SMOOTH APPROXIMATIONS WITHOUT CRITICAL POINTS
PETR HAJEK AND MICHAL JOHANIS

ABSTRACT. We show that in any separable Banach space containing co which admits a C kK _smooth bump, every continuous function
can be approximated by a C k _smooth function whose range of derivative is of the first category. Moreover, the approximation can be
constructed in such a way that its derivative avoids a prescribed K¢ set (in particular the approximation can have no critical points). On the
other hand, in a Banach space with the RNP, the range of the derivative of every smooth bounded bump contains a set residual in some
neighbourhood of 0.

In the last few years there has been a growing interest in the general problem: Given a (separable) Banach space X and a
C*-smooth function f: X — R, what can be said about the set f’(X) C X*. Early results in this area were obtained by Azagra
and Deville in [[AD], where they construct a C !-smooth bump function f, such that f/(X) = X*, on every Banach space X
admitting a C '-smooth Lipschitz bump function. This surprising result contrasts James’ characterisation of reflexive spaces as
those for which || Sy || = Sx+ whenever |-| is an equivalent C! renorming of X. Also, by [H], C! smoothness cannot be in
general replaced by C? smoothness. Subsequently, the possible shape of f/(X) has been investigated e.g. in [ADJ], [AFJ], [AJl,
[AJ2], [BEKLI, [BFLI, [FKK] and [G].

Recently, Azagra and Cepedello in [AC] proved that every continuous function on £, can be uniformly approximated by a
C*°-smooth function without critical points (i.e. the points where f’ = 0). Their proof is rather technical and does not seem to
generalise to other spaces. In our note we give a simpler proof of a stronger statement for every separable Asplund space X (i.e.
Banach space with a separable dual, cf. [DGZ]) containing a copy of co. We show that for any fixed K, set N C X*, the set
of smooth functions { /; f'(X) N N = @} is dense among the continuous functions with uniform topology. However, due to
(probably folklore) Fact 3] our method cannot be used for spaces with the Radon-Nikodym Property (RNP), in particular £, or
any reflexive space. This leaves open the natural conjecture that in every infinite-dimensional separable Asplund space the set
of smooth functions without critical points is dense among all continuous functions. Let us recall that all these spaces admit a
C'! bump without a critical point ([AJ]).

First let us fix some notation. Let X be a Banach space. We denote by B, = {x € X; |x|| <r},Ur ={x € X; ||x| <r}and
S, = {x € X; ||x|| = r} the closed ball, the open ball and the sphere respectively. Sometimes we will write BX to distinguish
the space in which we take the ball. We say that a subset of a topological space belongs to the K class if it can be written as
a countable union of compact sets. If ¥ is a subspace of X and L € X™*, by L |y we denote the restriction of L to Y (thus
Lty eY*). Foraset N C X*, wewrite Ny = {Ly; L € N}. Wesay afunction f: X — R is Giteaux differentiable at
x € X if there is L € X™* such that lim;_¢ %(f(x +th) — f(x)) = L(h) for every h € X. If moreover this limit is uniform for
h € Sy, we say that f is Fréchet differentiable at x. This L is then called the Gateaux (Fréchet) derivative of f at x and is denoted
by L = f’(x). In this paper, all derivatives are Fréchet unless stated otherwise. If X = Z @ Y, x = (z,y)and f: X — R, we
use the notation g—er(x) = fy(2), where f,: Z — R, f,(z) = f(z,y). A bump function (or a bump for short) is a non-constant
function f: X — R with bounded and non-empty support.

Theorem 1. Let X be a separable Banach space that contains co and admits a C* bump, k € N U {oo}. Let f € C(X) and
& > 0. Then there is a function g € C¥(X) such that g'(X) is of the first category in X* and || f — g|| < e.

In the proof we will use the notions of partition of unity and of functions which locally depend on finitely many coordinates. A
collection {,; y € I'} of real valued functions on X is called a (locally finite) partition of unity on X if for every x € X thereisa
neighbourhood of x which meets only finite number of supp ¥,y € I and ) ¥, (x) = 1 foreachx € X.If U = {U,; y € I'}
is an open covering of X, the partition of unity {y,; y € I"} is said to be subordinated to U if supp ¥, C U, forevery y € I'.
Recall that an open covering U of X is called locally finite if for each x € X there is a neighbourhood of x that meets only finitely
many members of U. An open covering V = {V,,; o € A} is a refinement of an open covering U = {U,,; y € I'} if for each
o € Athereisay € I' such that V,; C U, . For more information about smooth partitions of unity and approximation we refer e.g.
to [DGZ, VIIL3].

We say that f: X — E (where E is a Banach space) locally depends on finitely many coordinates if for each x € X there
are a neighbourhood U of x, n € N, a finite collection of functionals xJ,...,x; € X* and a mapping g: R” — E such that
fly) = g(xi"(y), Xy (y)) for y € U. Note that the canonical supremum norm |||, on ¢o locally depends on finitely many
coordinates on ¢ \ {0}. Indeed, given 0 # x = (x;) € co, let M C N satisfy |x,| = ||x||, if and only if n € M. Clearly, M is
a finite set and ||-| o, depends only on coordinates {x; };cp in the %(||x||Oo —sup{|x;i|, i € N\ M}) neighbourhood of x. It is
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shown in [DGZ, VIII.3] how using compositions, shifts and other operations starting from ||-|| ., we can generate a dense subset of
C(cp) consisting of C*-smooth functions locally depending on finitely many coordinates.

By [Sobl] we know that c¢ is complemented in every separable overspace. Hence in the situation of Theorem([I] X = ¢, @ Y,
where Y is a separable Banach space that admits a C*¥ bump. The following lemma will provide us with partition of unity
convenient for our purpose.

Lemma 2. Let X = co @ Y, such that Y is a separable Banach space that admits a C* bump, k € N U {oo}, and U be a
countable open covering of X. Then there is a C*-smooth partition of unity {V,} subordinated to U such that for each n, %’fg (X)
is contained in a K4 set in {;.

Proof. Denote by Sy the set of functions in C*°(co) which locally depend on finitely many coordinates, and further denote
Bo = {f710,400); f €S8y, 0< f <1yand B; = {f71(0,4+00); f € C¥(Y), 0 < f < 1}. Let 'V be a countable
refinement of U of the form V = {U,, x V,;; U, € By, V;, € By }. Such refinement exists, as By and By, form bases of topologies
in the respective spaces (see e.g. [DGZ, VIII.3]) and it can be made countable because X is separable. Now we need to construct
locally finite refinement of V along with the partition of unity subordinated to this refinement.

Forn € N, letu, € So, 0 < u, <1, be such that U, = u;l(O, +00) and similarly v, € Ck(Y), 0 < v, <1, be such that
Vp = v, 1(0, +00). Let g, € C*®°(R) be such that g, = 0 on [1/n,+00), g» = 1 on (—00,0] and 0 < g, < 1 on (0,1/n).
Denote the coordinates of x € X as x = (2,y),z2 €co,y €Y.

Put W, = U; x V; and ¢1(x) = u1(z)vi(y). Then Wy = ¢;1(0, +00) and g%(x) = u(2)vi(»). As u] locally depends
only on finitely many coordinates, for every z € ¢ there is a neighbourhood N, of z in ¢ such that u (N;) is relatively compact

in £; (it is a continuous image of a finite-dimensional bounded set). Since ¢y is separable, 1 (co) is contained in a K, subset of £;.
We can see that %(X ) is contained in a K, set, because it is a subset of a continuous image of a product of two K sets (one of
them being the set that contains u/, (co), the other one R).

We continue by induction. For n > 1, put

W, = (U, x V)N m(pi_l(—oo, 1/n) and

i<n

on(x) = un(@DVa () [ | &n (i (x)).

i<n

Clearly, Wy, = ¢, 1(0, +00). Further, by the Leibniz rule,

d¢n
BCO

a .
) = up(@)va(y) [ ] gn(0i(0)) + Z(a—f;(x)g; (9 ))un(@va () [ ] gn (e (x))),

i<n j<n i<n

i#]

the summands are all of the form a(x)b(x), where a: X — R and b: X — £; with b(X) contained in a K, set (for u), it is by

the same reason as for 1/ and for % it follows from the induction) and so %%(X ) is also contained in a K, set. (It is again a
subset of a continuous image of products of K, sets.)

For each x € X, there is an n(x) € N such that x € Uy (x) X Vy(x) and x ¢ U; x V; fori < n(x). Then x ¢ W; fori < n(x)
and so x € W, (x). Therefore {W,,} is an open covering of X. Moreover, it is a locally finite covering of X . Indeed, given x € X,
put W = go;(lx) ((pn(x)(x)/Z, +oo). Then W is a neighbourhood of x and if m > max {2/(p,,(x)(x), n(x)} then W N W,, = 0.
To see this, assume that w € W N W,,. According to the definition of W,,, we have that ¢, ()(w) < 1/m. Because w € W,
©Onx) (W) > @n(x)(x)/2, which contradicts the choice of m.

To build a partition of unity from the collection {¢, }, define ¥, = ¢,/ Y _; ¢; and notice that since the sum is locally finite, the
image of %'/c'(’)’ is still contained in some K, set.

The partition of unity {y,} is subordinated to {W,} which is a refinement of U. To finish the proof we simply add the
appropriate functions from the collection {, } to make the partition of unity subordinated to U.

|

Proof of Theorem[I} We construct the function g by a standard procedure using the partition of unity supplied by Lemma 2} Let I
be a countable open covering of R by intervals with the length . Then U = f~1(I) = {f~'(I); I € I} is a countable open
covering of X. Let {y,,} be a partition of unity from Lemma subordinated to U. For each n € N such that v, is not identically
zero, we choose x, € X such that ¥, (x,) # 0. It follows that if x € X and n € N are such that ¥, (x) # 0, then f(x) and f(x,)
both lie in some / € I and therefore | f(x) — f(x,)| < &. Define

gx) =Y f(xn)¥n(x).

n=1
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The sum is locally finite. It follows that g € C*(X) and we can see that {%(X ) is contained in a K, subset of £;. Because
gX) C (Bco X)yxY* ) it is a subset of an F; set of the first category in X *. Moreover, for x € X we have

|f() = g@)] =D fO)Yn() = )Y ¥u@| = D [fGn) = fO[Ynx) < D e¥ulx) =
" " Y ()0 Y (2)0

|

On the other hand, in spaces with the RNP the range of the derivative of non-trivial smooth function is always large: (Recall
that e.g. reflexive spaces have the RNP.)

Fact 3. Let X be a Banach space with the RNP, b: X — R be a lower semicontinuous Gdteaux differentiable bounded below

bump function with suppb C Bgr and y € Bg such that b(y) < 0. Then b'(UR) contains a residual subset of UrX*, where

—b(y)
Ryl

The proof of Fact[3]relies on

r =

Stegall’s variational principle [Stel. Let X be a Banach space with the RNP, E be a non-empty closed bounded subset of X . Let
¢: E — R be a bounded below lower semicontinuous function. Then the set of x* € X* such that the function ¢ — x* attains its
minimum at one point in E is residual in X*.

Proof of Fact[35] We apply Stegall’s variational principle on b: Bg — R. This gives us a set A4 residual in X *, such that b — x*
attains its minimum on B at one point for all x* € A. Pick any x* € AN UrX *.Then b — x* attains its minimum at some unique
point x € Ug and thus »’(x) = x*.

|

By utilising the fact that the partition of unity in Lemma 2| has the partial derivatives contained in a K set a little bit more, we
can perturb the approximating function in such a way that its derivative avoids a K, set.

Theorem 4. Let X be a separable Banach space that contains co and admits a C* bump, k € N U {oo}. Let f € C(X), ¢ > 0,
and N C X* be a Ky set. Then there is a function g € C*(X) such that || f — g|| < &, g'(X) is of the first category in X* and
gX)NN =40.

In the proof we will make use of the following lemma (we assume that X = co @ Y again):

Lemma 5. Let X be as in Theoreml LeX* r>0 ande > 0. Then there is a function h € C¥(X) such that h(x) = L(x) for

x € By, h(x) = 0forx ¢ Uy 2 b h (X) is contained in a Ky set in £y, and Ihllcxy < IIL]x= (r + &)

Proof. Using the partition of unity provided by Lemma! we construct a bump ¢ € C¥(X) suchthat0 < ¢ < 1, ¢ = 1 for
X € By, ¢ = 0 outside U, 4, and %(X) is contained in a K set. (Consider the open covering of X formed by U, 4., X \ Br+e
and a countable covering of S, . by open balls with diameter €. Take as ¢ the function from the partition of unity with its support
in Uy4¢.) Put h(x) = ¢(x)L(x). Then Bh (x) = @(x)L ¢y + L(x) a‘” (x), the image of the first summand is a subset of a line in
£, and the image of the second summand is contained in a continuous image of a product of two K, sets (one of them being R),
hence o oh (X) is a subset of a K, set. The other assertions are evident.

|

Proof of Theoremd} The proof of Theoremgives a function go € C*(X) such that g‘%g(X ) is a subset of a K, set in £; and
If —goll < 3.

Let D1 = UwGN(gf—g(Bl) —w FCO). Since N is a K, set and %%(Bl) is a subset of a K, set, D is a subset of a K; set as
well. A K, set in £1 has an empty interior and so the complement of D1 in £; contains a dense G5 subset of £;. Let us denote this
Gs set by A; and let p; be a complete metric on A; compatible with the norm topology of £;. Let G; = Uj/l(23~1)‘
non-empty set and A is dense in £; and thus there is L; € A; N G;. Extend this L by the Hahn-Banach theorem to the whole
of X (preserving the norm) and denote the extended functional by L again. Now Lemmalproduces a function /1, € C*(X)

such that #; = Ly on B; and ||h;|| < 5. Finally put g = go — #1. We claim that (N |, + L1) ﬂ (Bl) = (. Indeed, take

any w € N. By our choice L, € Ay, hence Ly ¢ Di,andso L1 +w ¢, ¢ ?S(Bl). From this and the fact that 1 (x) = L; on
B; we have g1 (B;) NN = 0.
Let D, = UweN(aco (B2)—w rco), which is a subset of a K, set. The complement of D, contains a dense Gg subset of £;.

G is an open

Let us denote this G4 set by Az. Let A, = /fz N (A7 —L1), hence A, is again a dense Gy set. Let p, be the complete metric on A,
compatible with the norm topology of £;. The set le ={LeA —Ly; p(L1+L,L;)< le } is relatively open (in the norm
topology of £1) and non-empty (containing at least zero) and so there is a set le open in £; such that M} = M)} N (A1 —Ly). Let
Gy, = M1 N U:/‘(24 2 G is an open non-empty set and A is dense in £; and thus there is L, € A N G,. Note that Ly + L, € A;.
Extend this L, by the Hahn-Banach theorem to the whole of X (preserving the norm) and denote the extended functional by L,
again. Now Lemmaproduces a function 1, € C¥(X) such that i, = L, on B, and ||h,| < 2% Put g, = g1 — h, and notice
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that, since h5(x) = L, on B, and (N ¢, + L») ﬂ (Bz) = @ (which we show the same way as in the previous paragraph), we
have gz(Bz) NN =40.

Now let us proceed by induction: Suppose that g1 . . .. gn—1 have already been defined. Let D,, = |, c N(B%’éo‘ (By) —w rco)
(which is a subset of a K, set) and A, be a dense G subset of £; which is contained in the complement of the set D,,. Let

Ap = A, N (A,—1 — Ly—1) and p, be the complete metric on 4,. For j < n, the sets

1] = VL €4 ZLup] ZL +LZL <i

are relatively open (in the respective sets) and thanks to the induction hypothesm they contain at least zero. Therefore there are sets
M;] openin ¢; such that M;] = M,/ N N (4; - 7_1L )-Let G, = N M, ﬂU/
j<n
least zero) and so there is L, € A, N G,. Notice that by the induction hypothesis Zi: j L; € Aj. Extend again the L, to the
whole of X. From Lemmawe get a function /1, € C*(X) such that h, = L, on B, and ||h,]| < ST Put gn = gn—1 — hn,
then g/, (B,) N N = 0.
The sequence {g,} is Cauchy in C(X) (because Y x_,, k| < 5m) and so we can define

n+2.0)° It is open and non-empty (contains at

oo
g=lim gy =go— ) hu.

n—00

Notice that || /' — g|| < e. Fixany n € N. On B, g = gn-1— 2 ponhk = gn-1 — Y pe, Lk and since {Zk n Lk} is Cauchy

in X* (through the choice of G ), g € C'(X) and (X ) is contained in a K, subset of £; (as it holds for g, on B,). Therefore
g’ (X) is of the first category in X*.

Moreover, on B, BCO = 3%;201 Zk_n Ly and because {Zk n Lk} is Cauchy in p,, which is complete on A,,, we obtain

> oo, Lk € Ay. Thus g'(B,) N N = @. Finally, for the second and higher derivatives gV = g(’) on B, for1 < j < k and so
g € Ck(X).
O

Notice that we only needed N |, to be K.

As the Fact[3]shows, our method of perturbation by linear functionals doesn’t work in spaces with the RNP. Spaces that don’t
contain ¢¢ and have bumps with smoothness of higher order are known to be super-reflexive ([EWZ, Theorem 3.3]), hence we
have the following corollary:

Corollary 6. Let X be a separable non-super-reflexive Banach space that admits a C*¥ bump, k > 1. Let f € C(X), ¢ > 0, and
N C X* be a K, set. Then there is a function g € C*(X) such that | f — g|| < &, g (X) is of the first category in X*, and
gX)NN =0a.
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