basis) and f˛ng is non-increasing.
Then 




 1X

nD1

˛nfn.x/en






 � kxk for each x 2 X .

Proof. Suppose (a) holds. We first prove the statement under additional assumption that f˛ng is eventually constant. By passing to
Rmx for a suitable m 2 N if needed we may without loss of generality assume that ˛1 > 0. Let N 2 N be such that ˛n D ˛N for
all n � N . Define yN D ˛Nx and

yn D RnynC1 C
˛n

˛nC1
PnynC1 for N > n � 1.

It is easy to check by induction that yn D ˛nPn�1x C
PN
kDn ˛kfk.x/ek C ˛NRNx for N � n � 1. It follows that

y1 D
P1
nD1 ˛nfn.x/en.

Notice further that yn D
�
1 � ˛n

˛nC1

�
RnynC1 C

˛n

˛nC1
ynC1 for 1 � n < N . Thus, by the convexity of the norm and the fact

that 0 � ˛n

˛nC1
� 1, we obtain kynk � kynC1k. Since obviously kyN k � kxk, it follows that ky1k � kxk.

Now let f˛ng be an arbitrary non-decreasing sequence. Let ´n D
Pn
kD1 ˛kfk.x/ek C ˛nRnx for n 2 N. For any m; n 2 N,

n < m, we have

´m � ´n D

mX
kDnC1

.˛k � ˛n/fk.x/ek C .˛m � ˛n/Rmx:
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Applying the statement proven so far to the vector Rnx and the sequence ˇk D ˛k � ˛n for n < k � m, ˇk D 0 for k � n,
and ˇk D ˛m � ˛n for k > m, we obtain the inequality k´m � ´nk � kRnxk. It follows that f´ng is convergent. Clearly,
lim ´n D

P1
nD1 ˛nfn.x/en, and as k´nk � kxk by the first part of the proof, the statement follows.

The proof under the assumption (b) is similar. In this case we may also alternatively use Abel’s partial summation:




 NX
nD1

˛nfn.x/en






 D





N�1X
nD1

.˛n � ˛nC1/Pnx C ˛NPNx






 � N�1X
nD1

.˛n � ˛nC1/ kPnxk C ˛N kPNxk � ˛1 kxk � kxk :

ut

Next we will define some mappings useful for our construction. For r > 0 we define a function 'r W R! R by

'r .t/ D

˚
0 for t 2 .�1;�2r�,
2C t=r for t 2 Œ�2r;�r�,
1 for t 2 Œ�r; r�,
2 � t=r for t 2 Œr; 2r�,
0 for t 2 Œ2r;C1/.

Suppose X is a Banach space with a Schauder basis fek Ifkg. We define a mapping ˚r W X ! X by

˚r .x/ D

1X
kD1

'r
�
kQkxk

�
fk.x/ek :

Notice that the mapping is well-defined as 'r
�
kQkxk

�
D 1 for all k large enough. This mapping was already used by Shkarin

in [S]; however, lacking the unconditionality we have to employ Lemma 5 to prove some properties of this mapping.

Lemma 6. Let X be a Banach space with a Schauder basis fek Ifkg satisfying kRnk D 1 for each n 2 N and let r > 0. Then the
mapping ˚r has the following properties:

(i) Qn˚r .x/ D ˚r .Qnx/ for each x 2 X and n 2 N.
(ii) If kQNxk � r for some x 2 X and N 2 N, then Qn˚r .x/ D Qnx for all n � N .

(iii) k˚r .x/k � kxk for each x 2 X .
(iv) k˚r .x/k < 2r for each x 2 X .
(v) ˚r is continuous.

Proof. Notice that under our assumption for any fixed x 2 X the sequence fkQkxkg is non-increasing.
(i): Choose x 2 X and compute

Qn˚rx D

1X
kDn

'r
�
kQkxk

�
fk.x/ek D

1X
kD1

'r
�
kQkQnxk

�
fk.Qnx/ek D ˚r .Qnx/:

(ii): Suppose kQNxk � r and n � N . Then kQkxk � r for all k � N and hence 'r
�
kQkxk

�
D 1 for all k � N . Thus

Qn˚r .x/ D

1X
kDn

1 � fk.x/ek D Qnx:

(iii): Since the sequence
˚
'r
�
kQkxk

�	
� Œ0; 1� is non-decreasing we may apply Lemma 5.

(iv): Pick any x 2 X . Let n 2 N be the smallest such that kQnxk < 2r . Then, using (i) and (iii),

k˚r .x/k D






 1X
kDn

'r
�
kQkxk

�
fk.x/ek






 D kQn˚r .x/k D k˚r .Qnx/k � kQnxk < 2r:
(v): Fix any x 2 X and " > 0. There is n 2 N such that kRnxk < "

4
. By the continuity of the projection Rn there is a

neighbourhood U of x such that kRnyk < "
4

for any y 2 U . Further, choose a neighbourhood V of x, V � U , such thatˇ̌
'r
�
kQkxk

�
fk.x/ � 'r

�
kQkyk

�
fk.y/

ˇ̌
kekk <

"
2n

for any y 2 V and all 1 � k � n. This can be done using the continuity of
the mappings involved. Then, using (i) and (iii), we obtain for any y 2 V that

k˚r .x/ � ˚r .y/k � kPn˚r .x/ � Pn˚r .y/k C kRn˚r .x/k C kRn˚r .y/k

�

nX
kD1

ˇ̌̌
'r
�
kQkxk

�
fk.x/ � 'r

�
kQkyk

�
fk.y/

ˇ̌̌
kekk C k˚r .Rnx/k C k˚r .Rny/k

<
"

2
C kRnxk C kRnyk < ":

ut
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Theorem 7. Let X be an infinite-dimensional Banach space with a Schauder basis fek Ifkg. Then X 2 S .

Proof. Without loss of generality we may and do assume that kRkk D 1 for each k 2 N.
Choose an a 2 X such that Qka ¤ 0 for any k 2 N. Define a mapping h W R �X ! X by

h.t; x/ D

‚
2t˚1

�
x
t2

�
for t > 0,

0 for t D 0,

2t˚1

�
x�a
t2

�
for t < 0.

The mapping h is continuous. Indeed, the continuity at points .t; x/ for t ¤ 0 follows from the continuity of the mapping ˚1,
while the continuity at points .0; x/ follows from the boundedness of the mapping ˚1. We note that the mapping h has the property
that the equation x0 D h.t; x/ has no solutions on any interval containing zero. (See also [S, Lemma 3.3].) Notice also that by
Lemma 6(iv)

kh.t; x/k � 4 jt j for all t 2 R, x 2 X . (3)
In [S] Shkarin constructs an equation with no solutions by splitting the space into countably many infinite-dimensional

pieces and using a copy of h in each of these pieces shifted to a different time. This splitting is impossible without using the
unconditionality and hence we have to develop a different approach. We will spread copies of the mapping h directly over the time
axis.

Choose a sequence f"ng such that "n > 0 for each n 2 N and
1X
nD1

"n < 1: (4)

Let ftng be an enumeration of rational numbers such that ti ¤ tj for i ¤ j .
By induction, for each n 2 N we find numbers ın, uni , vni for i 2 N [ f�1; 0g, satisfying the following conditions:

(D1) ın > 0 and ın 2 R nQ.
(D2) 8ın � "n=2.
(D3) For each k 2 f1; : : : ; n � 1g the following holds: If tn 2 .ukj ; u

k
jC1/ for some j 2 N [ f�1; 0g then 2ın < tn � u

k
j and

2ın < u
k
jC1 � tn. If tn 2 .vkjC1; v

k
j / for some j 2 N [ f�1; 0g then 2ın < vkj � tn and 2ın < tn � vkjC1.

(D4) For each k 2 f1; : : : ; n � 1g the following holds: Suppose tn 2 .ukj ; u
k
jC1/ [ .v

k
jC1; v

k
j / for some j 2 N [ f0g. Then

4ın <
1

2n
1

2jC2

 �
4

5

�jC1
ık

!2
:

(D5) uni D tn �
�
4
5

�i
ın and vni D tn C

�
4
5

�i
ın for i 2 N [ f0g, un�1 D �1, vn�1 D C1.

Finally we define g0.t; x/ D 0 and

gn.t; x/ D gn�1.t; x/C 'ın
.t � tn/

�
h.t � tn; x/ � ˚"n=4.gn�1.t; x//

�
for all t 2 R, x 2 X , n 2 N

All the mappings gn are continuous since both h and ˚"n=4 are continuous. Further, using (3), Lemma 6(iv), the properties of
function 'ın

, and condition (D2) we obtain for any n 2 N that

kgn.t; x/ � gn�1.t; x/k < 8ın C
"n

2
� "n for all t 2 R, x 2 X .

It follows that the sequence of mappings fgng converges uniformly on R�X to a continuous mapping g W R�X ! X . We claim
that the equation x0 D g.t; x/ has no solutions.

Let us prove it by contradiction. Suppose that there is an open interval I � R and a mapping y W I ! X which satisfies
y0.t/ D g.t; y.t// for each t 2 I . Find N 2 N such that tN 2 I . To simplify our notation we denote ui D uNi , vi D vNi for
i 2 N.

From the properties of the functions 'ık
it follows that

g.t; x/ D gN .t; x/ for each x 2 X and t 2 R n�, (5)

where � D
1S

kDNC1

.tk � 2ık ; tk C 2ık/. Denote �j D � \ .uj ; ujC1/ for j 2 N. Notice that by (D1) and (D3) we have

�j D
S

tk2.uj ;uj C1/

k>N

.tk � 2ık ; tk C 2ık/. Thus by (D4)

�.�j / �
X

tk2.uj ;uj C1/

k>N

4ık <

1X
kDNC1

1

2k
1

2jC2

 �
4

5

�jC1
ıN

!2
<

1

2jC2

 �
4

5

�jC1
ıN

!2
; (6)

where � denotes the Lebesgue measure on R.
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Further, for each x 2 X and t 2 R such that jt � tN j < ıN there is Ut;x a neighbourhood of .t; x/ 2 R � X and Kt;x 2 N
such that

QkgN .s; y/ D Qkh.s � tN ; y/ for any k � Kt;x and .s; y/ 2 Ut;x . (7)

Indeed, find Kt;x 2 N so that


QKt;x

gN�1.t; x/


 < "N =4 and utilising the continuity of gN�1 choose Ut;x in such a way that

.s; y/ 2 Ut;x implies


QKt;x

gN�1.s; y/


 < "N =4 and moreover js � tN j < ıN . Thus for .s; y/ 2 Ut;x we have 'ıN

.s� tN / D 1

and hence for k � Kt;x by Lemma 6(ii)

QkgN .s; y/ D QkgN�1.s; y/CQkh.s � tN ; y/ �Qk˚"N =4.gN�1.s; y// D Qkh.s � tN ; y/:

Let i 2 N be such that ui 2 I and vi 2 I . Since the set W D f.t; y.t//I t 2 Œui ; vi �g � R � X is compact, there is a
finite subcovering fUj gmjD1 of a covering fUt;y.t/I t 2 Œui ; vi �g of W . Denote the constants from (7) corresponding to Uj by Kj ,
j D 1; : : : ; m. Find K 2 N such that K � max1�j�mKj ,

kQK.y.ui / � a/k <
1

2
.tN � ui /

2; and kQKy.vi /k <
1

2
.vi � tN /

2: (8)

From (7) it follows that
QKgN .t; y.t// D QKh.t � tN ; y.t// for every t 2 Œui ; vi �. (9)

We claim that
kQK.y.t/ � a/k < .tN � t /

2 for every t 2 Œui ; tN /. (10)
We prove this by induction, showing that for j � i

kQK.y.t/ � a/k <

�
1 �

1

2jC1

�
.tN � t /

2 for every t 2 Œuj ; ujC1�. (11)

So let j � i and suppose


QK.y.uj / � a/

 < .1 � 1

2j /.tN � uj /
2 from the previous induction step (or from (8) for the first

step). Assume (11) does not hold and put

S D inf
�
t 2 Œuj ; ujC1�I kQK.y.t/ � a/k �

�
1 �

1

2jC1

�
.tN � t /

2

�
: (12)

Then S 2 .uj ; ujC1�. Define ´.t/ D QKaC
QK .y.uj /�a/

.tN�uj /
2 .tN � t /

2 for t 2 R and find T 2 Œuj ; S� for which

kQKy.T / � ´.T /k D max
t2Œuj ;S�

kQKy.t/ � ´.t/k : (13)

We have ´0.t/ D 2.´.t/�QKa/
t�tN

for t ¤ tN and hence

´.T / D ´.uj /C

TZ
uj

2.´.t/ �QKa/

t � tN
dt D QKy.uj /C

TZ
uj

2.´.t/ �QKa/

t � tN
dt:

Since y0.t/ D g.t; y.t// for each t 2 I , we have

y.T / D y.uj /C

TZ
uj

y0.t/ dt D y.uj /C

TZ
uj

g.t; y.t// dt

and hence

QKy.T / D QKy.uj /C

TZ
uj

QKg.t; y.t// dt:

To prove our claim we show that QKy does not deviate too much from ´, which is a solution to a “non-perturbed” equation.
Using (9) and then Lemma 6(ii) together with (12) we obtain QKgN .t; y.t// D 2.t � tN /QK˚1

�
y.t/�a

.t�tN /2

�
D

2QK .y.t/�a/
t�tN

for each t 2 Œuj ; S�. Thus

QKy.T / � ´.T / D

TZ
uj

�
QKg.t; y.t// �

2.´.t/ �QKa/

t � tN

�
dt

D

TZ
uj

QK
�
g.t; y.t// � gN .t; y.t//

�
dt C

TZ
uj

�
QKgN .t; y.t// �

2.´.t/ �QKa/

t � tN

�
dt

D

Z
.uj ;T /\�

QK
�
g.t; y.t// � gN .t; y.t//

�
dt C 2

TZ
uj

1

t � tN

�
QKy.t/ � ´.t/

�
dt;
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where we use also (5) to verify the last equality. Applying (4) and (13) we can estimate

kQKy.T / � ´.T /k �

Z
�j

1 dt C 2kQKy.T / � ´.T /k

uj C1Z
uj

1

tN � t
dt D �.�j /C 2kQKy.T / � ´.T /k log

tN � uj

tN � ujC1

D �.�j /C 2kQKy.T / � ´.T /k log
5

4
< �.�j /C

1

2
kQKy.T / � ´.T /k

and so finally by (13) we obtain
kQKy.S/ � ´.S/k � kQKy.T / � ´.T /k < 2�.�j /:

But this last inequality together with (6) implies

kQK.y.S/ � a/k � kQKy.S/ � ´.S/k C k´.S/ �QKak < 2�.�j /C



QK.y.uj / � a/


.tN � uj /2

.tN � S/
2

< 2�.�j /C

�
1 �

1

2j

�
.tN � S/

2 <
1

2jC1

 �
4

5

�jC1
ıN

!2
C

�
1 �

1

2j

�
.tN � S/

2

D
1

2jC1
.tN � ujC1/

2
C

�
1 �

1

2j

�
.tN � S/

2
�

�
1 �

1

2jC1

�
.tN � S/

2;

a contradiction with (12). This finishes the proof of (10).
Now (10) immediately implies that lim

t!tN�
QKy.t/ D QKa ¤ 0. Further, analogously as above (approaching the point tN

from the right, replacing uj s by vj s and a by 0) we can show that lim
t!tNC

QKy.t/ D 0. These two facts contradict the continuity
of y at tN .

ut

As every separable infinite-dimensional Banach space has an infinite-dimensional quotient space with a Schauder basis (see
[LT, Theorem 1.b.7]), Theorem 7 together with Lemma 4 and Lemma 3 give us the final result:

Theorem 8. Let X be a Banach space with an infinite-dimensional separable quotient. Then there is a continuous mapping
f W X ! X such that the autonomous equation x0 D f .x/ has no solutions.
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