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ABSTRACT. We prove, among other things, that a Lipschitz (or uniformly continuous) mapping f W X ! Y can be approximated (even in
a fine topology) by smooth Lipschitz (resp. uniformly continuous) mapping, ifX is a separable Banach space admitting a smooth Lipschitz
bump and eitherX or Y is a separable C.K/ space (resp. super-reflexive space). Further, we show how smooth approximation of Lipschitz
mappings is closely related to a smooth approximation of C1-smooth mappings together with their first derivatives. As a corollary we
obtain new results on smooth approximation of C1-smooth mappings together with their first derivatives.

1. INTRODUCTION

The theory of approximation of continuous mappings between infinite-dimensional Banach spaces by smooth mappings, which
goes back to Kurzweil [K] and Bonic and Frampton [BF], is nowadays well understood and provides satisfactory results, see for
example [DGZ].

The related problem, whether the smooth approximation of Lipschitz (or uniformly continuous) mappings can retain the
Lipschitz (or uniform continuity) property is much less studied, and so far the results available are not very general. One of the
reasons is that most of the results on approximation of continuous mappings use the notion of smooth partition of unity, and it is
very difficult, if not impossible, to keep some uniformity in the partition.

In the present paper we introduce some new techniques and prove several new results concerning smooth approximation of
Lipschitz mappings and smooth approximation of C 1-smooth mappings together with their first derivatives. In Section 2 we show
how approximation of Lipschitz functions (i.e. mappings into reals) relates to bi-Lipschitz embeddings into c0.� /.

In Section 3 using the bi-Lipschitz embeddings into c0.� / we develop some more general theorems concerning uniform
approximation of Lipschitz mappings and then apply the results of Lindenstrauss on absolute retracts (see e.g. [BL, Theorem I.1.6,
Theorem I.1.26]). Thus we obtain one of the main results of this paper, namely we prove that a Lipschitz (or uniformly continuous)
mapping f W X ! Y can be approximated by smooth Lipschitz mapping (Corollary 9), resp. uniformly continuous mapping
(Corollary 11), if X is a separable Banach space admitting a smooth Lipschitz bump and either X or Y is a separable C.K/ space
(resp. super-reflexive space). These two results complement the presently known theorems (see below), for example we remove
the assumption on X having a basis from Theorem I but unfortunately we have to restrict the type of the target space.

However, since the main ingredient of this technique relies on integral convolutions in c0.� /, we obtain only uniform
approximation. To achieve the fine approximation we need to introduce a new approach concerning smooth partitions of unity.
This is done in Section 4.

In Sections 5 and 6 we show how this new approach can be used to translate some “separable” techniques into general (non-
separable) setting. Namely, in Section 5 we prove that uniform approximation of Lipschitz mappings implies fine approximation
(Theorem 15) and thus in combination with the results of Section 3 we obtain stronger versions of those theorems (Corollary 16).

Finally, in Section 6 we prove the next of the main results of this paper, which shows how smooth approximation of Lipschitz
mappings is closely related to a smooth approximation of C 1-smooth mappings together with their first derivatives. In particular
we generalise the result of Moulis (Theorem C) into arbitrary (non-separable) spaces (Theorem 19). As a corollary we obtain
results on approximation of C 1-smooth mappings together with their first derivatives (Corollary 20, Corollary 21). Moreover
our techniques also allow us to prove a result dual to the result of Moulis (Theorem A): The approximation result also holds for
X being arbitrary (separable) and Y having an unconditional basis. Thus Corollary 20 exhibits an interesting symmetry in its
hypotheses.

To put our results into perspective, we summarise the current state of the theory below.
But first, we need to fix some notation. Let BX (UX ) denote a closed (open) unit ball of a normed linear space X . Further, for

a metric space .P; �/, we denote B.x; r/ D fy 2 P I �.x; y/ � rg and U.x; r/ D fy 2 P I �.x; y/ < rg the closed and open
ball in P centred at x 2 P with radius r � 0. Let A � P . A neighbourhood U � P of A is called an r-uniform neighbourhood
if there is r > 0 such that

S
x2A U.x; r/ � U . A neighbourhood is called a uniform neighbourhood if it is r-uniform for some

r > 0. For a set M 2 P and " > 0 we denote M" D fx 2 M I dist.x; P nM/ > "g. For a function f into reals we denote
suppf D f �1.R n f0g/.
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Now we list the known results, in the order as they appeared in the literature:

Theorem A (Moulis). Let X be a Banach space with an unconditional Schauder basis that admits a C k-smooth Lipschitz bump
function, k 2 N [ f1g, and Y be a Banach space. For any open ˝ � X , any mapping f 2 C 1.˝; Y /, and any continuous
function " W ˝ ! .0;C1/ there is g 2 C k.˝; Y / such that kf .x/ � g.x/k < ".x/ and kf 0.x/ � g0.x/k < ".x/ for all x 2 ˝.

This theorem immediately follows from the following two results:

Theorem B (Moulis). Let X be a Banach space with a monotone unconditional Schauder basis feig1iD1 that admits a C k-smooth
Lipschitz bump function. Denote Xn D spanfeigniD1. There is a constant C > 0 such that if Y is a Banach space, M � X such
that PnM � M for all n 2 N, ˝ a uniform open neighbourhood of M , f W ˝ ! Y an L-Lipschitz Gâteaux differentiable
mapping such that the mappings x 7! f 0.x/ei are uniformly continuous on ˝ \Xn for each i; n 2 N, and " > 0, then there is
g 2 C k.X; Y / such that kg0.x/k � C.1C "/L for all x 2M" and kf .x/ � g.x/k < " for all x 2M".

Theorem C (Moulis). Let X , Y be normed linear spaces, X separable, and k 2 N [ f1g. Suppose there is C 2 R such
that for any L-Lipschitz mapping f 2 C 1.2UX ; Y / and any " > 0 there is a CL-Lipschitz mapping g 2 C k.UX ; Y / such
that supx2UX kf .x/ � g.x/k � ". Then for any open ˝ � X , any mapping f 2 C 1.˝; Y /, and any continuous function
" W ˝ ! .0;C1/ there is g 2 C k.˝; Y / such that kf .x/ � g.x/k < ".x/ and kf 0.x/ � g0.x/k < ".x/ for all x 2 ˝.

We note, that Theorem B is actually formulated as [M, Lemme fondamental 1] under much stronger assumptions, namely for
p̀ spaces and mappings C 1-smooth on some ball. However, the proof in [M] works also for spaces with unconditional basis with

only formal modifications. Denote fn D f �Xn . Then the assumptions of Theorem B imply that f 0n are uniformly continuous on
˝ \Xn. Noticing this, the proof in [M] works also almost verbatim under the relaxed differentiability assumptions.

The following two theorems use the infimal convolution techniques, hence they provide only C 1-smooth approximation of
functions. Nevertheless, they are the first non-separable results.

Theorem D (Lasry-Lions, [LL]). Let X be a Hilbert space, f W X ! R an L-Lipschitz function, and " > 0. Then there is an
L-Lipschitz function g 2 C 1;1.X/ such that supx2X jf .x/ � g.x/j � ".

Theorem E (Cepedello, [C, Corollary 3]). Let X be a super-reflexive Banach space, f W X ! R a Lipschitz function, and " > 0.
Then there is a function g 2 C 1.X/ which is Lipschitz on bounded sets and such that supx2X jf .x/ � g.x/j � ".

We note that the original formulation in [LL] is for bounded functions, however in the Lipschitz case the boundedness is not
needed.

If we put no assumptions on the smoothness of the source space, we obtain only a uniformly Gâteaux differentiable approxima-
tion.

Theorem F (Johanis, [J]). Let X be a separable Banach space, Y be a Banach space, f W X ! Y be an L-Lipschitz mapping,
and let " > 0. Then there is a mapping g W X ! Y which is L-Lipschitz, uniformly Gâteaux differentiable, and satisfies
supx2X kf .x/ � g.x/k � ".

The following theorem gives smooth approximations of bounded Lipschitz functions.

Theorem G (Fry). Let X be a separable normed linear space that admits a C k-smooth Lipschitz bump function, k 2 N [ f1g.
For each " > 0 there is a constant K 2 R such that if f W X ! Œ0; 1� is 1-Lipschitz, then there is a K-Lipschitz function
g 2 C k.X/ such that supx2X jf .x/ � g.x/j � ".

By obvious adjustments of the proof of [F1, Theorem 1] we obtain this more general Theorem G, see also the proof of
Theorem 3, (i))(ii). We note that the subsequent attempt to generalise Theorem G for WCG spaces in [F3] appears to be seriously
flawed and it is unknown at present if the result holds.

Finally, there is a recent result on approximation of Lipschitz (or more generally uniformly continuous) mappings on c0.� /.

Theorem H (Hájek-Johanis). Let � be an arbitrary set, Y be a Banach space, M � c0.� /, U � c0.� / be a uniform
neighbourhood of M , f W U ! Y be a uniformly continuous mapping with modulus of continuity ! and let " > 0. Then there is a
mapping g 2 C1.c0.� /; Y / which locally depends on finitely many coordinates, such that supM kf .x/ � g.x/k � ", and g is
uniformly continuous on M with modulus of continuity dominated by !. In particular, if f is L-Lipschitz, then g is L-Lipschitz
on M .

This stronger version of [HJ, Theorem 1] follows by not very difficult modification of the proof.
If a uniformly continuous mapping f W X ! Y is uniformly Gâteaux differentiable, then the mappings x 7! f 0.x/h are

uniformly continuous on X (see e.g. [HJ, Lemma 4]). Thus combining Theorem F and Theorem B we immediately obtain the
following corollary:

Theorem I. Let X be a Banach space with an unconditional Schauder basis that admits a C k-smooth Lipschitz bump function,
k 2 N [ f1g. There is a constant C > 0 such that if Y is a Banach space, f W X ! Y an L-Lipschitz mapping, and " > 0, then
there is a C.1C "/L-Lipschitz mapping g 2 C k.X; Y / such that kf .x/ � g.x/k < " for all x 2 X .

This result was first stated by R. Fry in [F2] but with an incorrect proof.



SMOOTH APPROXIMATIONS 3

2. APPROXIMATION OF FUNCTIONS AND EMBEDDINGS INTO c0.� /

First, although not directly related to our results, we show the following observation, which basically says that to approximate
Lipschitz functions it only suffices to consider approximation of bounded functions, and moreover we gain control over the
Lipschitz constant of the approximation.

Proposition 1. Let k 2 N [ f1g and X be a normed linear space with the following property: There is a C 2 R such that for
each A � X there is a C -Lipschitz function hA 2 C k.X; Œ0; 1�/ satisfying hA.x/ D 0 for all x 2 A and hA.x/ D 1 for all x 2 X
such that dist.x; A/ � 1.

Then for each " > 0 and an arbitrary L-Lipschitz function f W X ! R there is a CL-Lipschitz function g 2 C k.X/ such that
jg.x/ � f .x/j � " for each x 2 X .

Proof. Let us define a function Qf W X ! R by Qf .x/ D 1
"
f . "

L
x/. This function is obviously 1-Lipschitz. Next, let us define sets

An D fx 2 X I Qf .x/ � ng for n 2 Z. Clearly, AnC1 � An for all n 2 Z, and using the 1-Lipschitz property of Qf it is easy to
check that

dist.X n An; AnC1/ � 1 for all n 2 Z. (1)
Further, denote hn.x/ D 1 � hAnC1.x/ for n 2 Z. For each n 2 Z, hn 2 C k.X; Œ0; 1�/, hn is C -Lipschitz, hn.x/ D 1 for all
x 2 AnC1, and by (1), hn.x/ D 0 for all x 2 X n An.

Now, put

h.x/ D

1X
nD0

hn.x/ �

�1X
nD�1

�
1 � hn.x/

�
: (2)

Fix an arbitrary x 2 X . Then there is m 2 Z such that x 2 Am n AmC1. It follows, that hn.x/ D 0 for all n > m and hn.x/ D 1
for all n < m. Hence (2) defines a function h W X ! R. Moreover, by (1), the sums in (2) are even locally finite, therefore
h 2 C k.X/. Further, it is easy to check that h.x/ D mC hm.x/. This implies that h.x/ 2 Œm;mC 1�, while Qf .x/ 2 Œm;mC 1/
and hence

ˇ̌
h.x/ � Qf .x/

ˇ̌
� 1.

It remains to show that h is C -Lipschitz. To this end, choose x; y 2 X and find n; l 2 Z such that x 2 An n AnC1
and y 2 AnCl n AnClC1. Without loss of generality we may assume that l � 0. If l D 0, then clearly jh.x/ � h.y/j D
jnC hn.x/ � n � hn.y/j � C kx � yk.

We prove the case l > 0 by induction on l . As the first step of the induction assume that l D 1. Denote by Œx; y� the line
segment between the points x and y. Since Œx; y� is connected, there is a point ´ 2 Œx; y� \ AnC1 \ .X n AnC1/. From the
properties of hn and hnC1, and from the continuity of hnC1 it follows that hn.´/ D 1 and hnC1.´/ D 0. Thus
jh.y/ � h.x/j D jnC 1C hnC1.y/ � n � hn.x/j D jhnC1.y/C 1 � hn.x/j D jhnC1.y/ � hnC1.´/C hn.´/ � hn.x/j

� jhnC1.y/ � hnC1.´/j C jhn.´/ � hn.x/j � C ky � ´k C C k´ � xk D C ky � xk :

To prove the general induction step let us assume that l > 1. By the continuity of Qf there is a point ´ 2 Œx; y� such that
´ 2 AnC1 n AnC2. Using the induction hypothesis on the pair x; ´ and again on the pair ´; y we obtain jh.x/ � h.y/j �
jh.x/ � h.´/j C jh.´/ � h.y/j � C kx � ´k C C k´ � yk D C kx � yk.

Finally, let g.x/ D "h.L
"
x/. It is straightforward to check that g satisfies the conclusion of our theorem.

�

Combining Proposition 1 and Theorem G we would obtain a smooth approximation of Lipschitz functions on smooth separable
normed linear spaces. However, we skip the details, since we will show much more, see Corollary 16.

In the sequel we will be using smooth bi-Lipschitz homeomorphisms into c0.� /. The following two results show how they can
be constructed and how they are related to smooth approximation of Lipschitz functions. First we define some notions useful in
this context.

For a metric space P , we denote U.r/ D fU.x; r/I x 2 P g.
Let X be a set. A collection f ˛g˛2� of functions on X is called a sup-partition of unity if
�  ˛ W X ! Œ0; 1� for all ˛ 2 �,
� for each x 2 X the set f˛ 2 �I  ˛.x/ > 0g is finite,
� for each x 2 X there is ˛ 2 � such that  ˛.x/ D 1.

Let U be a covering of X . We say that the sup-partition of unity f ˛g˛2� is subordinated to U if fsupp ˛g˛2� refines U.

Fact 2. Let � be an infinite set, r > 0, and 0 < ı < r
2

. There is an open point-finite uniform refinement V D fV
g
2� of the
uniform covering U.r/ of c0.� / such that U. r

2
�ı/ refines V . Moreover, V is formed by the translates of the open ball U.0; r�ı/.

Further, there is a C1-smooth, locally dependent on finitely many coordinate functionals, and .2
r
C ı/-Lipschitz sup-partition of

unity f 
g
2� on c0.� / subordinated to U.r/.

The first part of this fact was already shown in [P, Proposition 2.3], but with more complicated proof.

Proof. Notice that, by homogeneity, it suffices to prove all the statements only for r D 1.
Let fa
g
2� be the set of all vectors in c0.� / with coordinates in Z. (Notice that the cardinality of such set is j� j and so we

may index its points by � .) We claim that V D fU.a
 ; 1 � ı/g
2� is the desired refinement.
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Clearly, V is an open refinement of U.1/. To see that it is point-finite, pick any x 2 c0.� / and find a finite F � �

such that jx.
/j < ı whenever 
 2 � n F . Suppose that ˛ 2 � is such that x 2 U.a˛; 1 � ı/. Then for 
 … F we have
ja˛.
/j � ja˛.
/ � x.
/j C jx.
/j < 1 and so a˛.
/ D 0. From jx.
/ � a˛.
/j < 1� ı and a˛.
/ 2 Z it follows that there are
at most two possibilities for a˛.
/ for each 
 2 F . From this we can conclude that

ˇ̌
f˛I x 2 U.a˛; 1 � ı/g

ˇ̌
� 2jF j.

Finally, we show that U
�
1
2
� ı

�
refines V . Choose any x 2 c0.� / and find ˇ 2 � such that kx � aˇk � 1

2
. This is

always possible, since there is a finite F � � such that jx.
/j < 1
2

whenever 
 … F , and so aˇ .
/ D 0 for such 
 . Suppose
´ 2 U.x; 1

2
� ı/. Then kaˇ � ´k � kaˇ � xk C kx � ´k < 1

2
C

1
2
� ı D 1 � ı, which implies U.x; 1

2
� ı/ � U.aˇ ; 1 � ı/.

To construct the sup-partition of unity subordinated to the uniform covering U.1/, find " > 0 and 0 < � < 1
2

such that
0 < 1=

�
1 � � � 1C"

2

�
< 2 C ı

4
and .1 C "/

�
2 C ı

2

�
� 2 C ı. Let W D fU.a
 ; 1 � �/g
2� be the point-finite refinement

of U.1/ from the first part of the proof such that U
�
1
2
� �

�
refines W . Further, let k�k be an equivalent C1-smooth norm on

c0.� / which locally depends on finitely many of the coordinate functionals fe�
 g
2� (away from the origin) and such that
kxk1 � kxk � .1C "/ kxk1 for all x 2 c0.� /. (To construct such a norm, take for example the Minkowski functional of the set˚
x 2 c0.� /I

P

2� '.x
 / � 1

	
, where ' 2 C1.R/, ' is convex and even, '.1/ D 1, and '.t/ D 0 for t 2 Œ� 1

1C"
; 1
1C"

�.)
For each 
 2 � we put  
 .x/ D q.kx � a
k/, where q 2 C1.R; Œ0; 1�/, q is

�
2C ı

2

�
-Lipschitz, q.t/ D 0 for t � 1 � �, and

q.t/ D 1 for t � 1C"
2

. The collection f 
g
2� is a sup-partition of unity. Indeed, it is easy to see, that supp 
 � U.a
 ; 1 � �/
for each 
 2 � , and consequently the set f
 2 � I  
 .x/ > 0g is finite for each x 2 X . Further, fix any x 2 X . There is an ˛ 2 �
such that U.x; 1

2
� �/ � U.a˛; 1 � �/, which gives kx � a˛k1 �

1
2

. Hence kx � a˛k � .1C "/ kx � a˛k1 �
1C"
2

, which in
turn implies  ˛.x/ D 1.

As the function q is
�
2C ı

2

�
-Lipschitz and the function k�k is .1C "/-Lipschitz (with respect to the norm k�k1), the functions

 
 are .2C ı/-Lipschitz according to the choice of ". The rest of the properties of the functions  
 is obvious.
�

Theorem 3. Let X be a normed linear space, � an infinite set, and k 2 N [ f0;1g. Then the following are equivalent:
(i) There isM 2 R such that there is a C k-smooth andM -Lipschitz sup-partition of unity f�
g
2� on X subordinated to U.1/.

(ii) X is uniformly homeomorphic to a subset of c0.� / and for each " > 0 there is K > 0 such that for each 1-Lipschitz function
f W X ! Œ0; 1� there is a K-Lipschitz function g 2 C k.X/ such that supx2X jg.x/ � f .x/j � ".

(iii) There is a bi-Lipschitz homeomorphism ' W X ! c0.� / such that the coordinate functions e�
 B ' 2 C
k.X/ for every 
 2 � .

Proof. First we show that (i) implies (iii). From the properties of the sup-partition of unity there is ˇ 2 � such that �ˇ .0/ D 1.
By scaling and composing �ˇ with a suitable function we construct a C -Lipschitz function h 2 C k.X; Œ0; 1�/ such that h D 0 on
B.0; r/ and h D 1 outside U.0; 1/ for some constants C; r 2 R, r > 0. (We may for example choose r such that 1 � 2Mr > 0

and take h.x/ D q.�ˇ .2x//, where q 2 C k.R/, q is Lipschitz, q.Œ0; 1�/ D Œ0; 1�, q.0/ D 1, and q.s/ D 0 for s � 1 � 2Mr .)
Choose t > 1 and for each n 2 Z and 
 2 � define functions �n
 2 C

k.X/ by

�n
 .x/ D t
n�


� x
tn

�
h
� x
tn

�
:

The properties of the functions �
 and h guarantee that each �n
 is .M C C/-Lipschitz. Let d W Z � � ! � be some one-to-one
mapping and define ' W X ! R� by '.x/˛ D �n
 .x/ if ˛ D d.n; 
/ for some n 2 Z, 
 2 � ; '.x/˛ D 0 otherwise.

We show that ' actually maps into c0.� /. Choose an arbitrary x 2 X and " > 0. There is n0 2 Z such that tn < " for all
n < n0 and n1 2 Z such that kxk � rtn for all n > n1. It follows that

ˇ̌
�n
 .x/

ˇ̌
< " for all n < n0 and 
 2 � , and, by the

properties of h, �n
 .x/ D 0 for all n > n1 and 
 2 � . As for each n0 � n � n1, �
 .x=tn/ ¤ 0 only for finitely many 
 2 � , we
can conclude that ' W X ! c0.� /.

Since each �n
 is .M C C/-Lipschitz, the mapping ' is .M C C/-Lipschitz as well.
To prove that ' is one-to-one and '�1 is Lipschitz too, choose any two points x; y 2 X , x ¤ y, and find m 2 Z such

that 2tm � kx � yk < 2tmC1. Without loss of generality we may assume that kxk � tm. Then h.x=tm/ D 1 and so there is

 2 � such that �m
 .x/ D tm. Now suppose there is ´ 2 X such that �m
 .´/ > 0. As supp�
 � U.w; 1/ for some w 2 X ,

 x
tm
�

´
tm



 < 2 and consequently kx � ´k < 2tm. But this means that �m
 .y/ D 0 and therefore

k'.x/ � '.y/k1 �
ˇ̌
�m
 .x/ � �

m

 .y/

ˇ̌
D �m
 .x/ D t

m >
1

2t
kx � yk :

(iii))(i): Let A;B 2 R are such that A kx � yk � k'.x/ � '.y/k1 � B kx � yk. By Fact 2, there is a C > 0 and a
C1-smooth, locally dependent on finitely many coordinate functionals, and C -Lipschitz sup-partition of unity f 
g
2� on c0.� /
subordinated to U.A/. Putting �
 D  
 B ', f�
g
2� is a BC -Lipschitz sup-partition of unity subordinated to U.1/. Fix 
 2 � .
To see that �
 2 C k.X/, pick any x 2 X . There is a neighbourhood V of '.x/ such that  
 .w/ D G.f1.w/; : : : ; fn.w// for each
w 2 V , where f1; : : : ; fn 2 fe�
 g
2� and G 2 C1.˝/ for some ˝ � Rn open. Let U be an open neighbourhood of x such that
'.U / � V . Then �
 .y/ D  
 .'.y// D G.f1.'.y//; : : : ; fn.'.y/// for each y 2 U . Since, by the assumption, fi B ' 2 C k.X/
for each i D 1; : : : ; n, and G 2 C1.˝/, �
 is C k-smooth on U .

(i))(ii): We already know that (iii) holds and from this the first part of (ii) follows immediately. To prove the second part
of (ii), let " > 0. The basic idea of the proof is that Lipschitz functions are stable under the operation of pointwise supremum.
To preserve the smoothness, we will use a “smoothened supremum”, or an equivalent smooth norm on c0.� /. Let k�k be an
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equivalent C1-smooth norm on c0.� / which locally depends on finitely many of the coordinate functionals fe�
 g
2� (away from
the origin), and let C > 0 be such that kxk1 � kxk � C kxk1 for all x 2 c0.� / (see the proof of Fact 2). We will show that
K D 2C 2.C C 1/M=" satisfies our claim.

By adding the constant 1 we may and do assume that f maps into Œ1; 2�. Put ı D "
C

and  
 .x/ D �
 .
x
ı
/ for all x 2 X ,


 2 � . It follows, that f 
g
2� is a C k-smooth and M=ı-Lipschitz sup-partition of unity subordinated to U.ı/. Since the
sets f
 2 � I  
 .x/ > 0g are finite, . 
 .x//
2� 2 c0.� / for each x 2 X . For each 
 2 � there is a point x
 2 X such
that supp 
 � U.x
 ; ı/. The boundedness of the function f guarantees that also

�
f .x
 / 
 .x/

�

2�
2 c0.� / for each x 2 X .

Therefore we can define the function g W X ! R by

g.x/ D



�f .x
 / 
 .x/�
2� 



� 
 .x/�
2� 

 :

As 

. 
 .x//

 � 

. 
 .x//

1 D sup

2�

 
 .x/ D 1 for each x 2 X , (3)

the function g is well defined on all of X .
The mapping x 7!

�
 
 .x/

�
and, by the boundedness of f , also the mapping x 7!

�
f .x
 / 
 .x/

�
are Lipschitz mappings

from X into c0.� / n U.0; 1/. (Notice that for each x 2 X there is 
 2 � such that  
 .x/ D 1 and f .x
 / 
 .x/ � 1.)
Since k�k is C1-smooth and depends locally on finitely many coordinates away from the origin, and since  
 2 C k.X/ and
f .x
 / 
 2 C

k.X/ for each 
 2 � , similarly as in the proof of (iii))(i) we infer that g 2 C k.X/.
Using the facts that f maps into Œ1; 2�, the functions  
 are M=ı-Lipschitz and map into Œ0; 1�, and k�k is C -Lipschitz as a

function on .c0; k�k1/, we obtain that the function x 7!


�f .x
 / 
 .x/�

 is 2CM=ı-Lipschitz and bounded by 2C . Similarly,

the function x 7!


� 
 .x/�

 is CM=ı-Lipschitz and bounded below by 1. It follows that the function g is K-Lipschitz.

Finally, to show that g approximates f , choose an arbitrary x 2 X . Applying successively the inequality (3) and the facts that
supp 
 � U.x
 ; ı/ and f is 1-Lipschitz, we obtain

jg.x/ � f .x/j D

ˇ̌̌̌
ˇ


�f .x
 / 
 .x/�



� 
 .x/�

 � f .x/



� 
 .x/�



� 
 .x/�


ˇ̌̌̌
ˇ �



�.f .x
 / � f .x// 
 .x/�



� 
 .x/�

 � C


�.f .x
 / � f .x// 
 .x/�

1

D C sup

2�

˚ˇ̌
f .x
 / � f .x/

ˇ̌
 
 .x/

	
D C sup


2�
x2U.x
 ;ı/

˚ˇ̌
f .x
 / � f .x/

ˇ̌
 
 .x/

	
� C sup


2�
x2U.x
 ;ı/

˚
kx
 � xk

	
� Cı D ":

(ii))(i): It is not difficult to construct a point-finite base of the uniform coverings of c0.� / and pull it back onto X via
the uniform homeomorphism (see e.g. [P, Proposition 2.3]). So let V D fV
g
2� be an open point-finite uniform refinement
of the covering U.1/ of X . (We note that such refinement can be chosen so that jV j D j� j and so we can indeed index it
by the set � .) Let 0 < ı � 1 be such that U.ı/ refines V . For each 
 2 � we define the function f
 W X ! Œ0; 1� by
f
 .x/ D minfdist.x;X n V
 /; ıg.

Choose some 0 < � < ı
2

. For each 
 2 � , the function f
 is 1-Lipschitz and so, by (ii), there is a K-Lipschitz function
g
 2 C

k.X/ such that supx2X
ˇ̌
g
 .x/ � f
 .x/

ˇ̌
� � . Let q 2 C k.R; Œ0; 1�/ be a C -Lipschitz function for some C 2 R, such that

q.t/ D 0 for t � � and q.t/ D 1 for t � ı � � . Finally, we let �
 .x/ D q.g
 .x// for each 
 2 � . Clearly, each function �

belongs to C k.X; Œ0; 1�/ and is M -Lipschitz, where M D CK. Further, for any x 2 X there is ˛ 2 � such that U.x; ı/ � V˛ ,
hence f˛.x/ D ı and consequently �˛.x/ D 1. As supp�
 � V
 for all 
 2 � and V is point-finite, f�
g
2� is a sup-partition
of unity subordinated to U.1/.

�

We note, that the proof could be made considerably shorter by proving (iii))(ii) directly using Theorem H (see the proof of
Theorem 8) instead of (i))(ii) and (iii))(i). However, the reasons for our strategy of the proof were two: First, we do not need
the full generality (and associated machinery) of Theorem H and second, the proof of (i))(ii) shows an interesting technique for
constructing smooth Lipschitz approximations (due to Fry, [F1]), and in fact shows the reason for the definition of the notion of
sup-partition of unity.

Corollary 4. Let X be a separable normed linear space that admits a C k-smooth Lipschitz bump function, k 2 N [ f1g. Then
there is a bi-Lipschitz homeomorphism ' W X ! c0 such that the coordinate functions e�j B ' 2 C

k.X/ for every j 2 N.

Proof. Fry in [F1] has constructed a C k-smooth M -Lipschitz sup-partition of unity f j g1jD1 on X that is subordinated to U.1/,
so Theorem 3 applies.

�

We note that this corollary is a Lipschitz counterpart to the separable case of [DGZ, Theorem VIII.3.2(vi))(v)], see also [DGZ,
p. 360].
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3. APPROXIMATION OF MAPPINGS

To be able to use Theorem H, we need to “extend” Lipschitz mappings from subsets of c0.� /. To this end we introduce some
additional notions.

Let .X; �/ be a metric space, A � X . For " > 0, a mapping r" W X ! A such that �.r".x/; x/ < " for each x 2 A is called an
"-retraction.
A is called a Lipschitz approximate retract (LAR), if there is K > 0 such that for any " > 0 there is a K-Lipschitz "-retraction

of X into A. A is called a Lipschitz approximate uniform neighbourhood retract (LAUNR), if there is K > 0 such that for any
" > 0 there is a uniform open neighbourhood U � X of A and a K-Lipschitz "-retraction of U into A.

A metric space is called an absolute Lipschitz approximate uniform neighbourhood retract (ALAUNR) if it is a LAUNR of
every metric space containing it as a subspace.

Example. Let X be a Banach space with an unconditional basis feng1nD1 and let X1 D spanfeng1nD1 be its linear subspace
consisting of finitely supported vectors. Then X1 is a Lipschitz approximate retract of X .

Indeed, let C D 2 ubcfeng andD D bcfeng, putK D C.5C 4D/ and choose an arbitrary " > 0. Let ' W R! Œ0; 1� be defined
as '.t/ D 0 for t � "=.2C /, '.t/ D 1 for t � "=C , and ' is affine on Œ"=.2C /; "=C �. Notice that ' is 2C="-Lipschitz. Denote
Rn D I � Pn. Define the "-retraction r W X ! X1 by r.x/ D

P1
nD1 '.kRn�1xk/xnen. We claim that kx � r.x/k < " for all

x 2 X . To see this, fix x 2 X and find n0 2 N [ f0g such that


Rn0x

 < "=C and kRnxk � "=C for all 0 � n < n0. Then

kx � r.x/k D







1X
nD1

�
1 � '.kRn�1xk/

�
xnen






 D





X
n>n0

�
1 � '.kRn�1xk/

�
xnen







� C






X
n>n0

xnen






 D C 

Rn0x

 < C "

C
D ":

To show that r is K-Lipschitz, choose any x; y 2 X . We may without loss of generality assume that kx � yk � "=.C.1CD//.
(It is an easy fact, that mappings on normed linear spaces that are Lipschitz on short distances are Lipschitz globally with
the same Lipschitz constant.) Find n0 2 N [ f0g such that



Rn0y

 < 2"=C and kRnyk � 2"=C for all 0 � n < n0.
Then kRnxk � kRnyk � kRn.x � y/k � 2"=C � .1 C D/"=.C.1 C D// D "=C for all 0 � n < n0. It follows that
'.kRnxk/ D '.kRnyk/ D 1 for all 0 � n < n0. Using this fact, we can estimate

kr.x/ � r.y/k D







1X
nD1

�
'.kRn�1xk/xn � '.kRn�1yk/yn

�
en







�







1X
nD1

'.kRn�1xk/.xn � yn/en






C






1X
nD1

�
'.kRn�1xk/ � '.kRn�1yk/

�
ynen







� C kx � yk C






X
n>n0

�
'.kRn�1xk/ � '.kRn�1yk/

�
ynen







� C kx � yk C C sup

n>n0

ˇ̌
'.kRn�1xk/ � '.kRn�1yk/

ˇ̌ 




X
n>n0

ynen







� C kx � yk C C

2C

"
sup
n>n0

ˇ̌
kRn�1xk � kRn�1yk

ˇ̌ 

Rn0y


< C kx � yk C C

2C

"
.1CD/ kx � yk

2"

C
D K kx � yk :

We note that in fact the mapping r locally maps into finite-dimensional subspaces of X . Similarly (replacing '.kRnxk/ by
�.Rnx/, where � is a suitable smooth function) we can prove the following lemma (cf. [M, pp. 297–300]), which will be useful
later.

Lemma 5 (Moulis). Let X be a Banach space with an unconditional Schauder basis feig1iD1 that admits a C k-smooth Lipschitz
bump function. Denote Xn D spanfeigniD1. Then there is a constant K > 0 such that for any " > 0 there is a K-Lipschitz mapping
 2 C k.X;X/ such that for each x 2 X there is a neighbourhood U of x and n 2 N such that  .U / � Xn and kx �  .x/k < ".

The following proposition shows how the notion of ALAUNR relates to “approximate extensions” of Lipschitz mappings.

Proposition 6. Let .X; �/ be a metric space. The following are equivalent:

(i) X is an ALAUNR.
(ii) There is K > 0 such that for each " > 0 there is ı > 0 such that for any metric space P , X � P , there is U � P a

ı-uniform open neighbourhood of X such that X is a K-Lipschitz "-retraction of U (i.e. the Lipschitz constant K and the
“sizes” of the uniform neighbourhoods do not depend on the metric space which X is a subspace of).
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(iii) There is K > 0 such that for each " > 0 there is ı > 0 such that for any metric spaces Q � P and every L-Lipschitz
mapping f W Q! X there is U � P a ı=L-uniform open neighbourhood of Q and a KL-Lipschitz mapping g W U ! X

such that �.f .x/; g.x// < " for all x 2 Q.
(iv) For any metric spaces Q � P and every L-Lipschitz mapping f W Q! X there is K > 0 such that for any " > 0 there is

U � P a uniform open neighbourhood of Q and a KL-Lipschitz mapping g W U ! X such that �.f .x/; g.x// < " for all
x 2 Q.

(v) There is K > 0 such that for each " > 0 there is ı > 0 such that for any metric space P , X � P , there is U � P a
ı-uniform open neighbourhood of X such that for any metric space .Q; �/ and every L-Lipschitz mapping f W X ! Q

there is a KL-Lipschitz mapping g W U ! Q such that �.f .x/; g.x// < L" for all x 2 X .
(vi) For any metric spaces P and .Q; �/, X � P , and every L-Lipschitz mapping f W X ! Q there is K > 0 such that

for any " > 0 there is U � P a uniform open neighbourhood of X and a KL-Lipschitz mapping g W U ! Q such that
�.f .x/; g.x// < " for all x 2 X .

Proof. (ii))(i), (iii))(iv), and (v))(vi) are trivial.
(i))(iii): Embed X isometrically into `1.� /. There is K > 0 such that X is a K-Lipschitz approximate neighbourhood

retract of `1.� /. Choose " > 0 and let ı > 0 be such that there is a K-Lipschitz "-retraction r W V ! X for some ı-uniform open
neighbourhood V of X in `1.� /. Let Q � P be metric spaces and f W Q! X be an L-Lipschitz mapping. Since `1.� / is an
absolute Lipschitz retract, there is an L-Lipschitz extension h W P ! `1.� / of f W Q! X � `1.� /. Put U D h�1.V /. Then
U is open in P , and it is a ı=L-uniform neighbourhood of Q. Indeed, if y 2 U.´; ı=L/ for some ´ 2 Q, then h.y/ 2 U.h.´/; ı/,
where h.´/ 2 X ; hence h.y/ 2 V . Finally, put g.x/ D r.h.x// for any x 2 U . Then �.f .x/; g.x// D �

�
f .x/; r.h.x//

�
D

�
�
f .x/; r.f .x//

�
< " whenever x 2 Q.

(iii))(ii), (v))(ii) (and (iv))(i), (vi))(i) similarly): Let X be a subspace of a metric space P , we put Q D X and f D id.
For any " > 0, the K-Lipschitz mapping g is the desired retraction r".

(ii))(v): Let " > 0. Find ı > 0 from (ii). Let X � P and r W U ! X be the K-Lipschitz "-retraction from some ı-uniform
neighbourhood U � P of X . Put g D f B r . Then �.f .x/; g.x// D �

�
f .x/; f .r.x//

�
� L�.x; r.x// < L" for any x 2 X .

�

Corollary 7. Let .X; �/ be an ALAUNR.
(a) If .Z; �/ is bi-Lipschitz homeomorphic to X , then Z is an ALAUNR.
(b) If Z is a LAUNR of X , then Z is an ALAUNR.

Proof. (a): Let ' W Z ! X be a bi-Lipschitz homeomorphism such that A�.x; y/ � �.'.x/; '.y// � B�.x; y/. We show
that (iv) of Proposition 6 holds. Let Q � P be metric spaces and f W Q ! Z an L-Lipschitz mapping. Let Qf W Q ! X be
defined as Qf D ' B f and let K0 be the constant in Proposition 6(iv) for Qf . Put K D K0B=A. Choose any " > 0. There is a
uniform open neighbourhood U � P of Q and a K0BL-Lipschitz mapping Qg W U ! X such that �. Qf .x/; Qg.x// < A" for all
x 2 Q. Then g W U ! Z, g D '�1 B Qg is a K0BL=A-Lipschitz mapping such that �.f .x/; g.x// D �

�
f .x/; '�1. Qg.x//

�
D

�
�
'�1. Qf .x//; '�1. Qg.x//

�
� .1=A/�. Qf .x/; Qg.x// < A"=A D " whenever x 2 Q.

(b): Let K0 be the Lipschitz constant of the "-retractions into X (as X is ALAUNR) and K1 be the Lipschitz constant of the
"-retractions from U � X into Z. We show that (iv) of Proposition 6 holds. Let Q � P be metric spaces and f W Q! Z � X

an L-Lipschitz mapping. Put K D K1K0. Choose any " > 0. There is a ı-uniform open neighbourhood V � X of Z and a
K1-Lipschitz ."=2/-retraction r W V ! Z. Further, there is an �-uniform open neighbourhood W � P of Q and a K0L-Lipschitz
mapping h W W ! X such that �.f .x/; h.x// < minf"=.2K1/; ı=2g for all x 2 Q.

Let U D h�1.V /. Then U � W is open in W and hence in P , and it is a uniform neighbourhood of Q. Indeed, let
� D minfı=.2K0L/; �g. If y 2 U.´; �/ for some ´ 2 Q, then y 2 W and so h.y/ 2 U.h.´/; ı=2/. From this we obtain
h.y/ 2 U.f .´/; ı/, and since f .´/ 2 Z, it follows that h.y/ 2 V .

Finally, put g.x/ D r.h.x// for any x 2 U . Then g W U ! Z is a K1K0L-Lipschitz mapping such that �.f .x/; g.x// D
�
�
f .x/; r.h.x//

�
� �

�
f .x/; r.f .x//

�
C �

�
r.f .x/; r.h.x//

�
< "=2CK1�.f .x/; h.x// < " whenever x 2 Q.

�

Finally we can prove one of our main approximation theorems.

Theorem 8. Let Y be a Banach space, k 2 N[f1g, andX be a normed linear space such that there is a set � and a bi-Lipschitz
homeomorphism ' W X ! c0.� / such that the coordinate functions e�
 B ' 2 C

k.X/ for every 
 2 � . Assume further that X
or Y is an ALAUNR. There is a constant C 2 R such that if f W X ! Y is L-Lipschitz and " > 0, then there is a CL-Lipschitz
mapping g 2 C k.X; Y / such that supx2X kf .x/ � g.x/k � ".

Moreover, if C1; C2 2 R are such that ' is C1-Lipschitz and '�1 is C2-Lipschitz, and if K is the Lipschitz constant of the
ALAUNR, then C D C1C2K.

Proof. We define Qf W '.X/ ! Y by Qf .´/ D f .'�1.´// for any ´ 2 '.X/. The mapping Qf is C2L-Lipschitz. If Y is a
K-Lipschitz ALAUNR, then by Proposition 6(iii) there is a uniform open neighbourhood U of '.X/ in c0.� / and a mapping
Of W U ! Y such that Of is KC2L-Lipschitz and



 Of .´/ � Qf .´/

 < "
2

for each ´ 2 '.X/. In case that X is a K-Lipschitz
ALAUNR, we come to the same conclusion by using Proposition 6(iii) to a mapping '�1 to obtain a uniform open neighbourhood
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U of '.X/ in c0.� / and a KC2 Lipschitz mapping q W U ! X such that


q.´/ � '�1.´/

 < "

2L
for all ´ 2 '.X/, and then

putting Of D f Bq. (Using Corollary 7 and Proposition 6(v) to Qf instead, we would arrive to a worse Lipschitz constantKC1C 22L.)
By Theorem H there is a mapping Og 2 C1.c0.� /; Y / locally dependent on finitely many coordinates and such that it is

C2KL-Lipschitz on '.X/ and


 Og.´/ � Of .´/

 � "

2
for all ´ 2 '.X/. We define the mapping g W X ! Y by g D Og B '.

Similarly as in the proof of Theorem 3, (iii))(i), we obtain that g 2 C k.X; Y /. Clearly, g is C1C2KL-Lipschitz. To see that g
approximates f , choose any x 2 X . Then

kg.x/ � f .x/k D


 Og.'.x// � f �'�1.'.x//�

 D 

 Og.'.x// � Qf .'.x//



�


 Og.'.x// � Of .'.x//

C 

 Of .'.x// � Qf .'.x//

 < "

2
C
"

2
D ":

�

We note that the notion of ALAUNR is necessary for our approach to Theorem 8 (at least in the case of the source space X):
For any Banach space Y and any Lipschitz mapping f W '.X/! Y we need to find a Lipschitz “approximate extension” to a
uniform neighbourhood U of '.X/. Now, consider Y D X and a mapping '�1 W '.X/! X , find an “approximate extension”
q W U ! X and put r D ' B q. Then r is a Lipschitz "-retraction of U into '.X/.

Let V be a topological space, let v0 2 V . By B0.V / we denote the space of all bounded real-valued functions f on V for
which f .v/ ! 0 whenever v ! v0, considered with the supremum norm. Let P be a metric space; by Cu.P / we denote the
space of all bounded, uniformly continuous, real-valued functions on P with the supremum norm. By the result of Lindenstrauss,
[L, Theorem 6] (see also [BL]), both B0.V / and Cu.P / are absolute Lipschitz retracts.

Now using Corollary 4 and Theorem 8 we obtain the following:

Corollary 9. Let X be a separable normed linear space that admits a C k-smooth Lipschitz bump function, k 2 N [ f1g. Let Y
be a Banach space. If at least one of the spaces X or Y is equal to either B0.V / for some topological space V , or Cu.P / for
some metric space P , then there is a constant C 2 R such that for any L-Lipschitz mapping f W X ! Y and any " > 0 there is a
CL-Lipschitz mapping g 2 C k.X; Y / for which supx2X kf .x/ � g.x/k � ".

The above approach can be modified to deal with uniformly continuous mappings. However, we must be somewhat careful in
the formulation of the result (notice the necessity of a sub-additive modulus of the embedding in Theorem 10). We skip the details,
as the proofs are almost identical to the ones already given.

A modulus is a non-decreasing function ! W Œ0;C1/! Œ0;C1/ continuous at 0 such that !.0/ D 0. The set of all moduli
will be denoted by M. The subset of M of all moduli that are sub-additive will be denoted by Ms �M. A modulus of continuity
of a mapping f is denoted by !f .

Theorem 10. Let Y be a Banach space, k 2 N [ f1g, and X be a normed linear space such that there is a set � and a
uniform homeomorphism ' W X ! c0.� / such that !'�1 � !1 2 Ms and the coordinate functions e�
 B ' 2 C

k.X/ for
every 
 2 � . Assume further that X or Y is an absolute uniform approximate uniform neighbourhood retract. If f W X ! Y

is uniformly continuous and " > 0, then there is a function ! 2 M and a mapping g 2 C k.X; Y / such that !g � ! and
supx2X kf .x/ � g.x/k � ".

Moreover, if X is AUAUNR with modulus !0, then ! D !f B !0 B !1 B !' . If Y is AUAUNR with modulus !0, then
! D !0 B !f B !1 B !' .

By the result of Lindenstrauss, [L, Theorem 8] (see also [BL]), super-reflexive Banach spaces are absolute uniform uniform
(sic) neighbourhood retracts. Hence, using Corollary 4 and Theorem 10 we obtain the following:

Corollary 11. Let X be a separable normed linear space that admits a C k-smooth Lipschitz bump function, k 2 N [ f1g. Let
Y be a Banach space. If X or Y is a super-reflexive Banach space, then there is a constant C 2 R and a modulus !0 2 M

such that for any uniformly continuous mapping f W X ! Y and any " > 0 there is a mapping g 2 C k.X; Y / for which
supx2X kf .x/ � g.x/k � " and !g.ı/ � !f .!0.Cı// (if X is super-reflexive) or !g.ı/ � !0.!f .Cı// (if Y is super-reflexive)
for ı 2 Œ0;C1/.

4. SMOOTH LIPSCHITZ PARTITIONS OF UNITY

Recall that a (locally finite) partition of unity on a topological space X is a collection f ˛g˛2� of functions on X if

�  ˛ W X ! Œ0; 1� for all ˛ 2 �,
�
P
˛2�  ˛.x/ D 1 for each x 2 X ,

� for each x 2 X there is a neighbourhood U � X of x such that the set f˛ 2 �I supp ˛ \ U ¤ ;g is finite.

Let U be a covering of X . We say that a partition of unity f ˛g˛2� is subordinated to U if fsupp ˛g˛2� refines U.
A family of subsets of a topological space is called discrete if for each point x 2 X there is a neighbourhood of x that meets at

most one member of this family. We say that a partition of unity f ˛g˛2� is � -discrete if the family fsupp ˛g˛2� is � -discrete,
that is it can be decomposed into countably many discrete families.
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First we need some finer information about refinements of open coverings.

Lemma 12 (M.E. Rudin, [R]). Let P be a metric space, U D fU˛g˛2� be an open covering of P . Then there are open refinements
fVn˛gn2N;˛2�, fWn˛gn2N;˛2� of U that satisfy the following:

� Vn˛ � Wn˛ � U˛ for all n 2 N, ˛ 2 �,
� dist.Vn˛; P nWn˛/ � 2�n for all n 2 N, ˛ 2 �,
� dist.Wn˛; Wnˇ / � 2�n for any n 2 N and ˛; ˇ 2 �, ˛ ¤ ˇ,
� for each x 2 P there is an open ball Ux 2 P with centre x and a number nx 2 N such that

(i) if i > nx , then Ux \Wi˛ D ; for any ˛ 2 �,
(ii) if i � nx , then Ux \Wi˛ ¤ ; for at most one ˛ 2 �.

Using some refinement of the ideas in [JTZ] we can prove the following key lemma:

Lemma 13. Let X be a normed linear space and k 2 N [ f1g. Suppose that there is an L 2 R such that for any V � X

bounded there is an L-Lipschitz function ' 2 C k.X; Œ0; 1�/ satisfying V � '�1.f1g/ and '.x/ D 0 whenever dist.x; V / � 1.
Let ˝ � X be open. Then for any open covering U of ˝ there is a Lipschitz and C k-smooth �-discrete partition of unity on ˝
subordinated to U.

Proof. Without loss of generality we may assume that all the sets in U D fU˛g˛2� are bounded, U˛ � ˝ for each ˛ 2 �,
and L � 1. By Lemma 12 there are open refinements fVn˛gn2N;˛2�, fWn˛gn2N;˛2� of U such that Vn˛ � Wn˛ � U˛ ,
dist.Vn˛; ˝ nWn˛/ � 2�n, dist.Wn˛; Wnˇ / � 2�n for ˛ ¤ ˇ, the family fWn˛g˛2� is discrete in ˝ for all n 2 N, and the family
fWn˛gn2N;˛2� is locally finite in˝. By the assumption (using a scaling argument) for each n 2 N, ˛ 2 � there is an Ln-Lipschitz
function Q'n˛ 2 C k.X; Œ0; 1�/ satisfying Vn˛ � Q'�1n˛ .f1g/ and Q'n˛.x/ D 0 whenever dist.x; Vn˛/ � 2�n, where Ln D 2nL. Put
'n˛ D Q'n˛�˝ . Then 'n˛ 2 C k.˝; Œ0; 1�/, Vn˛ � '�1n˛ .f1g/, and supp'n˛ � Wn˛ for all n 2 N, ˛ 2 �. Moreover, each function
'n˛ is Ln-Lipschitz.

For each n 2 N define 'n W ˝ ! Œ0; 1� by 'n.x/ D 'n˛.x/ whenever there is ˛ 2 � such that x 2 Wn˛ , 'n.x/ D 0 otherwise.
Notice that by the discreteness of fWn˛g˛2� the functions 'n are well defined and also C k-smooth. It is easy to check that for
each n 2 N the function 'n is Ln-Lipschitz. Indeed, let x; y 2 ˝ and suppose there are ˛; ˇ 2 �, ˛ ¤ ˇ such that x 2 Wn˛ ,
y 2 Wnˇ . Then kx � yk � 2�n and hence j'n.x/ � 'n.y/j � 1 � 2n kx � yk � Ln kx � yk. The other cases follow from the
fact that 'n˛ are Ln-Lipschitz.

Now for n 2 N let  n D 'n
Qn�1
jD1.1 � 'j /. Then  n 2 C k.˝; Œ0; 1�/ and each function  n is Lipschitz. Further, f ngn2N

is a (locally finite) partition of unity on ˝. Indeed, for any x 2 ˝ there is m 2 N and ˇ 2 � such that x 2 Vmˇ . Choose any
y 2 Vmˇ . Then 'm.y/ D 'mˇ .y/ D 1 and hence  n.y/ D 0 for n > m. Since

.1 � '1/.1 � '2/ � � � .1 � 'm/ D 1 �  1 � � � � �  m;

it follows that
P1
nD1  n.y/ D

Pm
nD1  n.y/ D 1.

Finally, for n 2 N and ˛ 2 � let  n˛ D �Wn˛ �  n. Using the fact that supp n � supp'n �
S
˛2�Wn˛ and the discreteness

of fWn˛g˛2� it follows that all the functions  n˛ are C k-smooth and Lipschitz (using similar argument as above), and thatP
˛2�  n˛ D  n. As moreover supp n˛ � Wn˛ , we can conclude that f n˛gn2N;˛2� is a locally finite, �-discrete Lipschitz

C k-smooth partition of unity on ˝ subordinated to U.
�

Notice that to satisfy the requirements of Lemma 13 it suffices that we are able to approximate the distance functions by smooth
Lipschitz functions. Namely we obtain the following corollary:

Corollary 14. Let X , Y be normed linear spaces and k 2 N [ f1g. Suppose that there is a C 2 R such that for each 1-Lipschitz
mapping f W 2UX ! Y and " > 0 there is a C -Lipschitz mapping g 2 C k.UX ; Y / satisfying supx2UX kf .x/ � g.x/k � ". Let
˝ � X be open. Then for any open covering U of ˝ there is a Lipschitz and C k-smooth �-discrete partition of unity on ˝
subordinated to U.

Proof. It is sufficient to notice that approximation of mappings into Y gives us also approximations of functions. Indeed, if
f W 2UX ! R is 1-Lipschitz, then choose some y 2 SY and consider the mapping Qf W 2UX ! Y , Qf .x/ D f .x/ � y. Let
Qg 2 C k.UX ; Y / be an approximation of Qf provided by our assumption and F 2 Y � be a Hahn-Banach extension of the norm-one
functional ty 7! t defined on spanfyg. Then g D F B Qg is the desired approximation of the function f .

�

5. APPROXIMATION OF LIPSCHITZ MAPPINGS REVISITED

In subsequent proofs we use the following convention: If X , Y are normed linear spaces, F 2 X�, and y 2 Y , we denote by
y � F or yF the bounded linear operator yF 2 B.X; Y / given by .yF /h D .F h/ � y for h 2 X . Let g W X ! Y ,  W X ! R,
and both g and  be Fréchet differentiable at x 2 X . Then the mapping g D g �  is Fréchet differentiable at x and using the
convention above, the formula for the derivative of the product can be written as .g /0.x/ D  .x/g0.x/C g.x/ 0.x/.

Armed with the Lipschitz partitions of unity constructed in the previous section we can extend our results a little bit further.
First we prove a result that allows us to pass from uniform approximations to fine approximations.
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Theorem 15. Let X , Y be normed linear spaces and k 2 N [ f1g. Suppose that there is a C � 1 such that for each L-Lipschitz
mapping f W 2UX ! Y and " > 0 there is a CL-Lipschitz mapping g 2 C k.UX ; Y / satisfying supx2UX kf .x/ � g.x/k � ". Let
˝ � X be open. Then for any L-Lipschitz mapping f W ˝ ! Y , any continuous function " W ˝ ! .0;C1/, and any � > 1 there
is an �CL-Lipschitz mapping g 2 C k.˝; Y / such that kf .x/ � g.x/k < ".x/ for all x 2 ˝.

Proof. First notice that from approximations on UX by translating and scaling we immediately obtain approximations on any open
ball in X . For each x 2 ˝ find r.x/ > 0 such that U.x; 4r.x// � ˝ and

".y/ >
".x/

3
for each y 2 U.x; r.x//. (4)

By Corollary 14 there is a � -discrete Lipschitz C k-smooth partition of unity on ˝ subordinated to fU.x; r.x//I x 2 ˝g. We may
assume that the partition of unity is of the form f n˛gn2N;˛2�, where for each n 2 N the family fsupp n˛g˛2� is discrete in ˝.
For each n 2 N and ˛ 2 � let Un˛ D U.xn˛; r.xn˛// be such that supp n˛ � Un˛ . Let Ln˛ be the Lipschitz constant of  n˛ ,
and without loss of generality assume that Ln˛ � 1. Further, denote Vn˛ D U.xn˛; 2r.xn˛//.

For each n 2 N and ˛ 2 � we approximate f on Vn˛ by CL-Lipschitz mapping gn˛ 2 C k.Vn˛; Y / such that

kf .x/ � gn˛.x/k � min
�
.� � 1/CL

2nLn˛
;
".xn˛/

3

�
< ".x/ for each x 2 Un˛ . (5)

(The second inequality follows from (4).) Define the mapping Qgn˛ W ˝ ! Y by Qgn˛.x/ D gn˛.x/ for x 2 Vn˛ , Qgn˛.x/ D 0

otherwise.
Finally, we define the mapping g W ˝ ! Y by

g.x/ D
X

n2N;˛2�

Qgn˛.x/ n˛.x/:

Since supp n˛ � Un˛ , gn˛ 2 C k.Vn˛; Y /, and the sum is locally finite, the mapping g is well defined and moreover
g 2 C k.˝; Y /.

Choose x 2 ˝ and let us compute how far g.x/ is from f .x/:

kf .x/ � g.x/k D






 X
n2N;˛2�

�
f .x/ � Qgn˛.x/

�
 n˛.x/






 � X
n2N

˛2� W x2Un˛

kf .x/ � gn˛.x/k n˛.x/ < ".x/
X
n2N

˛2� W x2Un˛

 n˛.x/ D ".x/;

where the last inequality follows from (5).
To estimate the derivative of g at some fixed x 2 ˝, notice that by the discreteness of fsupp n˛g˛2�, for each n 2 N there is

at most one ˛ 2 � such that  0n˛.x/ ¤ 0. Put M D fn 2 NI 9˛ 2 � W  0n˛.x/ ¤ 0g. Then there is a mapping ˇ W M ! � such
that for each n 2 M ,  0n˛.x/ D 0 whenever ˛ ¤ ˇ.n/ and moreover x 2 Unˇ.n/. (Notice that if  0n˛.x/ ¤ 0 then necessarily
x 2 Un˛ .) Further, since

P
 n˛ D 1, it follows that

P
 0n˛ D 0. Hence,



g0.x/

 D 




 X
n2N;˛2�

. Qgn˛ n˛/
0.x/






 D









X
n2N

˛2� W x2Un˛

. Qgn˛ n˛/
0.x/








 D









X
n2N

˛2� W x2Un˛

 n˛.x/g
0
n˛.x/C

X
n2N

˛2� W x2Un˛

gn˛.x/ 
0
n˛.x/









D









X
n2N

˛2� W x2Un˛

 n˛.x/g
0
n˛.x/C

X
n2N

˛2� W x2Un˛

�
gn˛.x/ � f .x/

�
 0n˛.x/









�

X
n2N

˛2� W x2Un˛



g0n˛.x/

 n˛.x/CX
n2M



gnˇ.n/.x/ � f .x/

 


 0nˇ.n/.x/



�

X
n2N

˛2� W x2Un˛

CL n˛.x/C
X
n2M



gnˇ.n/.x/ � f .x/

Lnˇ.n/ � CLCX
n2M

.� � 1/CL

2nLnˇ.n/
Lnˇ.n/ � �CL;

where the last but one inequality follows from (5).
To finish the proof we show that g is �CL-Lipschitz on the set ˝. Without loss of generality we may assume that ".x/ �

.�C � 1/L dist.x;X n˝/ for every x 2 ˝. Now fix x; y 2 ˝. If the line segment l with end points x and y lies in ˝, then the
standard argument yields that kg.x/ � g.y/k � �CL kx � yk. Otherwise there is ´ 2 l \ .X n˝/. Then

kg.x/ � g.y/k � kg.x/ � f .x/k C kf .x/ � f .y/k C kf .y/ � g.y/k < ".x/C L kx � yk C ".y/

� .�C � 1/L kx � ´k C L kx � yk C .�C � 1/L ky � ´k D �CL kx � yk :

�
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Combining Theorem 15 with Theorem I and Corollary 9 we obtain the following corollary.

Corollary 16. Let X be a separable normed linear space that admits a C k-smooth Lipschitz bump function, k 2 N [ f1g. Let Y
be a Banach space. Suppose further that one of the following conditions is satisfied:

� X is a Banach space with an unconditional Schauder basis, or
� at least one of the spaces X or Y is equal to B0.V / for some topological space V , or
� at least one of the spaces X or Y is equal to Cu.P / for some metric space P .

Then there is a constant C 2 R such that for any open ˝ � X , any L-Lipschitz mapping f W ˝ ! Y , and any continuous
function " W ˝ ! .0;C1/ there is a CL-Lipschitz mapping g 2 C k.˝; Y / for which kf .x/ � g.x/k < ".x/ for all x 2 ˝.

Proof. It suffices to notice that under our assumptions the hypothesis of Theorem 15 is satisfied. Indeed, since BX is a 2-Lipschitz
retract of X , every L-Lipschitz mapping defined on BX can be extended to a 2L-Lipschitz mapping defined on X . Thus we may
apply either Theorem I or Corollary 9.

�

Further, Theorem 15 together with Theorem D gives us the next corollary.

Corollary 17. Let X be a Hilbert space and ˝ � X be an open subset. Then for any L-Lipschitz function f W ˝ ! R, any con-
tinuous function " W ˝ ! .0;C1/, and any � > 1 there is an �L-Lipschitz function g 2 C 1.˝/ such that jf .x/ � g.x/j < ".x/
for all x 2 ˝.

6. APPROXIMATION OF C 1-SMOOTH MAPPINGS

In this section we extend the result of Moulis (Theorem C) about the relation of Lipschitz approximation and the approximation
of mappings together with its derivatives to non-separable case.

To refrain from repeating the same argument over and over again in various contexts, we prove the following proposition,
whose statement is necessarily more technically involved. One of the main ideas is based on the same argument as the proof of
Theorem 15.

Proposition 18. Let X , Y be normed linear spaces, k 2 N [ f1g, and ˝ � X be open. Suppose that for any open covering U

of ˝ there is a Lipschitz C k-smooth �-discrete partition of unity on ˝ subordinated to U. Suppose further that fY
g
2� is a
collection of closed subspaces of Y such that for each 
 2 � there is a constant C
 2 R such that for any L-Lipschitz mapping
f 2 C 1.2UX ; Y
 / and any " > 0 there is a C
L-Lipschitz mapping g 2 C k.UX ; Y / satisfying supx2UX kf .x/ � g.x/k � ". Let
f 2 C 1.˝; Y / be such that it is locally a mapping into some Y
 , 
 2 � . Then for any continuous function " W ˝ ! .0;C1/

there is g 2 C k.˝; Y / such that kf .x/ � g.x/k < ".x/ and kf 0.x/ � g0.x/k < ".x/ for all x 2 ˝.

Proof. First notice that from approximations on UX by translating and scaling we immediately obtain approximations on any open
ball in X . For each x 2 ˝ find r.x/ > 0 and 
.x/ 2 � such that U.x; 4r.x// � ˝, f

�
U.x; 4r.x//

�
� Y
.x/,

".y/ >
".x/

3
for each y 2 U.x; 4r.x//, and (6)

f 0.x/ � f 0.y/

 < ".x/

9C
.x/
for each y 2 U.x; 4r.x//. (7)

By our assumption there is a �-discrete Lipschitz C k-smooth partition of unity on ˝ subordinated to fU.x; r.x//I x 2 ˝g. We
may assume that the partition of unity is of the form f n˛gn2N;˛2�, where for each n 2 N the family fsupp n˛g˛2� is discrete
in ˝. For each n 2 N and ˛ 2 � let Un˛ D U.xn˛; r.xn˛// be such that supp n˛ � Un˛ . Let Ln˛ be the Lipschitz constant of
 n˛ . Further, denote Cn˛ D C
.xn˛/ and Vn˛ D U.xn˛; 2r.xn˛//. Without loss of generality assume that Ln˛ � 1 and Cn˛ � 1.

For each n 2 N and ˛ 2 � let us define the mapping fn˛ W U.xn˛; 4r.xn˛//! Y
.xn˛/ by fn˛.x/ D f .x/� f 0.xn˛/x. Then,
by (7) and (6), 

f 0n˛.x/

 D 

f 0.x/ � f 0.xn˛/

 < ".xn˛/

9Cn˛
<
".x/

3Cn˛
�
".x/

3
for each x 2 U.xn˛; 4r.xn˛//. (8)

According to our assumption, for each n 2 N and ˛ 2 � we can approximate fn˛ on Vn˛ by gn˛ 2 C k.Vn˛; Y / such that

g0n˛.x/

 � ".xn˛/

9
<
".x/

3
for each x 2 Vn˛ , (9)

kfn˛.x/ � gn˛.x/k �
".xn˛/

9 � 2nLn˛
<

".x/

3 � 2nLn˛
< ".x/ for each x 2 Vn˛ . (10)

(The second inequalities follow from (6).) Define the mapping Qgn˛ W ˝ ! Y by Qgn˛.x/ D gn˛.x/ for x 2 Vn˛ , Qgn˛.x/ D 0

otherwise. Finally, we define the mapping g W ˝ ! Y by

g.x/ D
X

n2N;˛2�

�
Qgn˛.x/C f

0.xn˛/x
�
 n˛.x/:

Since supp n˛ � Un˛ , gn˛ 2 C k.Vn˛; Y /, and the sum is locally finite, the mapping g is well defined and moreover
g 2 C k.˝; Y /.
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Choose x 2 ˝ and let us compute how far g.x/ is from f .x/:

kf .x/ � g.x/k D






 X
n2N;˛2�

�
f .x/ � Qgn˛.x/ � f

0.xn˛/x
�
 n˛.x/






 D









X
n2N

˛2� W x2Un˛

�
fn˛.x/ � gn˛.x/

�
 n˛.x/









�

X
n2N

˛2� W x2Un˛

kfn˛.x/ � gn˛.x/k n˛.x/ < ".x/
X
n2N

˛2� W x2Un˛

 n˛.x/ D ".x/;

where the last inequality follows from (10).
To estimate the distance between the derivatives at some fixed x 2 ˝, notice that by the discreteness of fsupp n˛g˛2�, for

each n 2 N there is at most one ˛ 2 � such that  0n˛.x/ ¤ 0. PutM D fn 2 NI 9˛ 2 � W  0n˛.x/ ¤ 0g. Then there is a mapping
ˇ W M ! � such that for each n 2M ,  0n˛.x/ D 0 whenever ˛ ¤ ˇ.n/, and moreover x 2 Unˇ.n/. (Notice that if  0n˛.x/ ¤ 0
then necessarily x 2 Un˛ .) Hence,



f 0.x/ � g0.x/

 D 

.f � g/0.x/

 D








X
n2N;˛2�

��
f � Qgn˛ � f

0.xn˛/
�
 n˛

�0
.x/








D









X
n2N

˛2� W x2Un˛

��
f � gn˛ � f

0.xn˛/
�
 n˛

�0
.x/








 D









X
n2N

˛2� W x2Un˛

�
.fn˛ � gn˛/ n˛

�0
.x/









D









X
n2N

˛2� W x2Un˛

 n˛.x/.fn˛ � gn˛/
0.x/C

X
n2N

˛2� W x2Un˛

�
fn˛.x/ � gn˛.x/

�
 0n˛.x/









�

X
n2N

˛2� W x2Un˛



f 0n˛.x/ � g0n˛.x/

 n˛.x/CX
n2M



fnˇ.n/.x/ � gnˇ.n/.x/

 


 0nˇ.n/.x/



�

X
n2N

˛2� W x2Un˛

�

f 0n˛.x/

C 

g0n˛.x/

� n˛.x/CX
n2M



fnˇ.n/.x/ � gnˇ.n/.x/

Lnˇ.n/
<

�
".x/

3
C
".x/

3

� X
n2N

˛2� W x2Un˛

 n˛.x/C
X
n2M

".x/

3 � 2nLnˇ.n/
Lnˇ.n/ � ".x/;

where the last but one inequality follows from (8), (9) and (10).
�

Theorem 19. Let X , Y be normed linear spaces, k 2 N [ f1g. Consider the following statements:
(i) There is C 2 R such that for any L-Lipschitz mapping f W 2UX ! Y and any " > 0 there is a CL-Lipschitz mapping

g 2 C k.UX ; Y / such that supx2UX kf .x/ � g.x/k � ".
(ii) For any open ˝ � X and any open covering U of ˝ there is a Lipschitz C k-smooth �-discrete partition of unity on ˝

subordinated to U. There is C 2 R such that for any L-Lipschitz mapping f 2 C 1.2UX ; Y / and any " > 0 there is a
CL-Lipschitz mapping g 2 C k.UX ; Y / such that supx2UX kf .x/ � g.x/k � ".

(iii) For any open ˝ � X , any mapping f 2 C 1.˝; Y /, and any continuous function " W ˝ ! .0;C1/ there is g 2 C k.˝; Y /
such that kf .x/ � g.x/k < ".x/ and kf 0.x/ � g0.x/k < ".x/ for all x 2 ˝.

(iv) For any open ˝ � X , any L-Lipschitz mapping f 2 C 1.˝; Y /, any continuous function " W ˝ ! .0;C1/, and any � > 1
there is an �L-Lipschitz mapping g 2 C k.˝; Y / such that kf .x/ � g.x/k < ".x/ for all x 2 ˝.

Then (i))(ii))(iii))(iv).

Proof. (i))(ii) follows from Corollary 14, (ii))(iii) follows from Proposition 18 (consider the collection of subspaces of Y
consisting only of the space Y itself), and for (iii))(iv) see the end of the proof of Theorem 15.

�

Corollary 20. Let X be a separable normed linear space that admits a C k-smooth Lipschitz bump function, k 2 N [ f1g. Let Y
be a Banach space. Suppose further that one of the following conditions is satisfied:

� at least one of the spaces X or Y is equal to B0.V / for some topological space V , or
� at least one of the spaces X or Y is equal to Cu.P / for some metric space P , or
� X is a Banach space with an unconditional Schauder basis, or
� Y is a Banach space with an unconditional Schauder basis and with a separable dual.

Then for any open ˝ � X , any mapping f 2 C 1.˝; Y /, and any continuous function " W ˝ ! .0;C1/ there is g 2 C k.˝; Y /
such that kf .x/ � g.x/k < ".x/ and kf 0.x/ � g0.x/k < ".x/ for all x 2 ˝.
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Proof. Suppose that one of the first three conditions is satisfied. Then our corollary follows from Theorem 19. It suffices to notice
that under our assumptions the statement (i) of Theorem 19 holds. Indeed, since BX is a 2-Lipschitz retract ofX , every L-Lipschitz
mapping defined on BX can be extended to a 2L-Lipschitz mapping defined on X . Thus we may apply either Corollary 9 or
Theorem I.

It remains to prove the case that Y has an unconditional Schauder basis feig and has a separable dual (which means that Y
admits a C 1-smooth Lipschitz bump function). We will show that statement (ii) in Theorem 19 is satisfied, which will prove
our claim. Since X is separable, it is not overly difficult to construct the required partitions of unity directly. Or, we may use
Theorem G together with Lemma 13.

To prove the second assertion in statement (ii) of Theorem 19 let K be the constant from Lemma 5 used on the space Y .
Put C D 2K. Let f 2 C 1.UX ; Y / be L-Lipschitz and " > 0. Denote Yn D spanfeigniD1. By Lemma 5 there is a K-Lipschitz
mapping  2 C 1.Y; Y / which locally maps into some Yn and such that ky �  .y/k < "=2 for every y 2 Y . Put h D  B f .
Then h 2 C 1.UX ; Y / is a KL-Lipschitz mapping which locally maps into some Yn and such that supx2UX kf .x/ � h.x/k � "=2.
Since the spaces Yn, n 2 N, are finite-dimensional, by Corollary 9 there are constants Cn such that any M -Lipschitz mapping
from UX into Yn can be approximated by CnM -Lipschitz C k-smooth mapping. Therefore we can use Proposition 18 to find a
CL-Lipschitz mapping g 2 C k.UX ; Y / such that supx2UX kg.x/ � h.x/k � "=2. As supx2UX kf .x/ � g.x/k � ", we have just
shown that the statement (ii) in Theorem 19 holds.

�

We remind that in Corollary 20 the case when X has an unconditional Schauder basis was (basically) proven already by Moulis
(Theorem A).

Finally, combining Theorem H and Theorem 19 we obtain the following corollary.

Corollary 21. Let � be an arbitrary set, Y be a Banach space, ˝ � c0.� / open, f 2 C 1.˝; Y /, and " W ˝ ! .0;C1/ a
continuous function. Then there is g 2 C1.˝; Y / such that kf .x/ � g.x/k < ".x/ and kf 0.x/ � g0.x/k < ".x/ for all x 2 ˝.
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