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ABSTRACT. A new rotundity property of Day’s norm on c0.� / is introduced. This property provides in particular a renorming characteri-
sation of the class of all reflexive Banach spaces.

Renorming characterisation of various classes of Banach spaces is important and useful for applications. To give a few examples,
the most spectacular result in this area is certainly the Enflo-Pisier characterisation of super-reflexive spaces as those admitting
uniformly rotund norm [E] (or even having power type modulus of uniform convexity [P]). A beautiful characterisation of spaces
admitting uniformly Gâteaux smooth (UG) norm as those for which .BX� ; w�/ is a uniform Eberlein compact was obtained in
[FGZ] (see also a subsequent paper [FGHZ]).

Restricting to separable Banach spaces allows more results (not valid in the general case), for example Fréchet smooth or
weakly uniformly rotund (WUR) renorming characterises spaces with a separable dual (Asplund spaces). A good source of other
results and references on the subject is G. Godefroy’s article in [JL], or [DGZ].

In the present note we are interested in renorming characterisation of reflexivity. Let us give a brief account of the known facts.
The fundamental LUR renorming of the WCG spaces ([T]) together with the standard duality gives the well-known fact that X is
reflexive if and only if there is an equivalent norm such that the dual norm on X� is Fréchet differentiable. On the other hand,
Milman in [M] introduced the notions of 2-rotund (2R) and weakly 2-rotund (W2R) (see below for these definitions). He states
(without proof) that separable reflexive spaces are precisely the W2R renormable and asks whether reflexive spaces with LUR
norm (this condition is redundant due to [T]) are 2R renormable. The last problem was settled positively for separable spaces by
Odell and Schlumprecht [OS], but the general case remains open.

The main result of this note (Theorem 3) implies a characterisation of reflexive spaces as those admitting a W2R renorming.
We also give examples showing that LUR renorming of a reflexive space is not necessarily W2R and vice versa.

First let us fix some notation. For a finite set A we denote the number of elements of A by jAj. Given x D .x.
//
2� 2 c0.� /
and A � � , x�A denotes the vector defined as x�A.
/ D x.
/ for 
 2 A and x�A.
/ D 0 for 
 2 � n A.

Definition. We say that a norm k�k on a Banach space X is 2-rotund (2R) (resp. weakly 2-rotund (W2R)) if for every fxng � BX
such that

lim
m;n!1

kxm C xnk D 2

there is an x 2 X such that lim
n!1

xn D x in the norm (resp. weak) topology of X .

It is well-known (see e.g. [DGZ, II.6.2]) that the definition can be equivalently restated as

Fact 1. A norm k�k on a Banach space X is 2R (resp. W2R) if and only if for every fxng � X such that

lim
m;n!1

2 kxmk
2
C 2 kxnk

2
� kxm C xnk

2
D 0 (1)

there is an x 2 X such that lim
n!1

xn D x in the norm (resp. weak) topology of X .

This formulation is more convenient to use because it is homogeneous.
Using Šmulyan’s criterion we immediately obtain

Fact 2. If a norm k�k on a Banach space X is 2R then its dual norm k�k� is Fréchet differentiable with all its derivatives contained
in X � X��. If a norm k�k on a Banach space X is W2R then its dual norm k�k� is Gâteaux differentiable with all its derivatives
contained in X � X��.

Note however, that the norm dual to a W2R norm need not to be Fréchet differentiable as Example 6 will show.
Recall that for an arbitrary set � , Day’s norm on c0.� / is defined by

kxk D sup

( 
nX
kD1

4�kx2.
k/

!1=2
I .
1; : : : ; 
n/

)
;

where the supremum is taken over all n 2 N and all ordered n-tuples .
1; : : : ; 
n/ of distinct elements of � . Recall further that a
norm k�k on a Banach space X is called locally uniformly rotund (LUR) if lim

n!1
kxn � xk D 0 whenever xn, x 2 X are such that

lim
n!1

2 kxk2 C 2 kxnk
2
� kx C xnk

2
D 0. It is well-known that Day’s norm is LUR ([R], cf. [DGZ, II.7.3]).
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Theorem 3. Let � be an arbitrary set and k�k be Day’s norm on c0.� /. Let fxng � c0.� / satisfy (1). Then fxng has a weak
cluster point x if and only if lim

n!1
xn D x (in the norm topology).

Proof. Every weak cluster point of fxng is a weak limit of some subsequence of fxng. (Indeed, fxng
w
� c0.

S
supp xn/ which

has separable dual, and as fxng
w

is bounded (see below), it is metrisable.)
Notice further the following easy observation: If a norm k�k on a Banach space X is LUR and fxng � X satisfies (1) and has a

cluster point x (in the norm topology) then already xn ! x (in the norm).
Since obviously any subsequence of fxng also satisfies (1), by the facts mentioned above we may assume that xn ! x weakly

and we have to find a subsequence of fxng norm converging to x.
Let k�k1 denote the canonical norm on c0.� /. Let f˛n

k
g be the support of xn enumerated so that

ˇ̌
xn.˛

n
1 /
ˇ̌
�
ˇ̌
xn.˛

n
2 /
ˇ̌
� � � �

and fˇm;n
k
g be the support of .xm C xn/ enumerated so that

ˇ̌
.xm C xn/.ˇ

m;n
1 /

ˇ̌
�
ˇ̌
.xm C xn/.ˇ

m;n
2 /

ˇ̌
� � � � . Note that we may

and do assume that ˇm;n
k
D ˇ

n;m
k

, k 2 N.
From the definition of Day’s norm

kxnk
2
D

X
k

4�kx2n.˛
n
k/ �

X
k

4�kx2n.
k/ (2)

for any sequence f
kg � � . Hence

2 kxmk
2
C 2 kxnk

2
� kxm C xnk

2
D 2

X
4�kx2m.˛

m
k /C 2

X
4�kx2n.˛

n
k/ �

X
4�k.xm C xn/

2.ˇ
m;n
k
/

� 2
X

4�kx2m.ˇ
m;n
k
/C 2

X
4�kx2n.ˇ

m;n
k
/ �

X
4�k.xm C xn/

2.ˇ
m;n
k
/

D

X
4�k

�
xm.ˇ

m;n
k
/ � xn.ˇ

m;n
k
/
�2
� 0:

(3)

As 2 kxmk
2
C 2 kxnk

2
� kxm C xnk

2
�
�
kxmk � kxnk

�2
� 0, (1) implies that fkxnkg is Cauchy and hence fkxnk1g is

bounded. Therefore by passing to a suitable subsequence we may assume that there is ´ 2 `1 such that
ˇ̌
xn.˛

n
k
/
ˇ̌
! ´.k/, k 2 N.

Notice that ´.1/ � ´.2/ � � � � � 0. The vector ´ represents the asymptotic “shape” of the vectors xn.
We claim that ´ 2 c0. If this is not the case then there is a C > 0 such that ´.k/ > C for k 2 N. Then there is a finite A � �

such that kx�� nAk1 < C
8

. By (3) and (1) there is m0 2 N such thatX
k

4�k
�
xm.ˇ

m;n
k
/ � xn.ˇ

m;n
k
/
�2
< 4�jAj�1

C 2

16
for m; n > m0: (4)

Since
ˇ̌
xn
�
˛n
jAjC1

�ˇ̌
! ´.jAj C 1/ > C , there is n1 > m0 such that

ˇ̌
xn1

�
˛
n1

jAjC1

�ˇ̌
> C . Thus we can choose 
 2 � nA for whichˇ̌

xn1
.
/
ˇ̌
> C . Next we find a finite B � � such that

kxn1
�� nBk1 <

C

8
: (5)

This implies that 
 2 B n A. Using the weak convergence we choose n2 > m0 such that


.xn2

� x/�B



1
< C

8
. Therefore we

have

kxn2
�BnAk1 <

C

4
(6)

and so
ˇ̌
xn2

.
/
ˇ̌
< C

4
. Further, ˇ̌

xn1
.
/C xn2

.
/
ˇ̌
>
3

4
C: (7)

We find the smallest k0 2 N for which ˇn1;n2

k0
… A. It follows that k0 � jAj C 1 andˇ̌̌

.xn1
C xn2

/
�
ˇ
n1;n2

k0

�ˇ̌̌
�
ˇ̌
.xn1
C xn2

/.
/
ˇ̌
: (8)

Now either ˇn1;n2

k0
2 B n A and we can use (8), (7) and (6) to obtainˇ̌
xn1

.ˇ
n1;n2

k0
/ � xn2

.ˇ
n1;n2

k0
/
ˇ̌
�
ˇ̌
xn1

.ˇ
n1;n2

k0
/C xn2

.ˇ
n1;n2

k0
/
ˇ̌
� 2

ˇ̌
xn2

.ˇ
n1;n2

k0
/
ˇ̌

�
ˇ̌
xn1

.
/C xn2
.
/
ˇ̌
� 2

ˇ̌
xn2

.ˇ
n1;n2

k0
/
ˇ̌
�
3

4
C �

1

2
C �

C

4
;

or ˇn1;n2

k0
2 � n .B [ A/ and we use (8), (7) and (5) instead to get the same conclusion. FinallyX

k

4�k
�
xn1

.ˇ
n1;n2

k
/ � xn2

.ˇ
n1;n2

k
/
�2
� 4�k0

�
xn1

.ˇ
n1;n2

k0
/ � xn2

.ˇ
n1;n2

k0
/
�2
� 4�jAj�1

C 2

16

which contradicts (4).
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Now we stabilise the supports of the vectors xn. By (3),

0 � 2
X

4�kx2m.˛
m
k /C 2

X
4�kx2n.˛

n
k/ �

X
4�k.xm C xn/

2.ˇ
m;n
k
/

�

�
2
X

4�kx2m.ˇ
m;n
k
/C 2

X
4�kx2n.ˇ

m;n
k
/ �

X
4�k.xm C xn/

2.ˇ
m;n
k
/
�

� 2 kxmk
2
C 2 kxnk

2
� kxm C xnk

2 ;

which together with (2) and (1) gives

lim
m;n!1

�X
4�kx2n.˛

n
k/ �

X
4�kx2n.ˇ

m;n
k
/
�
D 0: (9)

But, for every j 2 N

1X
kD1

4�kx2n.˛
n
k/ �

1X
kD1

4�kx2n.ˇ
m;n
k
/ D

1X
kD1

�
4�k � 4�.kC1/

� kX
iD1

x2n.˛
n
i / �

kX
iD1

x2n.ˇ
m;n
i /

!
�

�
4�j � 4�.jC1/

� �
x2n.˛

n
j / � x

2
n.˛

n
jC1/

�
;

(10)

unless f˛ni I 1 � i � j g D fˇ
m;n
i I 1 � i � j g.

Indeed, if f˛ni I 1 � i � j g ¤ fˇ
m;n
i I 1 � i � j g, then x2n.˛

n
1 /C x

2
n.˛

n
2 /C � � � C x

2
n.˛

n
j�1/C x

2
n.˛

n
jC1/ �

Pj
iD1 x

2
n.ˇ

m;n
i /.

If ´.1/ D 0 then easily kxnk1 �
ˇ̌
xn.˛

n
1 /
ˇ̌
! ´.1/ D 0. Otherwise choose 0 < " � ´.1/. As ´ 2 c0 we can find k1 2 N such

that ´.k1 C 1/ < " and ´.k1/ � ". Put ı D 1
3

�
´.k1/ � ´.k1 C 1/

�
. There is n3 2 N such that

ˇ̌ˇ̌
xn.˛

n
k
/
ˇ̌
� ´.k/

ˇ̌
< minfı; "g

for n > n3 and 1 � k � k1 C 1 and thus jxn.˛nk1
/j � jxn.˛

n
k1C1

/j > ı for n > n3. By putting this fact together with
(10) and (9) we obtain m1 > n3 such that f˛n

k
I 1 � k � k1g D fˇ

m;n
k
I 1 � k � k1g for m; n > m1. Because we have

f˛m
k
I 1 � k � k1g D fˇ

n;m
k
I 1 � k � k1g D fˇ

m;n
k
I 1 � k � k1g D f˛

n
k
I 1 � k � k1g for m; n > m1, the sets

f˛n
k
I 1 � k � k1g are equal for n > m1 and we denote this set by E.

The definitions ofE, n3, and k1 in the previous paragraph give kxn�� nEk1 � jxn.˛nk1C1
/j < ´.k1C1/C" < 2" for n > m1.

This together with the weak convergence implies kx�� nEk1 < 2" and so k.x�xn/�� nEk1 � kx�� nEk1Ckxn�� nEk1 < 4"

for n > m1. Finally, using the weak convergence again, pick n0 > m1 such that k.x � xn/�Ek1 < " for n > n0. Then
kx � xnk1 � maxfk.x � xn/�Ek1 ; k.x � xn/�� nEk1g < 4" for n > n0.

�

Corollary 4. Let .X; j�j/ be a Banach space such that there is a one-to-one bounded linear operator T W X ! c0.� / for some � .
Then there is an equivalent norm k�k on X such that any sequence fxng 2 X satisfying (1) has at most one weak cluster point.

Proof. Define a norm on X by kxk2 D jxj2 C kT xk2D , where k�kD is Day’s norm on c0.� /. Clearly it is an equivalent norm
on X . Let fxng satisfy (1). Similarly as above it follows that limm;n!1 2 kT xmk

2
D C 2 kT xnk

2
D � kT xm C T xnk

2
D D 0 and

so fT xng satisfies (1) in the norm k�kD . We can apply Theorem 3 to the sequence fT xng and since T is w–w-continuous and
one-to-one, fxng cannot have more than one weak cluster point.

�

Corollary 5. Let X be a Banach space. Then X is reflexive if and only if it admits an equivalent W2R norm.

Proof. The “if” part follows easily from James’ theorem: Let k�k be a W2R norm on X . Fix any f 2 X� n f0g. Choose xn in BX
such that f .xn/ ! kf k. Then 0 � 2 kxmk

2
C 2 kxnk

2
� kxm C xnk

2
� 4 � kf k�2 f .xm C xn/

2 ! 0. Thus there is x 2 X
such that xn ! x weakly, hence f .x/ D limf .xn/ D kf k and by James’ theorem X is reflexive.

Alternatively (as non-separable James’ theorem is rather hard) we can use Fact 2 to see that for any F 2 X�� that attains its
norm we have F 2 X and then by the Bishop-Phelps theorem X is reflexive.

The “only if” part:
It is very easy to construct an equivalent W2R norm on a separable reflexive X . Let j�j be the original norm on X , ffkg be a

countable subset of BX� that distinguishes points of X . Define a new norm by

kxk2 D jxj2 C

1X
kD1

2�kfk.x/
2:

Clearly it is an equivalent norm on X . Observe that since X is reflexive, to show that k�k is W2R it only suffices to show that
for any sequence fxng satisfying (1) and such that x2n ! x 2 X weakly and x2nC1 ! y 2 X weakly, we have x D y. Indeed,
as 2 kxmk

2
C 2 kxnk

2
� kxm C xnk

2
�
�
kxmk � kxnk

�2
� 0, any sequence fxng satisfying (1) is bounded and hence relatively

weakly compact and so we only need to show that it has only one weak cluster point.
Let fxng satisfy (1), x2n ! x 2 X weakly and x2nC1 ! y 2 X weakly. As

2 kx2nC1k
2
C 2 kx2nk

2
� kx2nC1 C x2nk

2
D 2 jx2nC1j

2
C 2 jx2nj

2
� jx2nC1 C x2nj

2

C

X
2�k

�
2fk.x2nC1/

2
C 2fk.x2n/

2
� fk.x2nC1 C x2n/

2
�

�
�
jx2nC1j � jx2nj

�2
C

X
2�k

�
fk.x2nC1/ � fk.x2n/

�2
� 0
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and all the summands in the last term are non-negative, (1) implies 0 D lim
n!1

fk.x2nC1/ � fk.x2n/ D fk.y/ � fk.x/ for any
k 2 N. Therefore x D y.

In a general case of X non-separable we can use the renorming from Corollary 4 (The existence of the required operator is
well-known, see e.g. [DGZ, VI.5].) The weak compactness of BX implies that this renorming is W2R.

�

The following two examples show that Troyanski’s construction of the LUR norm on a reflexive space is neither sufficient
for nor overcome by W2R renorming. Recall that a norm k�k on a Banach space X is said to be midpoint locally uniformly
rotund (MLUR) if given sequences fxng, fyng and x in X we have lim

n!1
kxn � ynk D 0 whenever kxnk � kxk, kynk � kxk and

lim
n!1

kxn C yn � 2xk D 0. It is easy to show that if all of the points of S.X;k�k/ are strongly exposed then k�k is MLUR. Hence if

k�k is LUR or k�k� is Fréchet differentiable then k�k is MLUR.

Example 6. There is an equivalent norm k�k on `2 such that it is W2R but not MLUR (and thus neither k�k is LUR nor k�k� is
Fréchet differentiable).

Proof. Let k�k2 be the canonical norm on `2 and let us define the new norm by

kxk2 D
�
max fkxk2 ; 2 jx1jg

�2
C

1X
iD2

2�ix2i :

This is clearly an equivalent norm.
Let us denote the i th coordinate of a vector xn 2 `2 by xn.i/. In view of the construction of the W2R norm on a separable reflex-

ive space in the proof of Corollary 5 it remains to show that if fxng satisfies (1), x2n ! x 2 `2 weakly and x2nC1 ! y 2 `2 weakly
then x.1/ D y.1/. By passing to a subsequence we may assume that either always kx2n C x2nC1k2 � 2 jx2n.1/C x2nC1.1/j or
always 2 jx2n.1/C x2nC1.1/j � kx2n C x2nC1k2. In the first case

2 kx2nC1k
2
C 2 kx2nk

2
� kx2nC1 C x2nk

2

D 2
�
max fkx2nC1k2 ; 2 jx2nC1.1/jg

�2
C 2

�
max fkx2nk2 ; 2 jx2n.1/jg

�2
� kx2nC1 C x2nk

2
2

C 2

1X
iD2

2�ix2nC1.i/
2
C 2

1X
iD2

2�ix2n.i/
2
�

1X
iD2

2�i
�
x2nC1.i/C x2n.i/

�2
� 2 kx2nC1k

2
2 C 2 kx2nk

2
2 � kx2nC1 C x2nk

2
2 � 0

and the uniform rotundity of k�k2 implies x D y. In the second case similarly

2 kx2nC1k
2
C 2 kx2nk

2
� kx2nC1 C x2nk

2
� 2 � 4 jx2nC1.1/j

2
C 2 � 4 jx2n.1/j

2
� 4 jx2nC1.1/C x2n.1/j

2

D 4
�
x2nC1.1/ � x2n.1/

�2
� 0:

Thus obviously x.1/ D y.1/ and we can conclude that k�k is W2R.
Now put Qxn D e1 C en, Qyn D e1 � en, xn D Qxn

k Qxnk
, yn D

Qyn

k Qynk
and x D e1

2
. Then, k Qxnk D k Qynk D .4C 2�n/1=2 ! 2 and

kxn C yn � 2xk D



 2e1

k Qxnk
� e1




! 0, but kxn � ynk D
2kenk

k Qxnk
> 2

3
and so k�k is not MLUR.

�

Example 7. There is an equivalent norm k�k on `2 such that it is LUR but not W2R.

Proof. Let us define the norm on `2 by

jxj2i;j D
�
jx1j C jxi j C

ˇ̌
xj
ˇ̌�2
C

1

i C j

�
x21 C x

2
i C x

2
j

�
C

1X
kD2
k¤i;j

x2k

kxk2 D sup
1<i<j

n
jxj2i;j

o
:

This is clearly an equivalent norm.
We claim that locally (away from the origin) the supremum can be taken over a finite set. To see this fix any x 2 `2 n f0g. We

have to distinguish two cases.
If we can choose k > 1 such that xk ¤ 0 then there is i0 such that jxi j <

jxk j

3
for i > i0 and if we denote by m.y/ 2 N

the largest index for which jym.y/j D maxfjyi j ; i > 1g then clearly m.y/ � i0 for any y 2 `2 such that kx � yk2 <
jxk j

3
.

Let " D 1
3i0

x2
k

4
1

16kxk2
and find j0 such that 8 kxk2

�ˇ̌
xj
ˇ̌
C "

�
C

4kxk22
j

< 1
3i0

x2
k

4
for j > j0. Then for any y 2 `2 such that



CHARACTERISATION OF REFLEXIVITY BY EQUIVALENT RENORMING 5

kx � yk2 < min
n
jxk j

3
; "
o

we have

jyj2i;j D kyk
2
2 C 2

�
jy1yi j C

ˇ̌
y1yj

ˇ̌
C
ˇ̌
yiyj

ˇ̌�
C

1

i C j

�
y21 C y

2
i C y

2
j

�
� kyk22 C 2 jy1j jyi j C 4 kyk2

ˇ̌
yj
ˇ̌
C

1

i C j
kyk22

� kyk22 C 2 jy1j jym.y/j C 8 kxk2
�ˇ̌
xj
ˇ̌
C "

�
C

4

i C j
kxk22 < kyk

2
2 C 2 jy1j jym.y/j C

1

3i0

x2
k

4
for j > j0:

On the other hand,

kyk2 � kyk22 C 2 jy1j jym.y/j C
1

m.y/C 2m.y/
y2m.y/ � kyk

2
2 C 2 jy1j jym.y/j C

1

3i0
y2k > kyk

2
2 C 2 jy1j jym.y/j C

1

3i0

x2
k

4
:

In the second case we have xi D 0 for i > 1 and x1 ¤ 0. Let " D 1
5

x2
1

4
1

24kxk2
and find j0 such that 12 kxk2 "C

4kxk22
j

< 1
5

x2
1

4

for j > j0. Then for any y 2 `2 such that kx � yk2 < min
n
jx1j

2
; "
o

we have for j > j0

jyj2i;j � kyk
2
2 C 2 kyk2 3"C

1

i C j
kyk22 � kyk

2
2 C 12 kxk2 "C

4

i C j
kxk22 < kyk

2
2 C

1

5

x21
4
:

On the other hand, kyk2 � kyk22 C
1
5
y21 > kyk

2
2 C

1
5

x2
1

4
.

Because

jxj2i;j D
1

i C j
kxk22 C

�
jx1j C jxi j C

ˇ̌
xj
ˇ̌�2
C

�
1 �

1

i C j

� 1X
kD2
k¤i;j

x2k ;

it is clearly a LUR norm for each i; j and thus k�k is also LUR as it is locally a maximum of a finitely many LUR norms.
Now define a sequence fxng by x2n D 1

2
.e1Ce2n/ and x2nC1 D e2nC1. We can easily compute that kx2nk

2
D 1C 1

2.2nC2/
! 1,

kx2nC1k
2
D 1C 1

2nC3
! 1, and

kxm C xnk
2
D

�
ke1 C

emCen

2
k2 D 4C 3

2.mCn/
! 4 for m, n even,

kem C enk
2
D 4C 2

mCn
! 4 for m, n odd,

k
e1Cem

2
C enk

2 D 4C 3
2.mCn/

! 4 for m even, n odd.

But since x2n ! e1

2
weakly and x2nC1 ! 0 weakly, the norm k�k is not W2R.

�

Still there remains quite an interesting problem: Does every (non-separable) reflexive Banach space admit a 2R norm?
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