Functional analysis 1

Topological vector spaces

- Topological vector spaces
- Theory of distributions

- Topological vector spaces
- Theory of distributions
- Bochner integral

- Topological vector spaces
- Theory of distributions
- Bochner integral
- Compact convex sets

I. Topological vector spaces

1. Elementary properties

Let *X* be a vector space over \mathbb{K} and τ a topology on *X*. If the operations of addition and scalar multiplication are continuous as mappings $+: X \times X \to X$ and $\cdot: \mathbb{K} \times X \to X$, then the pair (X, τ) is called a topological vector space.

Let *X* be a vector space over \mathbb{K} and τ a topology on *X*. If the operations of addition and scalar multiplication are continuous as mappings $+: X \times X \to X$ and

 $: \mathbb{K} \times X \to X$, then the pair (X, τ) is called a topological vector space.

The system of all neighbourhoods of a point $x \in X$ is denoted by $\tau(x)$.

Fact 2

Let X be a vector space and ρ a translation-invariant pseudometric na X. Then

(a) the operation of addition is continuous as a mapping $+: (X, \rho) \times (X, \rho) \rightarrow (X, \rho)$ (it is even 2-Lipschitz);

Fact 2

Let X be a vector space and ρ a translation-invariant pseudometric na X. Then

- (a) the operation of addition is continuous as a mapping $+: (X, \rho) \times (X, \rho) \rightarrow (X, \rho)$ (it is even 2-Lipschitz);
- (b) $\rho(nx, 0) \leq n\rho(x, 0)$ for every $x \in X$ and $n \in \mathbb{N}$.

Let X be a topological vector space over \mathbb{K} .

(a) If $a \in X$ and $\lambda \in \mathbb{K} \setminus \{0\}$, then the operations $x \mapsto x + a$ and $x \mapsto \lambda x$ are homeomorphisms of X onto X.

Let X be a topological vector space over \mathbb{K} .

(a) If $a \in X$ and $\lambda \in \mathbb{K} \setminus \{0\}$, then the operations $x \mapsto x + a$ and $x \mapsto \lambda x$ are homeomorphisms of X onto X.

(b)
$$\tau(x) = x + \tau(0)$$
 for every $x \in X$.

Let X be a topological vector space over \mathbb{K} .

(a) If $a \in X$ and $\lambda \in \mathbb{K} \setminus \{0\}$, then the operations $x \mapsto x + a$ and $x \mapsto \lambda x$ are homeomorphisms of X onto X.

(b)
$$\tau(x) = x + \tau(0)$$
 for every $x \in X$.

(c) If $U \in \tau(0)$, then there exists an open $V \in \tau(0)$ such that $V + V \subset U$.

Let *X* be a vector space over \mathbb{K} and $A \subset X$. The set *A* is called

absorbing, if for each x ∈ X there exists a λ_x > 0 such that tx ∈ A for every t ∈ [0, λ_x];

Let *X* be a vector space over \mathbb{K} and $A \subset X$. The set *A* is called

- absorbing, if for each x ∈ X there exists a λ_x > 0 such that tx ∈ A for every t ∈ [0, λ_x];
- balanced, if $\alpha A \subset A$ for every $\alpha \in \mathbb{K}$, $|\alpha| \leq 1$.

Let *X* be a vector space over \mathbb{K} and $A \subset X$. The set *A* is called

- absorbing, if for each x ∈ X there exists a λ_x > 0 such that tx ∈ A for every t ∈ [0, λ_x];
- balanced, if $\alpha A \subset A$ for every $\alpha \in \mathbb{K}$, $|\alpha| \leq 1$.

Proposition 5

Let X be a topological vector space.

(a) Every $U \in \tau(0)$ is absorbing.

Let *X* be a vector space over \mathbb{K} and $A \subset X$. The set *A* is called

- absorbing, if for each x ∈ X there exists a λ_x > 0 such that tx ∈ A for every t ∈ [0, λ_x];
- balanced, if $\alpha A \subset A$ for every $\alpha \in \mathbb{K}$, $|\alpha| \leq 1$.

Proposition 5

Let X be a topological vector space.

- (a) Every $U \in \tau(0)$ is absorbing.
- (b) $\tau(0)$ has a basis consisting of open balanced sets.

Theorem 6 (John von Neumann (1935))

Let X be a vector space and \mathcal{U} a system of subsets of X containing 0, which is a basis of a filter (i.e. it is non-empty and for each $U_1, U_2 \in \mathcal{U}$ there exists a $U \in \mathcal{U}$ such that $U \subset U_1 \cap U_2$). Assume that \mathcal{U} has the following properties:

- (i) For each $U \in \mathcal{U}$ there exists a $V \in \mathcal{U}$ such that $V + V \subset U$.
- (ii) Each set in \mathcal{U} is absorbing.

(iii) Each set in \mathcal{U} is balanced.

Then there is a unique topology τ on X such that (X, τ) is a topological vector space and \mathcal{U} is a basis of neighbourhoods of 0.

Let X be a topological vector space.

(a) Let $K \subset X$ be compact and $C \subset X$ closed and disjoint from K. Then there exists an open balanced $V \in \tau(0)$ such that $(K + V) \cap (C + V) = \emptyset$.

Let X be a topological vector space.

- (a) Let $K \subset X$ be compact and $C \subset X$ closed and disjoint from K. Then there exists an open balanced $V \in \tau(0)$ such that $(K + V) \cap (C + V) = \emptyset$.
- (b) X is regular (i.e. a point and a closed set can be separated by open sets).

Let X be a topological vector space.

- (a) Let $K \subset X$ be compact and $C \subset X$ closed and disjoint from K. Then there exists an open balanced $V \in \tau(0)$ such that $(K + V) \cap (C + V) = \emptyset$.
- (b) X is regular (i.e. a point and a closed set can be separated by open sets).
- (c) The following statements are equivalent:
 - (i) X is Hausdorff.
 - (ii) X is T_1 (i.e. points are closed sets).
 - (iii) {0} is a closed set.
 - (iv) $\{0\} = \bigcap \{U; U \in \tau(0)\}.$

Proposition 8 Let X be a topological vector space. (a) If $G \subset X$ is open and $A \subset X$ arbitrary, then A + G is open.

Let X be a topological vector space.

- (a) If $G \subset X$ is open and $A \subset X$ arbitrary, then A + G is open.
- (b) If $F \subset X$ is closed and $K \subset X$ compact, then F + K is closed.

Let X be a topological vector space.

- (a) If $G \subset X$ is open and $A \subset X$ arbitrary, then A + G is open.
- (b) If $F \subset X$ is closed and $K \subset X$ compact, then F + K is closed.
- (c) If $K, L \subset X$ are compact, then K + L is also compact.

(a)
$$\overline{A} = \bigcap \{A + U; U \in \tau(0)\}.$$

Let X be a topological vector space over \mathbb{K} and A, B \subset X. Then the following hold:

(a)
$$\overline{A} = \bigcap \{A + U; U \in \tau(0)\}.$$

(b) $\overline{A} + \overline{B} \subset \overline{A + B}$ and $\operatorname{Int} A + \operatorname{Int} B \subset \operatorname{Int}(A + B)$.

(a)
$$\overline{A} = \bigcap \{A + U; U \in \tau(0)\}.$$

- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$ and $\operatorname{Int} A + \operatorname{Int} B \subset \operatorname{Int}(A + B)$.
- (c) $\lambda \overline{A} = \overline{\lambda A}$ and $\lambda \operatorname{Int} A = \operatorname{Int}(\lambda A)$ for any $\lambda \in \mathbb{K} \setminus \{0\}$.

(a)
$$\overline{A} = \bigcap \{A + U; U \in \tau(0)\}.$$

- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$ and $\operatorname{Int} A + \operatorname{Int} B \subset \operatorname{Int}(A + B)$.
- (c) $\lambda \overline{A} = \overline{\lambda A}$ and $\lambda \operatorname{Int} A = \operatorname{Int}(\lambda A)$ for any $\lambda \in \mathbb{K} \setminus \{0\}$.
- (d) If Y is a subspace of X, then \overline{Y} is also a subspace of X.

(a)
$$\overline{A} = \bigcap \{A + U; U \in \tau(0)\}.$$

- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$ and $\operatorname{Int} A + \operatorname{Int} B \subset \operatorname{Int}(A + B)$.
- (c) $\lambda \overline{A} = \overline{\lambda A}$ and $\lambda \operatorname{Int} A = \operatorname{Int}(\lambda A)$ for any $\lambda \in \mathbb{K} \setminus \{0\}$.
- (d) If Y is a subspace of X, then \overline{Y} is also a subspace of X.
- (e) If A is convex, then \overline{A} and Int A are convex. Moreover, if Int A is non-empty, then $\overline{A} = \overline{\text{Int } A}$.

(a)
$$\overline{A} = \bigcap \{A + U; U \in \tau(0)\}.$$

- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$ and $\operatorname{Int} A + \operatorname{Int} B \subset \operatorname{Int}(A + B)$.
- (c) $\lambda \overline{A} = \overline{\lambda A}$ and $\lambda \operatorname{Int} A = \operatorname{Int}(\lambda A)$ for any $\lambda \in \mathbb{K} \setminus \{0\}$.
- (d) If Y is a subspace of X, then \overline{Y} is also a subspace of X.
- (e) If A is convex, then \overline{A} and Int A are convex. Moreover, if Int A is non-empty, then $\overline{A} = \overline{\text{Int } A}$.
- (f) If A is balanced, then \overline{A} is balanced.

(a)
$$\overline{A} = \bigcap \{A + U; U \in \tau(0)\}.$$

- (b) $\overline{A} + \overline{B} \subset \overline{A + B}$ and $\operatorname{Int} A + \operatorname{Int} B \subset \operatorname{Int}(A + B)$.
- (c) $\lambda \overline{A} = \overline{\lambda A}$ and $\lambda \operatorname{Int} A = \operatorname{Int}(\lambda A)$ for any $\lambda \in \mathbb{K} \setminus \{0\}$.
- (d) If Y is a subspace of X, then \overline{Y} is also a subspace of X.
- (e) If A is convex, then \overline{A} and Int A are convex. Moreover, if Int A is non-empty, then $\overline{A} = \overline{\text{Int } A}$.
- (f) If A is balanced, then \overline{A} is balanced.
- (g) If A is balanced and $0 \in Int A$, then Int A is balanced.

Let X be a topological vector space, $Y \subset X$ a closed subspace and $Z \subset X$ a finite-dimensional subspace. Then Y + Z is closed.

Let X be a topological vector space, $Y \subset X$ a closed subspace and $Z \subset X$ a finite-dimensional subspace. Then Y + Z is closed.

Corollary 11

Let X be a Hausdorff topological vector space. Every finite-dimensional subspace of X is closed in X.

2. Bounded sets, metrisability

Let *X* be a topological vector space and $A \subset X$. The set *A* is called **bounded** if for every $U \in \tau(0)$ there exists a t > 0 such that $A \subset tU$.

Let *X* be a topological vector space and $A \subset X$. The set *A* is called bounded if for every $U \in \tau(0)$ there exists a t > 0 such that $A \subset tU$.

Proposition 13

Let X be a topological vector space over \mathbb{K} and $A \subset X$. Then the following statements are equivalent:

(i) The set A is bounded.

Let *X* be a topological vector space and $A \subset X$. The set *A* is called bounded if for every $U \in \tau(0)$ there exists a t > 0 such that $A \subset tU$.

Proposition 13

Let X be a topological vector space over \mathbb{K} and $A \subset X$. Then the following statements are equivalent:

- (i) The set A is bounded.
- (ii) $\gamma_n x_n \to 0$ for every sequence $\{x_n\} \subset A$ and every sequence $\{\gamma_n\} \subset \mathbb{K}, \gamma_n \to 0$.

Let *X* be a topological vector space and $A \subset X$. The set *A* is called bounded if for every $U \in \tau(0)$ there exists a t > 0 such that $A \subset tU$.

Proposition 13

Let X be a topological vector space over \mathbb{K} and $A \subset X$. Then the following statements are equivalent:

- (i) The set A is bounded.
- (ii) $\gamma_n x_n \to 0$ for every sequence $\{x_n\} \subset A$ and every sequence $\{\gamma_n\} \subset \mathbb{K}, \gamma_n \to 0$.

(iii) $\frac{1}{n}x_n \to 0$ for every sequence $\{x_n\} \subset A$.

Let X be a topological vector space and let $A, B \subset X$ be bounded. Then the following hold:

(a) The sets $A \cup B$ and A + B are bounded.

- (a) The sets $A \cup B$ and A + B are bounded.
- (b) The set λA is bounded for any $\lambda \in \mathbb{K}$.

- (a) The sets $A \cup B$ and A + B are bounded.
- (b) The set λA is bounded for any $\lambda \in \mathbb{K}$.
- (c) The set \overline{A} is bounded.

Theorem 16

Let X be a topological vector space. Then the following statements are equivalent:

(i) X has a countable basis of neighbourhoods of 0.

Theorem 16

Let X be a topological vector space. Then the following statements are equivalent:

- (i) X has a countable basis of neighbourhoods of 0.
- (ii) X is pseudometrisable.

Theorem 16

Let X be a topological vector space. Then the following statements are equivalent:

- (i) X has a countable basis of neighbourhoods of 0.
- (ii) X is pseudometrisable.
- (iii) X is pseudometrisable by a translation-invariant pseudometric.

Theorem 16

Let X be a topological vector space. Then the following statements are equivalent:

- (i) X has a countable basis of neighbourhoods of 0.
- (ii) X is pseudometrisable.
- (iii) X is pseudometrisable by a translation-invariant pseudometric.

If X is Hausdorff, that the prefix pseudo- above can be omitted.

Let X be a topological vector space. We say that X is locally bounded if every $x \in X$ has a bounded neighbourhood.

Let X be a topological vector space. We say that X is locally bounded if every $x \in X$ has a bounded neighbourhood.

Theorem 18

Let X be a locally bounded topological vector space. Then X is pseudometrisable.

3. Total boundedness and compactness

Let *X* be a topological vector space and $A \subset X$. The set *A* is called totally bounded if for every $U \in \tau(0)$ there exists a finite $F \subset A$ such that $A \subset F + U$.

Let X be a topological vector space and A, $B \subset X$. Then the following hold:

(a) A is totally bounded if and only if for every $U \in \tau(0)$ there exists a finite $F \subset X$ such that $A \subset F + U$.

- (a) A is totally bounded if and only if for every $U \in \tau(0)$ there exists a finite $F \subset X$ such that $A \subset F + U$.
- (b) If A is totally bounded and $B \subset A$, then B is also totally bounded.

- (a) A is totally bounded if and only if for every $U \in \tau(0)$ there exists a finite $F \subset X$ such that $A \subset F + U$.
- (b) If A is totally bounded and B ⊂ A, then B is also totally bounded.
- (c) If A, B are totally bounded, then also $A \cup B$ and A + B are totally bounded.

- (a) A is totally bounded if and only if for every $U \in \tau(0)$ there exists a finite $F \subset X$ such that $A \subset F + U$.
- (b) If A is totally bounded and B ⊂ A, then B is also totally bounded.
- (c) If A, B are totally bounded, then also $A \cup B$ and A + B are totally bounded.
- (d) If A is totally bounded and $\lambda \in \mathbb{K}$, then also λA is totally bounded.

- (a) A is totally bounded if and only if for every $U \in \tau(0)$ there exists a finite $F \subset X$ such that $A \subset F + U$.
- (b) If A is totally bounded and B ⊂ A, then B is also totally bounded.
- (c) If A, B are totally bounded, then also $A \cup B$ and A + B are totally bounded.
- (d) If A is totally bounded and $\lambda \in \mathbb{K}$, then also λA is totally bounded.
- (e) If A is totally bounded, then also \overline{A} is totally bounded.

Let X be a topological vector space. Compact subsets of X are totally bounded

Let X be a topological vector space. Compact subsets of X are totally bounded and totally bounded subsets of X are bounded.

Let X be a topological vector space. Compact subsets of X are totally bounded and totally bounded subsets of X are bounded.

Fact 22

Let (X, τ) be a topological vector space pseudometrisable by a translation-invariant pseudometric ρ . Then $A \subset X$ is τ -totally bounded if and only if it is ρ -totally bounded.

Let (X, τ_X) , (Y, τ_Y) be topological vector spaces and $f: X \to Y$. We say that f is uniformly continuous if for every $V \in \tau_Y(0)$ there exists a $U \in \tau_X(0)$ such that $f(x) \in f(y) + V$ whenever $x, y \in X$ are such that $x \in y + U$.

Let (X, τ_X) , (Y, τ_Y) be topological vector spaces and $f: X \to Y$. We say that f is uniformly continuous if for every $V \in \tau_Y(0)$ there exists a $U \in \tau_X(0)$ such that $f(x) \in f(y) + V$ whenever $x, y \in X$ are such that $x \in y + U$.

Proposition 24

Let (X, τ_X) , (Y, τ_Y) be topological vector spaces and let $f: X \to Y$ be uniformly continuous. If $A \subset X$ is totally bounded, then f(A) is also totally bounded.

4. Linear mappings

A linear image of a balanced set is again a balanced set, a pre-image of a balanced set under a linear mapping is again a balanced set.

Let X and Y be topological vector spaces and $T: X \rightarrow Y$ a linear mapping. Consider the following statements:

- (i) *T* is bounded on some neighbourhood of 0.
- (ii) T is continuous at 0.
- (iii) T is continuous.
- (iv) T is uniformly continuous.
- (v) T is sequentially continuous.
- (vi) T(A) is bounded for every bounded $A \subset X$.
- (vii) The set { $T(x_n)$; $n \in \mathbb{N}$ } is bounded whenever { x_n } $\subset X$, $x_n \to 0$.

Then $(i) \Rightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Leftrightarrow (vii).$

Let X and Y be topological vector spaces and $T: X \rightarrow Y$ a linear mapping. Consider the following statements:

- (i) *T* is bounded on some neighbourhood of 0.
- (ii) T is continuous at 0.
- (iii) T is continuous.
- (iv) T is uniformly continuous.
- (v) T is sequentially continuous.
- (vi) T(A) is bounded for every bounded $A \subset X$.
- (vii) The set { $T(x_n)$; $n \in \mathbb{N}$ } is bounded whenever { x_n } $\subset X$, $x_n \to 0$.

Then $(i) \Rightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Leftrightarrow (vii)$. If Y is locally bounded, then (i)-(iv) are equivalent.

Let X and Y be topological vector spaces and $T: X \rightarrow Y$ a linear mapping. Consider the following statements:

- (i) *T* is bounded on some neighbourhood of 0.
- (ii) T is continuous at 0.
- (iii) T is continuous.
- (iv) T is uniformly continuous.
- (v) T is sequentially continuous.
- (vi) T(A) is bounded for every bounded $A \subset X$.
- (vii) The set { $T(x_n)$; $n \in \mathbb{N}$ } is bounded whenever { x_n } $\subset X$, $x_n \to 0$.

Then $(i) \Rightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Leftrightarrow (vii)$. If Y is locally bounded, then (i)–(iv) are equivalent. If X is pseudometrisable, then (ii)–(vii) are equivalent.

Lemma 26

Let *X* be a pseudometrisable topological vector space. If $\{x_n\} \subset X$ converges to 0, then there exists a sequence $\{\gamma_n\} \subset \mathbb{N}$ such that $\gamma_n \to +\infty$ and $\gamma_n x_n \to 0$.

Let X be a topological vector space over \mathbb{K} and let $f: X \to \mathbb{K}$ be a non-zero linear form. Then the following statements are equivalent:

- (i) f is continuous.
- (ii) Ker f is closed.
- (iii) Ker $f \neq X$.

As usual, linear forms will be also called (linear) functionals.

As usual, linear forms will be also called (linear) functionals.

Definition 28

Let X be a topological vector space. The symbol $X^{\#}$ denotes the space of all linear forms (functionals) on X and it is called the algebraic dual.

As usual, linear forms will be also called (linear) functionals.

Definition 28

Let X be a topological vector space. The symbol $X^{\#}$ denotes the space of all linear forms (functionals) on X and it is called the algebraic dual. The symbol X^{*} denotes the subspace of $X^{\#}$ consisting of linear functionals that are continuous on X and it it is called the topological dual (or just the dual).

Let X and Y be topological vector spaces and $T: X \rightarrow Y$ a linear mapping. We say that T is an isomorphism of X onto Y (or just an isomorphism) if T is a homeomorphism of X onto Y;

Let X and Y be topological vector spaces and $T: X \rightarrow Y$ a linear mapping. We say that T is an isomorphism of X onto Y (or just an isomorphism) if T is a homeomorphism of X onto Y; we say that T is an isomorphism of X into Y (or just an isomorphism into) if T is an isomorphism of X onto Rng T.

Let *X* be a vector space, *Y* a topological vector space, and $\{T_{\gamma}\}_{\gamma \in \Gamma}$ a net of linear mappings from *X* into *Y*. If *T* : *X* \rightarrow *Y* is a pointwise limit of the net $\{T_{\gamma}\}$, then *T* is linear.

5. Finite-dimensional spaces

T7(a), T25, P21, L15, P9(a), C11

Let X be a topological vector space over \mathbb{K} . Then the following statements are equivalent:

(i) X is Hausdorff and dim $X < \infty$.

- (i) X is Hausdorff and dim $X < \infty$.
- (ii) The exists an $n \in \mathbb{N}$ such that X is isomorphic to $(\mathbb{K}^n, \|\cdot\|_2)$.

- (i) X is Hausdorff and dim $X < \infty$.
- (ii) The exists an $n \in \mathbb{N}$ such that X is isomorphic to $(\mathbb{K}^n, \|\cdot\|_2)$.
- (iii) X is Hausdorff and has a totally bounded neighbourhood of 0.

- (i) X is Hausdorff and dim $X < \infty$.
- (ii) The exists an $n \in \mathbb{N}$ such that X is isomorphic to $(\mathbb{K}^n, \|\cdot\|_2)$.
- (iii) X is Hausdorff and has a totally bounded neighbourhood of 0.
- (iv) *X* is pseudometrisable and every linear mapping from *X* into some topological vector space is continuous.

- (i) X is Hausdorff and dim $X < \infty$.
- (ii) The exists an $n \in \mathbb{N}$ such that X is isomorphic to $(\mathbb{K}^n, \|\cdot\|_2)$.
- (iii) X is Hausdorff and has a totally bounded neighbourhood of 0.
- (iv) *X* is pseudometrisable and every linear mapping from *X* into some topological vector space is continuous.
- (v) X is pseudometrisable and every linear form on X is continuous.

Corollary 32

Let X be a finite-dimensional vector space. Then there exists only one Hausdorff vector topology on X.

6. Locally convex spaces

Fact 33 Let X be a vector space over \mathbb{K} , A, B \subset X convex, and $\alpha \in \mathbb{K}$. Then the sets αA and A + B are convex.

Let *X* be a vector space over \mathbb{K} . A set $A \subset X$ is called absolutely convex if it is convex and balanced.

Let X be a vector space over \mathbb{K} . A set $A \subset X$ is called absolutely convex if it is convex and balanced.

Fact 35

Let X be a vector space over \mathbb{K} and $A \subset X$. Then the following hold:

(a) If A is balanced, then conv A is balanced and so absolutely convex.

Let X be a vector space over \mathbb{K} . A set $A \subset X$ is called absolutely convex if it is convex and balanced.

Fact 35

Let X be a vector space over \mathbb{K} and $A \subset X$. Then the following hold:

- (a) If A is balanced, then conv A is balanced and so absolutely convex.
- (b) A is absolutely convex if and only if $\alpha x + \beta y \in A$ for every $x, y \in A$ and $\alpha, \beta \in \mathbb{K}$, $|\alpha| + |\beta| \le 1$.

Let *X* be a vector space and *p* a seminorm on *X*. Then the following hold:

(a) $|p(x) - p(y)| \le p(x - y)$ for every $x, y \in X$.

Let X be a vector space and p a seminorm on X. Then the following hold:

- (a) $|p(x) p(y)| \le p(x y)$ for every $x, y \in X$.
- (b) The set $Z = p^{-1}(0)$ is a subspace of X. If $x, y \in X$ are such that $x y \in Z$, then p(x) = p(y).

Let X be a vector space and p a seminorm on X. Then the following hold:

- (a) $|p(x) p(y)| \le p(x y)$ for every $x, y \in X$.
- (b) The set $Z = p^{-1}(0)$ is a subspace of X. If $x, y \in X$ are such that $x y \in Z$, then p(x) = p(y).
- (c) The sets $\{x \in X; p(x) < c\}$ and $\{x \in X; p(x) \le c\}$ are absolutely convex for every $c \in [0, +\infty)$.

Definition 37 Let X be a vector space and $f: X \to \mathbb{R}$. We say that f is positively homogeneous if f(tx) = tf(x) for every $t \ge 0$.

Let *X* be a vector space and $f: X \to \mathbb{R}$. We say that *f* is positively homogeneous if f(tx) = tf(x) for every $t \ge 0$.

Fact 38

Let X be a vector space and f a positively homogeneous function on X. Denote $F_c = \{x \in X; f(x) \le c\}$ and $G_c = \{x \in X; f(x) < c\}$ for $c \in \mathbb{R}$. For every c > 0 the sets F_c and G_c are absorbing and moreover $F_c = cF_1$, $G_c = cG_1$. **Definition 39** Let *X* be a vector space and let $A \subset X$ be absorbing. The Minkowski functional of the set *A* is a function $\mu_A: X \to [0, +\infty)$ defined by

$$\mu_A(x) = \inf \{\lambda > 0; x \in \lambda A\}.$$

Let X be a vector space and let $A \subset X$ be absorbing. Then the following hold:

(a) If $B \supset A$, then $\mu_B \leq \mu_A$.

- (a) If $B \supset A$, then $\mu_B \leq \mu_A$.
- (b) μ_A is positively homogeneous.

- (a) If $B \supset A$, then $\mu_B \leq \mu_A$.
- (b) μ_A is positively homogeneous.
- (c) If A is convex, then μ_A is a non-negative sub-linear functional.

- (a) If $B \supset A$, then $\mu_B \leq \mu_A$.
- (b) μ_A is positively homogeneous.
- (c) If A is convex, then μ_A is a non-negative sub-linear functional.
- (d) If A is absolutely convex, then μ_A is a seminorm.

- (a) If $B \supset A$, then $\mu_B \leq \mu_A$.
- (b) μ_A is positively homogeneous.
- (c) If A is convex, then μ_A is a non-negative sub-linear functional.
- (d) If A is absolutely convex, then μ_A is a seminorm.
- (e) $A \subset \{x \in X; \ \mu_A(x) \le 1\}.$

- (a) If $B \supset A$, then $\mu_B \leq \mu_A$.
- (b) μ_A is positively homogeneous.
- (c) If A is convex, then μ_A is a non-negative sub-linear functional.
- (d) If A is absolutely convex, then μ_A is a seminorm.
- (e) $A \subset \{x \in X; \ \mu_A(x) \le 1\}.$
- (f) If A is balanced or convex, then $\{x \in X; \ \mu_A(x) < 1\} \subset A \subset \{x \in X; \ \mu_A(x) \le 1\}.$

Let X be a vector space and let $A \subset X$ be absorbing. Then the following hold:

- (a) If $B \supset A$, then $\mu_B \leq \mu_A$.
- (b) μ_A is positively homogeneous.
- (c) If A is convex, then μ_A is a non-negative sub-linear functional.
- (d) If A is absolutely convex, then μ_A is a seminorm.
- (e) $A \subset \{x \in X; \ \mu_A(x) \le 1\}.$
- (f) If A is balanced or convex, then $\{x \in X; \ \mu_A(x) < 1\} \subset A \subset \{x \in X; \ \mu_A(x) \le 1\}.$

(g) Let $p: X \to [0, +\infty)$ be positively homogeneous and $B \subset X$.

If B is absorbing and B ⊂ {x ∈ X; p(x) ≤ 1}, then μ_B ≥ p.

Let X be a vector space and let $A \subset X$ be absorbing. Then the following hold:

- (a) If $B \supset A$, then $\mu_B \leq \mu_A$.
- (b) μ_A is positively homogeneous.
- (c) If A is convex, then μ_A is a non-negative sub-linear functional.
- (d) If A is absolutely convex, then μ_A is a seminorm.
- (e) $A \subset \{x \in X; \ \mu_A(x) \le 1\}.$
- (f) If A is balanced or convex, then $\{x \in X; \ \mu_A(x) < 1\} \subset A \subset \{x \in X; \ \mu_A(x) \le 1\}.$

(g) Let $p: X \to [0, +\infty)$ be positively homogeneous and $B \subset X$.

- If B is absorbing and B ⊂ {x ∈ X; p(x) ≤ 1}, then μ_B ≥ p.
- If $\{x \in X; \ p(x) < 1\} \subset B$, then $\mu_B \le p$.

Let X be a vector space and let $A \subset X$ be absorbing. Then the following hold:

- (a) If $B \supset A$, then $\mu_B \leq \mu_A$.
- (b) μ_A is positively homogeneous.
- (c) If A is convex, then μ_A is a non-negative sub-linear functional.
- (d) If A is absolutely convex, then μ_A is a seminorm.
- (e) $A \subset \{x \in X; \ \mu_A(x) \le 1\}.$
- (f) If A is balanced or convex, then $\{x \in X; \ \mu_A(x) < 1\} \subset A \subset \{x \in X; \ \mu_A(x) \le 1\}.$

(g) Let $p: X \to [0, +\infty)$ be positively homogeneous and $B \subset X$.

- If B is absorbing and B ⊂ {x ∈ X; p(x) ≤ 1}, then μ_B ≥ p.
- If $\{x \in X; \ p(x) < 1\} \subset B$, then $\mu_B \le p$.

So, if $\{x \in X; \ p(x) < 1\} \subset B \subset \{x \in X; \ p(x) \le 1\}$, then $\mu_B = p$.

Proposition 41

Let X be a topological vector space and let $A \subset X$ be absorbing. Then $\text{Int } A \subset \{x \in X; \ \mu_A(x) < 1\}.$

Proposition 41

Let X be a topological vector space and let $A \subset X$ be absorbing. Then $\text{Int } A \subset \{x \in X; \mu_A(x) < 1\}$. If moreover A is balanced or convex, then

 $\operatorname{Int} A \subset \{x \in X; \ \mu_A(x) < 1\} \subset A \subset \{x \in X; \ \mu_A(x) \le 1\} \subset \overline{A}.$

Lemma 42

Let X be a topological vector space and p a sub-linear functional on X. Then p is uniformly continuous if and only if it is bounded above on some neighbourhood of 0.

Lemma 42

Let X be a topological vector space and p a sub-linear functional on X. Then p is uniformly continuous if and only if it is bounded above on some neighbourhood of 0.

Corollary 43

Let X be a topological vector space and $A \subset X$ an absorbing convex set. Then μ_A is continuous if and only if A is a neighbourhood of 0. In this case

Int $A = \{x \in X; \ \mu_A(x) < 1\} \subset A \subset \{x \in X; \ \mu_A(x) \le 1\} = \overline{A}.$

Let X be a topological vector space. Then $X^* \neq \{0\}$ if and only if there is a convex neighbourhood of 0 in X that is different from X.

 We say that a topological vector space is locally convex if it has a basis of neighbourhoods of 0 consisting of convex sets.

- We say that a topological vector space is locally convex if it has a basis of neighbourhoods of 0 consisting of convex sets.
- A locally convex space whose topology is induced by a complete translation-invariant metric is called a Fréchet space.

- We say that a topological vector space is locally convex if it has a basis of neighbourhoods of 0 consisting of convex sets.
- A locally convex space whose topology is induced by a complete translation-invariant metric is called a Fréchet space.
- We say that a topological vector space is normable if its topology is generated by a norm.

Let X be a topological vector space. If $U \in \tau(0)$ is convex, then there exists an open absolutely convex $V \in \tau(0)$ such that $V \subset U$.

Let X be a topological vector space. If $U \in \tau(0)$ is convex, then there exists an open absolutely convex $V \in \tau(0)$ such that $V \subset U$.

Corollary 47

In a locally convex space $\tau(0)$ has a basis consisting of open absolutely convex absorbing sets and also a basis consisting of closed absolutely convex absorbing sets.

Let *X* be a vector space, p_1, \ldots, p_n seminorms on *X*, and $\varepsilon > 0$. We denote

$$U_{p_1,\ldots,p_n,\varepsilon} = \{x \in X; \ p_1(x) < \varepsilon, \ldots, p_n(x) < \varepsilon\}.$$

Let *X* be a vector space and \mathcal{P} a system of seminorms on *X*. Then there is a locally convex topology τ on *X* such that the system $\mathcal{S} = \{U_{p,\varepsilon}; p \in \mathcal{P}, \varepsilon > 0\}$ is a sub-basis of neighbourhoods of 0 and the system $\mathcal{U} = \{U_{p_1,\dots,p_n,\varepsilon}; n \in \mathbb{N}, p_1,\dots,p_n \in \mathcal{P}, \varepsilon > 0\}$ is a basis of neighbourhoods of 0.

Let *X* be a vector space and \mathcal{P} a system of seminorms on *X*. Then there is a locally convex topology τ on *X* such that the system $\mathcal{S} = \{U_{p,\varepsilon}; p \in \mathcal{P}, \varepsilon > 0\}$ is a sub-basis of neighbourhoods of 0 and the system $\mathcal{U} = \{U_{p_1,...,p_n,\varepsilon}; n \in \mathbb{N}, p_1, \ldots, p_n \in \mathcal{P}, \varepsilon > 0\}$ is a basis of neighbourhoods of 0. The topology τ has the following properties:

(a) Every seminorm $p \in \mathcal{P}$ is τ -continuous.

Let *X* be a vector space and \mathcal{P} a system of seminorms on *X*. Then there is a locally convex topology τ on *X* such that the system $\mathcal{S} = \{U_{p,\varepsilon}; p \in \mathcal{P}, \varepsilon > 0\}$ is a sub-basis of neighbourhoods of 0 and the system $\mathcal{U} = \{U_{p_1,...,p_n,\varepsilon}; n \in \mathbb{N}, p_1, ..., p_n \in \mathcal{P}, \varepsilon > 0\}$ is a basis of neighbourhoods of 0. The topology τ has the following properties:

- (a) Every seminorm $p \in \mathcal{P}$ is τ -continuous.
- (b) A set A ⊂ X is *τ*-bounded if and only if p(A) is bounded for each p ∈ 𝒫.

Let *X* be a vector space and \mathcal{P} a system of seminorms on *X*. Then there is a locally convex topology τ on *X* such that the system $\mathcal{S} = \{U_{p,\varepsilon}; p \in \mathcal{P}, \varepsilon > 0\}$ is a sub-basis of neighbourhoods of 0 and the system $\mathcal{U} = \{U_{p_1,...,p_n,\varepsilon}; n \in \mathbb{N}, p_1, ..., p_n \in \mathcal{P}, \varepsilon > 0\}$ is a basis of neighbourhoods of 0. The topology τ has the following properties:

- (a) Every seminorm $p \in \mathcal{P}$ is τ -continuous.
- (b) A set A ⊂ X is *τ*-bounded if and only if p(A) is bounded for each p ∈ 𝒫.
- (c) A net $\{x_{\gamma}\}_{\gamma \in \Gamma} \subset X$ converges to $x \in X$ in τ if and only if $p(x_{\gamma} x) \to 0$ for each $p \in \mathcal{P}$.

Let *X* be a vector space and \mathcal{P} a system of seminorms on *X*. Then there is a locally convex topology τ on *X* such that the system $\mathcal{S} = \{U_{p,\varepsilon}; p \in \mathcal{P}, \varepsilon > 0\}$ is a sub-basis of neighbourhoods of 0 and the system $\mathcal{U} = \{U_{p_1,...,p_n,\varepsilon}; n \in \mathbb{N}, p_1, ..., p_n \in \mathcal{P}, \varepsilon > 0\}$ is a basis of neighbourhoods of 0. The topology τ has the following properties:

- (a) Every seminorm $p \in \mathcal{P}$ is τ -continuous.
- (b) A set A ⊂ X is *τ*-bounded if and only if p(A) is bounded for each p ∈ 𝒫.
- (c) A net $\{x_{\gamma}\}_{\gamma \in \Gamma} \subset X$ converges to $x \in X$ in τ if and only if $p(x_{\gamma} x) \to 0$ for each $p \in \mathcal{P}$.

The topology τ will be called a topology generated by the system of seminorms \mathcal{P} .

Let *X* be a vector space and \mathcal{P} a system of seminorms on *X*. Then there is a locally convex topology τ on *X* such that the system $\mathcal{S} = \{U_{p,\varepsilon}; p \in \mathcal{P}, \varepsilon > 0\}$ is a sub-basis of neighbourhoods of 0 and the system $\mathcal{U} = \{U_{p_1,...,p_n,\varepsilon}; n \in \mathbb{N}, p_1, ..., p_n \in \mathcal{P}, \varepsilon > 0\}$ is a basis of neighbourhoods of 0. The topology τ has the following properties:

- (a) Every seminorm $p \in \mathcal{P}$ is τ -continuous.
- (b) A set A ⊂ X is *τ*-bounded if and only if p(A) is bounded for each p ∈ 𝒫.
- (c) A net $\{x_{\gamma}\}_{\gamma \in \Gamma} \subset X$ converges to $x \in X$ in τ if and only if $p(x_{\gamma} x) \to 0$ for each $p \in \mathcal{P}$.

The topology τ will be called a topology generated by the system of seminorms \mathcal{P} .

On the other hand, if (X, τ) is a locally convex space and \mathcal{V} is a sub-basis of neighbourhoods of 0 consisting of absolutely convex sets, then τ is generated by the system of seminorms { μ_V ; $V \in \mathcal{V}$ }.

Let (X, τ) be a locally convex space. The following statements are equivalent:

(i) X is Hausdorff.

Let (X, τ) be a locally convex space. The following statements are equivalent:

- (i) X is Hausdorff.
- (ii) Every system of seminorms *P* generating τ has the following property:
 For each x ∈ X \ {0} there is a p ∈ *P* such that p(x) > 0.

Let (X, τ) be a locally convex space. The following statements are equivalent:

- (i) X is Hausdorff.
- (ii) Every system of seminorms *P* generating τ has the following property:
 For each x ∈ X \ {0} there is a p ∈ *P* such that p(x) > 0.
- (iii) There exists a system of seminorms *P* generating τ with the property from statement (ii).

Lemma 50 Let (X, τ) be a locally convex space generated by a countable system of seminorms $\{p_n\}$. Then

$$\rho(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \min\{p_n(x - y), 1\}$$

is a translation-invariant pseudometric on X generating τ .

Theorem 51 (A. N. Kolmogorov (1934))

Let (X, τ) be a topological vector space. Then X is seminormable (resp. normable, if X is Hausdorff) if and only if it has a bounded convex neighbourhood of 0.

Let X be a locally convex space and $A \subset X$. Then the following hold:

(a) If A is bounded, then also the set conv A is bounded.

Let X be a locally convex space and $A \subset X$. Then the following hold:

- (a) If A is bounded, then also the set conv A is bounded.
- (b) If A is totally bounded, then also the set conv A is totally bounded.

7. Separation theorems

Lemma 53 Let X be a topological vector space and $f \in X^* \setminus \{0\}$. Then f is an open mapping.

Let X be a topological vector space and let A, $B \subset X$ be disjoint convex sets. Then the following hold:

(a) If A is open, then there exist $f \in X^*$ such that $\operatorname{Re} f(x) < \inf_B \operatorname{Re} f$ for every $x \in A$.

Let X be a topological vector space and let A, $B \subset X$ be disjoint convex sets. Then the following hold:

- (a) If A is open, then there exist $f \in X^*$ such that $\operatorname{Re} f(x) < \inf_B \operatorname{Re} f$ for every $x \in A$.
- (b) If X is locally convex, A closed and B compact, then there exists f ∈ X* such that sup_A Re f < inf_B Re f. If A is moreover absolutely convex, then even sup_A|f| < inf_B Re f.

Corollary 55

Let X be a locally convex space. Then the following hold: (a) If X is Hausdorff, then X* separates the points of X.

Corollary 55

Let X be a locally convex space. Then the following hold:

- (a) If X is Hausdorff, then X^* separates the points of X.
- (b) If Y is a closed subspace of X and $x \in X \setminus Y$, then there exists $f \in X^*$ such that $f \upharpoonright_Y = 0$ and f(x) = 1.

Corollary 55

Let X be a locally convex space. Then the following hold:

- (a) If X is Hausdorff, then X^* separates the points of X.
- (b) If Y is a closed subspace of X and $x \in X \setminus Y$, then there exists $f \in X^*$ such that $f \upharpoonright_Y = 0$ and f(x) = 1.
- (c) If Y is a subspace of X and $f \in Y^*$, then there exists $F \in X^*$ such that $F \upharpoonright_Y = f$.

8. Weak topologies and polars

8. Weak topologies and polars Weak topologies

Lemma 56

Let X be a vector space and let f, f_1, \ldots, f_n be linear forms on X. Then $f \in \text{span}\{f_1, \ldots, f_n\}$ if and only if $\bigcap_{i=1}^n \text{Ker } f_i \subset \text{Ker } f$.

Lemma 56

Let X be a vector space and let f, f_1, \ldots, f_n be linear forms on X. Then $f \in \text{span}\{f_1, \ldots, f_n\}$ if and only if $\bigcap_{j=1}^n \text{Ker } f_j \subset \text{Ker } f$.

Fact 57

Let X, Y, Z be vector spaces and $L: X \rightarrow Y$ and $S: X \rightarrow Z$ linear mappings. Then there exists a linear mapping $T: Z \rightarrow Y$ such that $L = T \circ S$ if and only if Ker $S \subset$ Ker L.

Let *X* be a vector space and let $M \subset X^{\#}$ be non-empty. The symbol $\sigma(X, M)$ denotes the locally convex topology on *X* generated by the system of seminorms {|f|; $f \in M$ }.

Let *X* be a vector space and let $M \subset X^{\#}$ be non-empty. The symbol $\sigma(X, M)$ denotes the locally convex topology on *X* generated by the system of seminorms {|f|; $f \in M$ }.

Proposition 59

Let X be a vector space and let $M, N \subset X^{\#}$ be non-empty. Then $\sigma(X, M) = \sigma(X, N)$ if and only if span M = span N. In particular, $\sigma(X, M) = \sigma(X, \text{span } M)$.

Let *X* be a vector space and let $M \subset X^{\#}$ be non-empty. The symbol $\sigma(X, M)$ denotes the locally convex topology on *X* generated by the system of seminorms {|f|; $f \in M$ }.

Proposition 59

Let X be a vector space and let $M, N \subset X^{\#}$ be non-empty. Then $\sigma(X, M) = \sigma(X, N)$ if and only if span M = span N. In particular, $\sigma(X, M) = \sigma(X, \text{span } M)$.

Proposition 60

Let X be a vector space and let $M \subset X^{\#}$ be non-empty. Then the topology $\sigma(X, M)$ is Hausdorff if and only if M separates the points of X.

Let X be a vector space and let $M \subset X^{\#}$ be non-empty. Then $(X, \sigma(X, M))^{*} = \operatorname{span} M$.

Let X be a topological vector space.

 The topology w = σ(X, X*) is called the weak topology on X.

Let X be a topological vector space.

- The topology w = σ(X, X*) is called the weak topology on X.
- The topology w^{*} = σ(X^{*}, ε(X)) is called the weak star topology on X^{*}.

Let X be a topological vector space.

- The topology w = σ(X, X*) is called the weak topology on X.
- The topology w^{*} = σ(X^{*}, ε(X)) is called the weak star topology on X^{*}.

Corollary 63

Let (X, τ) be a topological vector space. Then the following hold:

(a) $w \subset \tau$ and $(X, w)^* = X^*$.

Let X be a topological vector space.

- The topology w = σ(X, X*) is called the weak topology on X.
- The topology w^{*} = σ(X^{*}, ε(X)) is called the weak star topology on X^{*}.

Corollary 63

Let (X, τ) be a topological vector space. Then the following hold:

(a)
$$w \subset \tau$$
 and $(X, w)^* = X^*$.

(b) $(X^*, W^*)^* = \varepsilon(X).$

Let X be a topological vector space.

- The topology w = σ(X, X*) is called the weak topology on X.
- The topology w^{*} = σ(X^{*}, ε(X)) is called the weak star topology on X^{*}.

Corollary 63

Let (X, τ) be a topological vector space. Then the following hold:

(a)
$$w \subset \tau$$
 and $(X, w)^* = X^*$.

(b)
$$(X^*, W^*)^* = \varepsilon(X).$$

Proposition 64

Let X be a Banach space. Then X is reflexive if and only if on the space $(X^*, \|\cdot\|)$ the topologies weak and w^* coincide.

C55(a); T61; P59

Let X be a topological vector space and Y a subspace of X. Denote by w_{XY} the restriction of the topology $\sigma(X, X^*)$ onto Y. Then $w_{XY} \subset \sigma(Y, Y^*)$. If X is locally convex, then $w_{XY} = \sigma(Y, Y^*)$. In other words, in a locally convex space X the original weak topology on Y coincides with the topology inherited from X.

Let X be a locally convex space and let $A \subset X$ be convex. Then the following hold:

(a) $\overline{A}^w = \overline{A}$.

Let X be a locally convex space and let $A \subset X$ be convex. Then the following hold:

(a) $\overline{A}^w = \overline{A}$.

(b) A is weakly closed if and only if it is closed.

Let X be a locally convex space and let $A \subset X$ be convex. Then the following hold:

(a) $\overline{A}^{w} = \overline{A}$.

- (b) A is weakly closed if and only if it is closed.
- (c) If X is pseudometrisable and $x_n \rightarrow x$ weakly, then there exist $y_n \in \text{conv}\{x_j; j \ge n\}$ such that $y_n \rightarrow x$.

Theorem 67 (George Whitelaw Mackey (1946)) Let X be a locally convex space and $A \subset X$. Then A is bounded if and only if it is weakly bounded. Theorem 67 (George Whitelaw Mackey (1946)) Let X be a locally convex space and $A \subset X$. Then A is bounded if and only if it is weakly bounded.

Proposition 68

Let X be a Banach space and $A \subset X^*$. Then A is bounded if and only if it is w^* -bounded.

Let X, Y be topological vector spaces and let $T: X \rightarrow Y$ be a continuous linear mapping. Then T is w–w continuous, i.e. it is continuous as a mapping $T: (X, w) \rightarrow (Y, w).$

Let X be a vector space and let $M \subset X^{\#}$ be non-empty. Then $\sigma(X, M)$ is pseudometrisable if and only if span M has a countable algebraic basis.

Let X be a vector space and let $M \subset X^{\#}$ be non-empty. Then $\sigma(X, M)$ is pseudometrisable if and only if span M has a countable algebraic basis.

Proposition 71

Let X be an infinite-dimensional topological vector space metrisable by a complete metric. Then X does not have a countable algebraic basis.

Let X be a vector space and let $M \subset X^{\#}$ be non-empty. Then $\sigma(X, M)$ is pseudometrisable if and only if span M has a countable algebraic basis.

Proposition 71

Let X be an infinite-dimensional topological vector space metrisable by a complete metric. Then X does not have a countable algebraic basis.

Corollary 72

(a) Let X be a normed linear space. Then (X, w) is metrisable if and only if X is finite-dimensional. In this case the weak topology coincides with the norm topology.

Let X be a vector space and let $M \subset X^{\#}$ be non-empty. Then $\sigma(X, M)$ is pseudometrisable if and only if span M has a countable algebraic basis.

Proposition 71

Let X be an infinite-dimensional topological vector space metrisable by a complete metric. Then X does not have a countable algebraic basis.

Corollary 72

(a) Let X be a normed linear space. Then (X, w) is metrisable if and only if X is finite-dimensional. In this case the weak topology coincides with the norm topology.

(b) Let X be a Fréchet space. Then (X*, w*) is metrisable if and only if X is finite-dimensional.

Polars

Polars

Definition 73

Let X be a vector space and $A \subset X$. The absolutely convex hull of the set A is defined by

aconv $A = \bigcap \{B \supset A; B \subset X \text{ is absolutely convex} \}.$

Polars

Definition 73

Let *X* be a vector space and $A \subset X$. The absolutely convex hull of the set *A* is defined by

aconv
$$A = \bigcap \{B \supset A; B \subset X \text{ is absolutely convex}\}.$$

Proposition 74

Let X be a vector space over \mathbb{K} and $A \subset X$. Then

aconv
$$A = \left\{ \sum_{i=1}^{n} \lambda_i x_i; x_1, \dots, x_n \in A, \\ \lambda_1, \dots, \lambda_n \in \mathbb{K}, \sum_{i=1}^{n} |\lambda_i| \le 1, n \in \mathbb{N} \right\}.$$

Definition 75 Let X be a topological vector space and $A \subset X$. The closed absolutely convex hull of A is defined by

 $\overline{\text{aconv}} A = \bigcap \{B \supset A; B \subset X \text{ is closed absolutely convex}\}.$

Definition 75 Let X be a topological vector space and $A \subset X$. The closed absolutely convex hull of A is defined by

 $\overline{\text{aconv}} A = \bigcap \{B \supset A; B \subset X \text{ is closed absolutely convex}\}.$

Proposition 76

Let X be a topological vector space and $A \subset X$. Then $\overline{\text{span}} A = \overline{\text{span}} A$, $\overline{\text{conv}} A = \overline{\text{conv}} A$, and $\overline{\text{aconv}} A = \overline{\text{aconv}} A$.

Definition 77

If X is a topological vector space and $A \subset X$, then we define the (absolute) polar of the set A by

 $A^{\circ} = \{ f \in X^*; |f(x)| \le 1 \text{ for every } x \in A \}.$

Definition 77 If X is a topological vector space and $A \subset X$, then we

define the (absolute) polar of the set A by

$$A^{\circ} = \{ f \in X^*; |f(x)| \le 1 \text{ for every } x \in A \}.$$

For the set $B \subset X^*$ we define the (absolute) prepolar by

$$B_{\circ} = \{x \in X; |f(x)| \le 1 \text{ for every } f \in B\}.$$

Definition 77 If X is a topological vector space and $A \subset X$, then we define the (absolute) polar of the set A by

$$A^{\circ} = \{ f \in X^*; |f(x)| \le 1 \text{ for every } x \in A \}.$$

For the set $B \subset X^*$ we define the (absolute) prepolar by

$$B_{\circ} = \{x \in X; |f(x)| \le 1 \text{ for every } f \in B\}.$$

Fact 78

Let X be a topological vector space, $A \subset X$, and $B \subset X^*$. If we consider X^* with the topology w^* , then $A^\circ = \varepsilon(A)_\circ$, $\varepsilon(B_\circ) = B^\circ$, and $(B^\circ)_\circ = (B_\circ)^\circ$.

Let X be a topological vector space over \mathbb{K} , $A \subset X$, and $B \subset X^*$. Then the following hold:

(a) The set A° is absolutely convex and w*-closed. The set B_o is absolutely convex and weakly closed.

- (a) The set A° is absolutely convex and w*-closed. The set B_o is absolutely convex and weakly closed.
- (b) If A is a subspace of X, then A° = A[⊥]. If B is a subspace of X*, then B° = B[⊥].

- (a) The set A° is absolutely convex and w*-closed. The set B_o is absolutely convex and weakly closed.
- (b) If A is a subspace of X, then A° = A[⊥]. If B is a subspace of X*, then B° = B[⊥].
- (c) $\{0\}^{\circ} = X^{*}, X^{\circ} = \{0\}, \{0\}_{\circ} = X$, and if X^{*} separates the points of X, then $(X^{*})_{\circ} = \{0\}$.

- (a) The set A° is absolutely convex and w*-closed. The set B_o is absolutely convex and weakly closed.
- (b) If A is a subspace of X, then A° = A[⊥]. If B is a subspace of X*, then B° = B[⊥].
- (c) $\{0\}^{\circ} = X^{*}, X^{\circ} = \{0\}, \{0\}_{\circ} = X$, and if X^{*} separates the points of X, then $(X^{*})_{\circ} = \{0\}$.
- (d) If $\lambda \in \mathbb{K} \setminus \{0\}$, then $(\lambda A)^{\circ} = \frac{1}{\lambda} A^{\circ}$ and $(\lambda B)_{\circ} = \frac{1}{\lambda} B_{\circ}$.

- (a) The set A° is absolutely convex and w*-closed. The set B_o is absolutely convex and weakly closed.
- (b) If A is a subspace of X, then A° = A[⊥]. If B is a subspace of X*, then B_° = B_⊥.
- (c) $\{0\}^{\circ} = X^{*}, X^{\circ} = \{0\}, \{0\}_{\circ} = X$, and if X^{*} separates the points of X, then $(X^{*})_{\circ} = \{0\}$.
- (d) If $\lambda \in \mathbb{K} \setminus \{0\}$, then $(\lambda A)^{\circ} = \frac{1}{\lambda} A^{\circ}$ and $(\lambda B)_{\circ} = \frac{1}{\lambda} B_{\circ}$.
- (e) If $A_{\gamma} \subset X$, $\gamma \in \Gamma$ is an arbitrary system, then $\left(\bigcup_{\gamma \in \Gamma} A_{\gamma}\right)^{\circ} = \bigcap_{\gamma \in \Gamma} A_{\gamma}^{\circ}$. If $B_{\gamma} \subset X^{*}$, $\gamma \in \Gamma$ is an arbitrary system, then $\left(\bigcup_{\gamma \in \Gamma} B_{\gamma}\right)_{\circ} = \bigcap_{\gamma \in \Gamma} (B_{\gamma})_{\circ}$.

Theorem 80 (Bipolar theorem; Jean Dieudonné (1950))

Let X be a topological vector space.

(a) If $A \subset X$, then $(A^{\circ})_{\circ} = \overline{\operatorname{aconv}}^{w} A$ (= $\overline{\operatorname{aconv}} A$ if X is locally convex).

Theorem 80 (Bipolar theorem; Jean Dieudonné (1950))

Let X be a topological vector space.

(a) If $A \subset X$, then $(A^{\circ})_{\circ} = \overline{\operatorname{aconv}}^{w} A$ (= $\overline{\operatorname{aconv}} A$ if X is locally convex).

(b) If
$$B \subset X^*$$
, then $(B_\circ)^\circ = \overline{\operatorname{aconv}}^{w^*} B$.

Lemma 81

Let X be a topological vector space and $A \subset X$, $B \subset X^*$. Then

(a) A^{\perp} is a w^{*}-closed subspace of X^{*},

(b) B_{\perp} is a weakly closed subspace of *X*,

(c) $(A^{\perp})_{\perp} = \overline{\text{span}}^{w} A$ (= $\overline{\text{span}} A$ if X is locally convex), (d) $(B_{\perp})^{\perp} = \overline{\text{span}}^{w^{*}} B$.

If X, Y are topological vector spaces such that Y^* separates the points of Y, and T: $X \rightarrow Y$ is a continuous linear mapping, then

(a) Ker
$$T^* = (\operatorname{Rng} T)^{\perp}$$
,

(b) Ker
$$T = (\operatorname{Rng} T^*)_{\perp}$$
,

(c)
$$\overline{\operatorname{Rng} T}^{w} = (\operatorname{Ker} T^{*})_{\perp},$$

(d)
$$\overline{\operatorname{Rng} T^*}^{w^*} = (\operatorname{Ker} T)^{\perp}$$
.

Theorem 83 (Herman Heine Goldstine (1938)) If X is a normed linear space, then $\overline{\varepsilon(B_X)}^{w^*} = B_{X^{**}}$.

Theorem 84 (Banach-Alaoglu-Bourbaki) Let X be a topological vector space. If U is a neighbourhood of 0 in X, then U° is a w*-compact set.

Theorem 84 (Banach-Alaoglu-Bourbaki) Let X be a topological vector space. If U is a neighbourhood of 0 in X, then U° is a w*-compact set.

Corollary 85

Let X be a normed linear space. Then B_{X^*} is w^* -compact.

Let X be a separable topological vector space and let $\{x_n\}_{n=1}^{\infty}$ be dense in X. If $U \subset X$ is a neighbourhood of 0, then (U°, w^*) is a topological space metrisable by the metric

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \min\{|(f-g)(x_n)|, 1\}.$$

Fact 87 Let X be a normed linear space. Then the canonical embedding $\varepsilon: X \to X^{**}$ is an isomorphism of locally convex spaces (X, w) and ($\varepsilon(X), w^*$).

Fact 87

Let X be a normed linear space. Then the canonical embedding $\varepsilon: X \to X^{**}$ is an isomorphism of locally convex spaces (X, w) and $(\varepsilon(X), w^*)$. In particular, ε is a homeomorphism of topological spaces (B_X, w) and $(\varepsilon(B_X), w^*)$.

Let X be a normed linear space.

(a) If X is separable and $\{x_n\}$ is dense in S_X , then (B_{X^*}, w^*) is metrisable by the metric

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} |(f-g)(x_n)|.$$

Let X be a normed linear space.

(a) If X is separable and $\{x_n\}$ is dense in S_X , then (B_{X^*}, w^*) is metrisable by the metric

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} |(f-g)(x_n)|.$$

(b) If X* is separable and {f_n} is dense in S_{X*}, then (B_X, w) is metrisable by the metric

$$\rho(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} |f_n(x - y)|.$$

If X is a Banach space, then X is reflexive if and only if B_X is weakly compact.

If X is a Banach space, then X is reflexive if and only if B_X is weakly compact.

Theorem 90

Let X be a reflexive Banach space. Then B_X is weakly sequentially compact. That is every bounded sequence in X has a weakly convergent subsequence.

Proposition 91

Let X be a normed linear space. Then the mapping $x \mapsto \varepsilon_x \upharpoonright_{B_{X^*}}$ is a linear isometry from X into $C((B_{X^*}, w^*))$. So every normed linear space is isometric to a subspace of C(K) for some Hausdorff compact K.

II. Theory of distributions

Lemma 92 Let $\Omega \subset \mathbb{R}^d$ be open. (a) Let μ be a Borel complex measure on Ω . If $\int_{\Omega} \varphi \, d\mu = 0$ for every non-negative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then $\mu = 0$.

Lemma 92 Let $\Omega \subset \mathbb{R}^d$ be open.

- (a) Let μ be a Borel complex measure on Ω . If $\int_{\Omega} \varphi \, d\mu = 0$ for every non-negative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then $\mu = 0$.
- (b) Let $f \in L_1^{\text{loc}}(\Omega, \lambda)$. If $\int_{\Omega} f\varphi \, d\lambda = 0$ for every non-negative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then f = 0 a. e. on Ω .

Lemma 92

Let $\Omega \subset \mathbb{R}^d$ be open.

- (a) Let μ be a Borel complex measure on Ω . If $\int_{\Omega} \varphi \, d\mu = 0$ for every non-negative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then $\mu = 0$.
- (b) Let $f \in L_1^{\text{loc}}(\Omega, \lambda)$. If $\int_{\Omega} f\varphi \, d\lambda = 0$ for every non-negative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then f = 0 a. e. on Ω .
- (c) Let μ be a Borel complex measure on Ω and $f \in L_1^{\text{loc}}(\Omega, \lambda)$. If $\int_{\Omega} \varphi \, d\mu = \int_{\Omega} f \varphi \, d\lambda$ for every non-negative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then $f \in L_1(\Omega, \lambda)$ and $\mu(A) = \int_A f \, d\lambda$ for every Borel $A \subset \Omega$.

Lemma 93 Let $A, U \subset \mathbb{R}^d$ be such that dist $(A, \mathbb{R}^d \setminus U) > 0$. Then there exists $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that $0 \le \varphi \le 1$, supp $\varphi \subset U$, and $\varphi = 1$ on A.

Lemma 93 Let $A, U \subset \mathbb{R}^d$ be such that dist $(A, \mathbb{R}^d \setminus U) > 0$. Then there exists $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that $0 \le \varphi \le 1$, supp $\varphi \subset U$, and $\varphi = 1$ on A.

Corollary 94

Let $K \subset \mathbb{R}^d$ be compact and let $G \subset \mathbb{R}^d$ be open such that $G \supset K$. Then there exist $U \subset G$ open, $U \supset K$ and $\varphi \in \mathcal{D}(G)$ such that $0 \le \varphi \le 1$ and $\varphi = 1$ on U.

1. Weak derivatives

Proposition 95 Let $(a, b) \subset \mathbb{R}$ and $f \in C^1((a, b))$. Then

$$\int_{a}^{b} f' \varphi \, \mathrm{d}\lambda = -\int_{a}^{b} f \varphi' \, \mathrm{d}\lambda$$

for every $\varphi \in \mathcal{D}((a, b))$.

Definition 96 Let $(a, b) \subset \mathbb{R}$ and $f \in L_1^{\text{loc}}((a, b))$. We say that a function $g \in L_1^{\text{loc}}((a, b))$ is the weak derivative of f if

$$\int_{a}^{b} g\varphi \,\mathrm{d}\lambda = -\int_{a}^{b} f\varphi' \,\mathrm{d}\lambda$$

for every $\varphi \in \mathcal{D}((a, b))$.

Definition 96 Let $(a, b) \subset \mathbb{R}$ and $f \in L_1^{\text{loc}}((a, b))$. We say that a function $g \in L_1^{\text{loc}}((a, b))$ is the weak derivative of f if

$$\int_{a}^{b} g\varphi \,\mathrm{d}\lambda = -\int_{a}^{b} f\varphi' \,\mathrm{d}\lambda$$

for every $\varphi \in \mathcal{D}((a, b))$. We say that a Borel complex measure μ on (a, b) is the weak derivative of f if

$$\int_{a}^{b} \varphi \, \mathrm{d}\mu = -\int_{a}^{b} f \varphi' \, \mathrm{d}\lambda$$

for every $\varphi \in \mathcal{D}((a, b))$.

Theorem 97 The weak derivative of a function $f \in L_1^{loc}((a, b))$ is uniquely determined.

The weak derivative of a function $f \in L_1^{\text{loc}}((a, b))$ is uniquely determined. More precisely, if $g_1, g_2 \in L_1^{\text{loc}}((a, b))$ are weak derivatives of f, then $g_1 = g_2$ almost everywhere.

The weak derivative of a function $f \in L_1^{\text{loc}}((a, b))$ is uniquely determined. More precisely, if $g_1, g_2 \in L_1^{\text{loc}}((a, b))$ are weak derivatives of f, then $g_1 = g_2$ almost everywhere. If Borel complex measures μ_1, μ_2 on (a, b)are weak derivatives of f, then $\mu_1 = \mu_2$.

The weak derivative of a function $f \in L_1^{\text{loc}}((a, b))$ is uniquely determined. More precisely, if $g_1, g_2 \in L_1^{\text{loc}}((a, b))$ are weak derivatives of f, then $g_1 = g_2$ almost everywhere. If Borel complex measures μ_1, μ_2 on (a, b)are weak derivatives of f, then $\mu_1 = \mu_2$. If $g \in L_1^{\text{loc}}((a, b))$ and a Borel complex measure μ on (a, b) are weak derivatives of f, then $g \in L_1((a, b))$ and $\mu(A) = \int_A g \, d\lambda$ for every Borel $A \subset (a, b)$.

Proposition 98

Let $(a, b) \subset \mathbb{R}$ and $f \in L_1^{\text{loc}}((a, b))$. Then the weak derivative of f is zero if and only if f is a. e. constant (i.e. there exists $c \in \mathbb{K}$ such that f = c a. e. on (a, b)).

(a) Let $a, b \in \mathbb{R}$. If f is absolutely continuous on [a, b], then it has a finite derivative $a. e., f' \in L_1((a, b))$, and f' is the weak derivative of f.

(a) Let $a, b \in \mathbb{R}$. If f is absolutely continuous on [a, b], then it has a finite derivative $a. e., f' \in L_1((a, b))$, and f' is the weak derivative of f. On the other hand, if fhas a weak derivative $g \in L_1((a, b))$, then there exists a function f_0 absolutely continuous on [a, b] such that $f = f_0 a. e.$ Then $g = f'_0 a. e.$

- (a) Let $a, b \in \mathbb{R}$. If f is absolutely continuous on [a, b], then it has a finite derivative $a. e., f' \in L_1((a, b))$, and f' is the weak derivative of f. On the other hand, if fhas a weak derivative $g \in L_1((a, b))$, then there exists a function f_0 absolutely continuous on [a, b] such that $f = f_0 a. e.$ Then $g = f'_0 a. e.$
- (b) The function f has a weak derivative in $L_1^{loc}((a, b))$ if and only if there exists a function f_0 locally absolutely continuous on (a, b) such that $f = f_0 a$. e.

- (a) Let $a, b \in \mathbb{R}$. If f is absolutely continuous on [a, b], then it has a finite derivative $a. e., f' \in L_1((a, b))$, and f' is the weak derivative of f. On the other hand, if fhas a weak derivative $g \in L_1((a, b))$, then there exists a function f_0 absolutely continuous on [a, b] such that $f = f_0 a. e.$ Then $g = f'_0 a. e.$
- (b) The function f has a weak derivative in $L_1^{loc}((a, b))$ if and only if there exists a function f_0 locally absolutely continuous on (a, b) such that $f = f_0 a$. e.
- (c) Let $a, b \in \mathbb{R}$. The function f has a weak derivative equal to a Borel complex measure μ on [a, b] if and only if there exists a left continuous function f_0 of bounded variation on [a, b] such that $f = f_0$ a. e. In this case $\mu([a, x)) = f_0(x) f_0(a)$ for every $x \in [a, b]$.

2. The space of test functions and distributions

2. The space of test functions and distributions

Definition 100 For $N \in \mathbb{N}_0$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$ we define

$$\|\varphi\|_N = \max_{|\alpha| \le N} \|D^{\alpha}\varphi\|_{\infty}.$$

2. The space of test functions and distributions

Definition 100 For $N \in \mathbb{N}_0$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$ we define

$$\|\varphi\|_N = \max_{|\alpha| \le N} \|D^{\alpha}\varphi\|_{\infty}.$$

The sequence of norms $\{\|\cdot\|_N\}_{N=0}^{\infty}$ on $\mathcal{D}(\mathbb{R}^d)$ generates a Hausdorff locally convex topology τ_{ρ} metrisable by a translation invariant metric

$$\rho(\varphi, \psi) = \sum_{N=0}^{\infty} \frac{1}{2^N} \min\{\|\varphi - \psi\|_N, 1\}$$

for $\varphi, \psi \in \mathcal{D}(\mathbb{R}^d)$.

The metric ρ has the following properties:

- (a) Let $\{\varphi_n\}$ be a sequence in $\mathcal{D}(\mathbb{R}^d)$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$. The following statements are equivalent:
 - (i) $\varphi_n \rightarrow \varphi$ in the metric ρ .
 - (ii) $\|\varphi_n \varphi\|_N \to 0$ for each $N \in \mathbb{N}_0$.
 - (iii) $D^{\alpha}\varphi_n \to D^{\alpha}\varphi$ uniformly on \mathbb{R}^d for each multi-index α of length d.

The metric ρ has the following properties:

- (a) Let $\{\varphi_n\}$ be a sequence in $\mathcal{D}(\mathbb{R}^d)$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$. The following statements are equivalent:
 - (i) $\varphi_n \rightarrow \varphi$ in the metric ρ .
 - (ii) $\|\varphi_n \varphi\|_N \to 0$ for each $N \in \mathbb{N}_0$.
 - (iii) $D^{\alpha}\varphi_{n} \rightarrow D^{\alpha}\varphi$ uniformly on \mathbb{R}^{d} for each multi-index α of length d.
- (b) If α is a multi-index of length d, then the mapping φ → D^αφ is continuous as a mapping from (D(ℝ^d), ρ) to (D(ℝ^d), ρ).

The metric ρ has the following properties:

- (a) Let $\{\varphi_n\}$ be a sequence in $\mathcal{D}(\mathbb{R}^d)$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$. The following statements are equivalent:
 - (i) $\varphi_n \rightarrow \varphi$ in the metric ρ .
 - (ii) $\|\varphi_n \varphi\|_N \to 0$ for each $N \in \mathbb{N}_0$.
 - (iii) $D^{\alpha}\varphi_{n} \rightarrow D^{\alpha}\varphi$ uniformly on \mathbb{R}^{d} for each multi-index α of length d.
- (b) If α is a multi-index of length d, then the mapping φ → D^αφ is continuous as a mapping from (D(ℝ^d), ρ) to (D(ℝ^d), ρ).
- (c) $(\mathcal{D}(K), \rho)$ is a complete metric space for every compact $K \subset \mathbb{R}^d$.

Theorem 102 Let $\Omega \subset \mathbb{R}^d$ be open. Set $\mathcal{U} = \{ U \subset \mathcal{D}(\Omega); U \text{ absolutely convex}, U \cap \mathcal{D}(K) \in \tau_K(0) \text{ for every compact } K \subset \Omega \}.$

Then \mathcal{U} is a basis of neighbourhoods of 0 for a Hausdorff locally convex topology τ on $\mathcal{D}(\Omega)$ which has the following properties:

Theorem 102 Let $\Omega \subset \mathbb{R}^d$ be open. Set $\mathcal{U} = \{U \subset \mathcal{D}(\Omega); U \text{ absolutely convex}, U \cap \mathcal{D}(K) \in \tau_K(0) \text{ for every compact } K \subset \Omega \}.$ Then \mathcal{U} is a basis of neighbourhoods of 0 for a Hausdorff locally

convex topology τ on $\mathfrak{D}(\Omega)$ which has the following properties:

(a) $\tau_{\rho} \upharpoonright_{\mathcal{D}(\Omega)} \subset \tau$.

 $\mathcal{U} = \{ U \subset \mathcal{D}(\Omega); \ U \text{ absolutely convex}, \}$

 $U \cap \mathcal{D}(K) \in \tau_{K}(0)$ for every compact $K \subset \Omega$.

Then \mathcal{U} is a basis of neighbourhoods of 0 for a Hausdorff locally convex topology τ on $\mathcal{D}(\Omega)$ which has the following properties:

(a)
$$\tau_{\rho} \upharpoonright_{\mathcal{D}(\Omega)} \subset \tau$$
.

(b) $\mathcal{D}(K)$ is a closed subspace of $(\mathcal{D}(\Omega), \tau)$ and $\tau \upharpoonright_{\mathcal{D}(K)} = \tau_K$ for every compact $K \subset \Omega$.

 $\mathcal{U} = \{ U \subset \mathcal{D}(\Omega); \ U \text{ absolutely convex}, \}$

 $U \cap \mathcal{D}(K) \in \tau_{K}(0)$ for every compact $K \subset \Omega$.

Then \mathcal{U} is a basis of neighbourhoods of 0 for a Hausdorff locally convex topology τ on $\mathcal{D}(\Omega)$ which has the following properties:

(a)
$$\tau_{\rho} \upharpoonright_{\mathcal{D}(\Omega)} \subset \tau$$
.

- (b) $\mathcal{D}(K)$ is a closed subspace of $(\mathcal{D}(\Omega), \tau)$ and $\tau \upharpoonright_{\mathcal{D}(K)} = \tau_K$ for every compact $K \subset \Omega$.
- (c) If $A \subset (\mathcal{D}(\Omega), \tau)$ is bounded, then there exists a compact $K \subset \Omega$ such that $A \subset \mathcal{D}(K)$.

 $\mathcal{U} = \{ U \subset \mathcal{D}(\Omega); \ U \text{ absolutely convex}, \}$

 $U \cap \mathcal{D}(K) \in \tau_{K}(0)$ for every compact $K \subset \Omega$.

Then \mathcal{U} is a basis of neighbourhoods of 0 for a Hausdorff locally convex topology τ on $\mathcal{D}(\Omega)$ which has the following properties:

(a)
$$\tau_{\rho} \upharpoonright_{\mathcal{D}(\Omega)} \subset \tau$$
.

- (b) $\mathcal{D}(K)$ is a closed subspace of $(\mathcal{D}(\Omega), \tau)$ and $\tau \upharpoonright_{\mathcal{D}(K)} = \tau_K$ for every compact $K \subset \Omega$.
- (c) If $A \subset (\mathcal{D}(\Omega), \tau)$ is bounded, then there exists a compact $K \subset \Omega$ such that $A \subset \mathcal{D}(K)$.
- (d) Let $\{\varphi_n\}$ be a sequence in $\mathcal{D}(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$. Then $\varphi_n \to \varphi$ in τ if and only if there exists a compact $K \subset \Omega$ such that supp $\varphi_n \subset K$ for each $n \in \mathbb{N}$ and $D^{\alpha}\varphi_n \to D^{\alpha}\varphi$ uniformly on \mathbb{R}^d for each multi-index α of length d.

 $\mathcal{U} = \{ U \subset \mathcal{D}(\Omega); \ U \text{ absolutely convex}, \}$

 $U \cap \mathcal{D}(K) \in \tau_{K}(0)$ for every compact $K \subset \Omega$.

Then \mathcal{U} is a basis of neighbourhoods of 0 for a Hausdorff locally convex topology τ on $\mathcal{D}(\Omega)$ which has the following properties:

(a)
$$\tau_{\rho} \upharpoonright_{\mathcal{D}(\Omega)} \subset \tau$$
.

- (b) $\mathcal{D}(K)$ is a closed subspace of $(\mathcal{D}(\Omega), \tau)$ and $\tau \upharpoonright_{\mathcal{D}(K)} = \tau_K$ for every compact $K \subset \Omega$.
- (c) If $A \subset (\mathcal{D}(\Omega), \tau)$ is bounded, then there exists a compact $K \subset \Omega$ such that $A \subset \mathcal{D}(K)$.
- (d) Let {φ_n} be a sequence in D(Ω) and φ ∈ D(Ω). Then φ_n → φ in τ if and only if there exists a compact K ⊂ Ω such that supp φ_n ⊂ K for each n ∈ N and D^αφ_n → D^αφ uniformly on R^d for each multi-index α of length d.

(e) If Ω is non-empty, then $(\mathcal{D}(\Omega), \tau)$ is of the first category in itself.

Proposition 103

Let $\Omega \subset \mathbb{R}^d$ be open, let Y be a locally convex space, and let $T: (\mathfrak{D}(\Omega), \tau) \to Y$ be linear. The following statements are equivalent:

(i) T is continuous.

- (ii) The set $\{T(\varphi_n); n \in \mathbb{N}\}$ is bounded for every sequence $\{\varphi_n\} \subset \mathcal{D}(\Omega)$ converging to 0 in τ .
- (iii) For every compact $K \subset \Omega$ the restriction $T \upharpoonright_{\mathcal{D}(K)}$ is continuous.

Definition 104

Let $\Omega \subset \mathbb{R}^d$ be open. Continuous linear functionals on $(\mathcal{D}(\Omega), \tau)$ are called distributions on Ω . The space of all distributions on Ω is therefore the space $\mathcal{D}(\Omega)^* = (\mathcal{D}(\Omega), \tau)^*$.

Let $\Omega \subset \mathbb{R}^d$ be open and let $\Lambda : \mathcal{D}(\Omega) \to \mathbb{K}$ be linear. Then $\Lambda \in \mathcal{D}(\Omega)^*$ if and only if for every compact $K \subset \Omega$ there exist $N \in \mathbb{N}_0$ and $C \ge 0$ such that $|\Lambda(\varphi)| \le C \|\varphi\|_N$ for every $\varphi \in \mathcal{D}(K)$.

Let $\Omega \subset \mathbb{R}^d$ be open and let $\Lambda : \mathcal{D}(\Omega) \to \mathbb{K}$ be linear. Then $\Lambda \in \mathcal{D}(\Omega)^*$ if and only if for every compact $K \subset \Omega$ there exist $N \in \mathbb{N}_0$ and $C \ge 0$ such that $|\Lambda(\varphi)| \le C ||\varphi||_N$ for every $\varphi \in \mathcal{D}(K)$.

Definition 106

Let $\Omega \subset \mathbb{R}^d$ be open and $\Lambda \in \mathcal{D}(\Omega)^*$. If there exists $N \in \mathbb{N}_0$ such that for every compact $K \subset \Omega$ there exists $C \ge 0$ such that $|\Lambda(\varphi)| \le C ||\varphi||_N$ for every $\varphi \in \mathcal{D}(K)$, then the smallest such N is called the order of the distribution Λ .

Let $\Omega \subset \mathbb{R}^d$ be open and let $\Lambda : \mathcal{D}(\Omega) \to \mathbb{K}$ be linear. Then $\Lambda \in \mathcal{D}(\Omega)^*$ if and only if for every compact $K \subset \Omega$ there exist $N \in \mathbb{N}_0$ and $C \ge 0$ such that $|\Lambda(\varphi)| \le C ||\varphi||_N$ for every $\varphi \in \mathcal{D}(K)$.

Definition 106

Let $\Omega \subset \mathbb{R}^d$ be open and $\Lambda \in \mathcal{D}(\Omega)^*$. If there exists $N \in \mathbb{N}_0$ such that for every compact $K \subset \Omega$ there exists $C \geq 0$ such that $|\Lambda(\varphi)| \leq C ||\varphi||_N$ for every $\varphi \in \mathcal{D}(K)$, then the smallest such N is called the order of the distribution Λ . If no such N exists, then the order of Λ is defined as infinity.

3. Operations with distributions

Lemma 107

Let $k \in \mathbb{N}$, suppose that $f \in C^k(\mathbb{R}^d)$ has all partial derivatives up to order k bounded and let $\alpha \in \mathbb{N}_0^d$, $|\alpha| \le k$. Then

$$\int_{\mathbb{R}^d} D^{\alpha} f \varphi \, \mathrm{d}\lambda = (-1)^{|\alpha|} \int_{\mathbb{R}^d} f D^{\alpha} \varphi \, \mathrm{d}\lambda$$

for every $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Let $\Omega \subset \mathbb{R}^d$ be open and $\Lambda \in \mathcal{D}(\Omega)^*$. For a multi-index α of length *d* we define the derivative D^{α} of the distribution Λ as a functional on $\mathcal{D}(\Omega)$ given by the formula

$$(D^{\alpha}\Lambda)(\varphi) = (-1)^{|\alpha|}\Lambda(D^{\alpha}\varphi).$$

Let $\Omega \subset \mathbb{R}^d$ be open and $\Lambda \in \mathcal{D}(\Omega)^*$. For a multi-index α of length *d* we define the derivative D^{α} of the distribution Λ as a functional on $\mathcal{D}(\Omega)$ given by the formula

$$(D^{\alpha}\Lambda)(\varphi) = (-1)^{|\alpha|}\Lambda(D^{\alpha}\varphi).$$

For a function $f \in C^{\infty}(\Omega)$ we define the product of the function f and the distribution Λ as a functional on $\mathcal{D}(\Omega)$ given by the formula

$$(f\Lambda)(\varphi) = \Lambda(f\varphi).$$

Proposition 109 Let $\Omega \subset \mathbb{R}^d$ be open, $\Lambda \in \mathcal{D}(\Omega)^*$, $\alpha \in \mathbb{N}_0^d$, and $f \in C^{\infty}(\Omega)$. Then the following hold: (a) $D^{\alpha}\Lambda \in \mathcal{D}(\Omega)^*$.

Let $\Omega \subset \mathbb{R}^d$ be open, $\Lambda \in \mathcal{D}(\Omega)^*$, $\alpha \in \mathbb{N}_0^d$, and $f \in C^{\infty}(\Omega)$. Then the following hold:

- (a) $D^{\alpha}\Lambda \in \mathcal{D}(\Omega)^*$.
- (b) $f\Lambda \in \mathcal{D}(\Omega)^*$.

Let $\Omega \subset \mathbb{R}^d$ be open, $\Lambda \in \mathcal{D}(\Omega)^*$, $\alpha \in \mathbb{N}_0^d$, and $f \in C^{\infty}(\Omega)$. Then the following hold:

- (a) $D^{\alpha}\Lambda \in \mathcal{D}(\Omega)^*$.
- (b) $f\Lambda \in \mathcal{D}(\Omega)^*$.
- (c) If $g \in L_1^{\text{loc}}(\Omega)$, then $f\Lambda_g = \Lambda_{fg}$.

Proposition 109 Let $\Omega \subset \mathbb{R}^d$ be open, $\Lambda \in \mathcal{D}(\Omega)^*$, $\alpha \in \mathbb{N}_0^d$, and $f \in C^{\infty}(\Omega)$. Then the following hold: (a) $D^{\alpha}\Lambda \in \mathcal{D}(\Omega)^*$. (b) $f\Lambda \in \mathcal{D}(\Omega)^*$. (c) If $g \in L_1^{\text{loc}}(\Omega)$, then $f\Lambda_g = \Lambda_{fg}$. (d) If $g \in C^{|\alpha|}(\Omega)$, then $D^{\alpha}\Lambda_g = \Lambda_{D^{\alpha}g}$.

Let $\Omega \subset \mathbb{R}^d$ be open, $\Lambda \in \mathcal{D}(\Omega)^*$, $\alpha \in \mathbb{N}_0^d$, and $f \in C^{\infty}(\Omega)$. Then the following hold:

(a)
$$D^{\alpha}\Lambda \in \mathcal{D}(\Omega)^*$$
.

(b) $f\Lambda \in \mathcal{D}(\Omega)^*$.

(c) If
$$g \in L_1^{\text{loc}}(\Omega)$$
, then $f\Lambda_g = \Lambda_{fg}$.

(d) If
$$g \in C^{|\alpha|}(\Omega)$$
, then $D^{\alpha}\Lambda_g = \Lambda_{D^{\alpha}g}$.

(e) If d = 1, $\Omega = (a, b)$, and $g \in L_1^{\text{loc}}((a, b))$, then

- Λ'_g = Λ_h, where h ∈ L^{loc}₁((a, b)), if and only if h is the weak derivative of g;
- Λ'_g = Λ_μ, where μ is a Borel complex measure on (a, b), if and only if μ is the weak derivative of g.

Fact 110 Let $\alpha \in \mathbb{N}_0^d$. Then there exist constants $c_{\beta}^{\alpha} \in \mathbb{N}$, $\beta \in \mathbb{N}_0^d$, $\beta \leq \alpha$ (the inequality of vectors is understood coordinatewise) such that for every open $\Omega \subset \mathbb{R}^d$ and every f, $g \in C^{|\alpha|}(\Omega)$ the following holds:

$$D^{lpha}(\mathit{fg}) = \sum_{\substack{eta \in \mathbb{N}_0^d\ eta \leq lpha}} c^{lpha}_{eta} D^{eta} \mathit{f} D^{lpha-eta} g.$$

4. The space of distributions

Let $\Omega \subset \mathbb{R}^d$ be open.

(a) Let $\alpha \in \mathbb{N}_0^d$ and $g \in C^{\infty}(\Omega)$. Then the mappings $\Lambda \mapsto D^{\alpha} \Lambda$ and $\Lambda \mapsto g\Lambda$ are continuous linear mappings of the space $(\mathfrak{D}(\Omega)^*, w^*)$ into itself.

Let $\Omega \subset \mathbb{R}^d$ be open.

- (a) Let $\alpha \in \mathbb{N}_0^d$ and $g \in C^{\infty}(\Omega)$. Then the mappings $\Lambda \mapsto D^{\alpha} \Lambda$ and $\Lambda \mapsto g\Lambda$ are continuous linear mappings of the space $(\mathfrak{D}(\Omega)^*, w^*)$ into itself.
- (b) If $f_n, f \in L_1^{\text{loc}}(\Omega)$ and if $\int_K |f_n f| d\lambda \to 0$ for each compact $K \subset \Omega$, then $\Lambda_{f_n} \to \Lambda_f$.

Let $\Omega \subset \mathbb{R}^d$ be open.

- (a) Let $\alpha \in \mathbb{N}_0^d$ and $g \in C^{\infty}(\Omega)$. Then the mappings $\Lambda \mapsto D^{\alpha} \Lambda$ and $\Lambda \mapsto g\Lambda$ are continuous linear mappings of the space $(\mathcal{D}(\Omega)^*, w^*)$ into itself.
- (b) If $f_n, f \in L_1^{\text{loc}}(\Omega)$ and if $\int_K |f_n f| d\lambda \to 0$ for each compact $K \subset \Omega$, then $\Lambda_{f_n} \to \Lambda_f$.
- (c) The mapping $\varphi \mapsto \Lambda_{\varphi}$ is a one-to-one continuous linear mapping of $(\mathcal{D}(\Omega), \rho)$ into $(\mathcal{D}(\Omega)^*, w^*)$.

Let $\Omega \subset \mathbb{R}^d$ be open.

- (a) Let $\alpha \in \mathbb{N}_0^d$ and $g \in C^{\infty}(\Omega)$. Then the mappings $\Lambda \mapsto D^{\alpha} \Lambda$ and $\Lambda \mapsto g\Lambda$ are continuous linear mappings of the space $(\mathfrak{D}(\Omega)^*, w^*)$ into itself.
- (b) If $f_n, f \in L_1^{\text{loc}}(\Omega)$ and if $\int_K |f_n f| d\lambda \to 0$ for each compact $K \subset \Omega$, then $\Lambda_{f_n} \to \Lambda_f$.
- (c) The mapping $\varphi \mapsto \Lambda_{\varphi}$ is a one-to-one continuous linear mapping of $(\mathcal{D}(\Omega), \rho)$ into $(\mathcal{D}(\Omega)^*, w^*)$.
- (d) If $1 \le p \le \infty$ and $f_n \to f$ in $L_p(\Omega)$, then $\Lambda_{f_n} \to \Lambda_f$.

Let $\Omega \subset \mathbb{R}^d$ be open and let $\{\Lambda_n\}$ be a sequence in $\mathcal{D}(\Omega)^*$ such that $\Lambda(\varphi) = \lim_{n \to \infty} \Lambda_n(\varphi)$ exists for every $\varphi \in \mathcal{D}(\Omega)$. Then $\Lambda \in \mathcal{D}(\Omega)^*$.

5. The support of a distribution

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω . We say that an open set $G \subset \Omega$ is null for Λ if $\Lambda(\varphi) = 0$ for every $\varphi \in \mathcal{D}(G)$.

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω . We say that an open set $G \subset \Omega$ is null for Λ if $\Lambda(\varphi) = 0$ for every $\varphi \in \mathcal{D}(G)$.

Theorem 114

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω . The set $G = \bigcup \{H \subset \Omega; H \text{ is null for } \Lambda\}$ is null for Λ and it is the largest null set for Λ , i.e. if $H \subset \Omega$ is null for Λ , then $H \subset G$.

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω . We say that an open set $G \subset \Omega$ is null for Λ if $\Lambda(\varphi) = 0$ for every $\varphi \in \mathcal{D}(G)$.

Theorem 114

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω . The set $G = \bigcup \{H \subset \Omega; H \text{ is null for } \Lambda\}$ is null for Λ and it is the largest null set for Λ , i.e. if $H \subset \Omega$ is null for Λ , then $H \subset G$.

Definition 115

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω . The support of the distribution Λ is defined as supp $\Lambda = \Omega \setminus G$, where G is the largest null set for Λ .

Theorem 116 Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω . (a) If $f \in C(\Omega)$, then supp $\Lambda_f = \text{supp } f$.

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω .

- (a) If $f \in C(\Omega)$, then supp $\Lambda_f = \text{supp } f$.
- (b) If μ is a Borel complex measure on Ω , then supp $\Lambda_{\mu} = \text{supp } \mu$.

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω .

(a) If $f \in C(\Omega)$, then supp $\Lambda_f = \text{supp } f$.

- (b) If μ is a Borel complex measure on Ω , then supp $\Lambda_{\mu} = \text{supp } \mu$.
- (c) If supp Λ is compact, then there exist $N \in \mathbb{N}_0$ and $C \ge 0$ such that $|\Lambda(\varphi)| \le C \|\varphi\|_N$ for every $\varphi \in \mathcal{D}(\Omega)$. In particular, Λ is of a finite order.

Let $\Omega \subset \mathbb{R}^d$ be open and let Λ be a distribution on Ω .

(a) If $f \in C(\Omega)$, then supp $\Lambda_f = \text{supp } f$.

- (b) If μ is a Borel complex measure on Ω , then supp $\Lambda_{\mu} = \text{supp } \mu$.
- (c) If supp Λ is compact, then there exist $N \in \mathbb{N}_0$ and $C \ge 0$ such that $|\Lambda(\varphi)| \le C \|\varphi\|_N$ for every $\varphi \in \mathcal{D}(\Omega)$. In particular, Λ is of a finite order.

(d) supp $\Lambda = \{z\}$ for $z \in \Omega$ if and only if $\Lambda = \sum_{|\alpha| \le N} c_{\alpha} D^{\alpha} \Lambda_{\delta_z}$ for some $N \in \mathbb{N}_0$ and constants $c_{\alpha}, \alpha \in \mathbb{N}_0^d, |\alpha| \le N$ not all zero.

6. Schwartz space

Lemma 117

For $N \in \mathbb{N}$ the function $x \mapsto (1 + ||x||^2)^N$ is a polynomial on \mathbb{R}^d . For every polynomial P on \mathbb{R}^d there exist $N \in \mathbb{N}$ and C > 0 such that $|P(x)| \leq C(1 + ||x||^2)^N$ for each $x \in \mathbb{R}^d$.

Definition 118 The Schwartz space on \mathbb{R}^d is defined as follows:

 $\mathscr{S}_{d} = \{ f \in C^{\infty}(\mathbb{R}^{d}, \mathbb{C}); \ PD^{\alpha}f \text{ is bounded for each } \alpha \in \mathbb{N}_{0}^{d} \\ \text{and each polynomial } P \text{ on } \mathbb{R}^{d} \}.$

Lemma 119 Let $d \in \mathbb{N}$, $1 \le p < \infty$, $N > \frac{d}{2p}$, and $h(x) = \frac{1}{(1+||x||^2)^N}$ for $x \in \mathbb{R}^d$. Then $h \in L_p(\mathbb{R}^d)$.

The Schwartz space has the following properties: (a) $\mathcal{D}(\mathbb{R}^d) \subset \mathscr{S}_d \subset C_0(\mathbb{R}^d) \cap \bigcap_{1 \le p \le \infty} L_p(\mathbb{R}^d).$

The Schwartz space has the following properties:

- (a) $\mathcal{D}(\mathbb{R}^d) \subset \mathscr{S}_d \subset C_0(\mathbb{R}^d) \cap \bigcap_{1 \le p < \infty} L_p(\mathbb{R}^d).$
- (b) If $f \in \mathscr{S}_d$, $a \in \mathbb{R} \setminus \{0\}$, $b \in \mathbb{R}^d$, and h(x) = f(ax + b), then $h \in \mathscr{S}_d$.

The Schwartz space has the following properties:

(a) $\mathcal{D}(\mathbb{R}^d) \subset \mathcal{S}_d \subset \mathcal{C}_0(\mathbb{R}^d) \cap \bigcap_{1 \le p < \infty} L_p(\mathbb{R}^d).$

- (b) If $f \in \mathscr{S}_d$, $a \in \mathbb{R} \setminus \{0\}$, $b \in \mathbb{R}^d$, and h(x) = f(ax + b), then $h \in \mathscr{S}_d$.
- (c) If $f \in \mathscr{S}_d$ and α is a multi-index of length d, then $D^{\alpha}f \in \mathscr{S}_d$.

The Schwartz space has the following properties:

(a) $\mathcal{D}(\mathbb{R}^d) \subset \mathscr{S}_d \subset C_0(\mathbb{R}^d) \cap \bigcap_{1 \le p < \infty} L_p(\mathbb{R}^d).$

- (b) If $f \in \mathscr{S}_d$, $a \in \mathbb{R} \setminus \{0\}$, $b \in \mathbb{R}^d$, and h(x) = f(ax + b), then $h \in \mathscr{S}_d$.
- (c) If $f \in \mathscr{S}_d$ and α is a multi-index of length d, then $D^{\alpha}f \in \mathscr{S}_d$.
- (d) If f ∈ S_d and if g ∈ C[∞](ℝ^d) is bounded and has all partial derivatives of all orders bounded (in particular, if g ∈ S_d), then fg ∈ S_d.

The Schwartz space has the following properties:

(a) $\mathcal{D}(\mathbb{R}^d) \subset \mathscr{S}_d \subset C_0(\mathbb{R}^d) \cap \bigcap_{1 \le p < \infty} L_p(\mathbb{R}^d).$

- (b) If $f \in \mathscr{S}_d$, $a \in \mathbb{R} \setminus \{0\}$, $b \in \mathbb{R}^d$, and h(x) = f(ax + b), then $h \in \mathscr{S}_d$.
- (c) If $f \in \mathscr{S}_d$ and α is a multi-index of length d, then $D^{\alpha}f \in \mathscr{S}_d$.
- (d) If f ∈ S_d and if g ∈ C[∞](ℝ^d) is bounded and has all partial derivatives of all orders bounded (in particular, if g ∈ S_d), then fg ∈ S_d.
- (e) If $f \in \mathscr{S}_d$ and $P \colon \mathbb{R}^d \to \mathbb{C}$ is a polynomial, then $Pf \in \mathscr{S}_d$.

For $N \in \mathbb{N}_0$ and $f \in \mathscr{S}_d$ put

$$\nu_N(f) = \max_{|\alpha| \le N} \|x \mapsto (1 + \|x\|^2)^N D^{\alpha} f(x)\|_{\infty}.$$

For $N \in \mathbb{N}_0$ and $f \in \mathscr{S}_d$ put

$$\nu_N(f) = \max_{|\alpha| \le N} \|x \mapsto (1 + \|x\|^2)^N D^{\alpha} f(x)\|_{\infty}.$$

Denote by σ the Hausdorff locally convex topology on \mathscr{S}_d generated by the system $\{\nu_N\}_{N=0}^{\infty}$. This topology is metrisable by the metric from Lemma 50.

The metric from Lemma 50 corresponding to the system $\{v_N\}_{N=0}^{\infty}$ is complete. The space (\mathscr{S}_d, σ) is then a Fréchet space.

The metric from Lemma 50 corresponding to the system $\{v_N\}_{N=0}^{\infty}$ is complete. The space (\mathscr{S}_d, σ) is then a Fréchet space. The topology σ has the following properties:

- (a) Let $\{f_n\}$ be a sequence in \mathscr{S}_d and $f \in \mathscr{S}_d$. The following statements are equivalent:
 - (i) $f_n \to f$ in the topology σ .
 - (ii) $(1 + ||x||^2)^N D^{\alpha} f_n \rightarrow (1 + ||x||^2)^N D^{\alpha} f$ uniformly on \mathbb{R}^d for every $N \in \mathbb{N}_0$ and every multi-index α of length d.
 - (iii) $PD^{\alpha}f_n \rightarrow PD^{\alpha}f$ uniformly on \mathbb{R}^d for every polynomial P and every multi-index α of length d.

The metric from Lemma 50 corresponding to the system $\{v_N\}_{N=0}^{\infty}$ is complete. The space (\mathscr{S}_d, σ) is then a Fréchet space. The topology σ has the following properties:

- (a) Let $\{f_n\}$ be a sequence in \mathscr{S}_d and $f \in \mathscr{S}_d$. The following statements are equivalent:
 - (i) $f_n \rightarrow f$ in the topology σ .
 - (ii) $(1 + ||x||^2)^N D^{\alpha} f_n \to (1 + ||x||^2)^N D^{\alpha} f$ uniformly on \mathbb{R}^d for every $N \in \mathbb{N}_0$ and every multi-index α of length d.
 - (iii) $PD^{\alpha}f_n \rightarrow PD^{\alpha}f$ uniformly on \mathbb{R}^d for every polynomial P and every multi-index α of length d.
- (b) If $f_n \to f$ in the space (\mathscr{S}_d, σ) , then $f_n \to f$ in $L_p(\mathbb{R}^d)$ for each $1 \le p < \infty$.

The metric from Lemma 50 corresponding to the system $\{v_N\}_{N=0}^{\infty}$ is complete. The space (\mathscr{S}_d, σ) is then a Fréchet space. The topology σ has the following properties:

- (a) Let $\{f_n\}$ be a sequence in \mathscr{S}_d and $f \in \mathscr{S}_d$. The following statements are equivalent:
 - (i) $f_n \rightarrow f$ in the topology σ .
 - (ii) $(1 + ||x||^2)^N D^{\alpha} f_n \to (1 + ||x||^2)^N D^{\alpha} f$ uniformly on \mathbb{R}^d for every $N \in \mathbb{N}_0$ and every multi-index α of length d.
 - (iii) $PD^{\alpha}f_n \rightarrow PD^{\alpha}f$ uniformly on \mathbb{R}^d for every polynomial P and every multi-index α of length d.
- (b) If $f_n \to f$ in the space (\mathscr{S}_d, σ) , then $f_n \to f$ in $L_p(\mathbb{R}^d)$ for each $1 \le p < \infty$.
- (c) If α is a multi-index of length d, P is a polynomial on ℝ^d, and g ∈ 𝔅_d, then the mappings f → D^αf, f → Pf, and f → gf are continuous linear mappings from (𝔅_d, σ) to (𝔅_d, σ).

Proposition 122 Let $f \in \mathscr{S}_d$ and $\alpha \in \mathbb{N}_0^d$. (a) $\widehat{D^{\alpha}f}(t) = (it)^{\alpha}\widehat{f}(t)$ for every $t \in \mathbb{R}^d$.

Proposition 122
Let
$$f \in \mathscr{S}_d$$
 and $\alpha \in \mathbb{N}_0^d$.
(a) $\widehat{D^{\alpha}f}(t) = (it)^{\alpha}\widehat{f}(t)$ for every $t \in \mathbb{R}^d$.
(b) $D^{\alpha}\widehat{f} = \widehat{m_{\alpha}}f$, where $m_{\alpha}(x) = (-ix)^{\alpha}$.

Theorem 123 *The Fourier transform is an isomorphism of the space* (\mathscr{S}_d, σ) *onto itself. Moreover, if* $f \in \mathscr{S}_d$ *, then*

$$\widehat{\widehat{f}}(x) = f(-x)$$
 for every $x \in \mathbb{R}^d$ and $\widehat{\widehat{\widehat{f}}} = f$.

7. Tempered distributions

L93, F110, P120, T121(a), P103

Lemma 124 Let $K \subset \mathbb{R}^d$ be compact. Then $\sigma \upharpoonright_{\mathcal{D}(K)} = \tau_K$.

Lemma 124 Let $K \subset \mathbb{R}^d$ be compact. Then $\sigma \upharpoonright_{\mathfrak{D}(K)} = \tau_K$.

Proposition 125

The subspace $\mathfrak{D}(\mathbb{R}^d)$ is dense in (\mathscr{S}_d, σ) and $\sigma \upharpoonright_{\mathfrak{D}(\mathbb{R}^d)} \subset \tau$. In other words, the embedding $Id : (\mathfrak{D}(\mathbb{R}^d), \tau) \to (\mathscr{S}_d, \sigma)$ is continuous and onto a dense subset.

Definition 126

Distributions on \mathbb{R}^d which are restrictions of functionals from $(\mathscr{S}_d, \sigma)^*$ are called tempered distributions.

Definition 126

Distributions on \mathbb{R}^d which are restrictions of functionals from $(\mathscr{S}_d, \sigma)^*$ are called tempered distributions.

Theorem 127 Let $\Lambda \in \mathcal{D}(\mathbb{R}^d)^*$. The following statements are equivalent:

- (i) Λ is tempered.
- (ii) Λ is continuous also in the (weaker) topology σ .
- (iii) There exist $N \in \mathbb{N}_0$ and $C \ge 0$ such that $|\Lambda(\varphi)| \le C \nu_N(\varphi)$ for every $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Proposition 128

Let Λ be a tempered distribution on \mathbb{R}^d , $\alpha \in \mathbb{N}_0^d$, $g \in \mathcal{S}_d$, and let P be a polynomial on \mathbb{R}^d . Then $D^{\alpha}\Lambda$, $g\Lambda$, and $P\Lambda$ are also tempered distributions and the formulas

•
$$D^{\alpha} \Lambda(f) = (-1)^{|\alpha|} \Lambda(D^{\alpha} f),$$

•
$$(g\Lambda)(f) = \Lambda(gf)$$
, and

•
$$(P\Lambda)(f) = \Lambda(Pf)$$

hold for every $f \in \mathscr{S}_d$.

Proposition 128

Let Λ be a tempered distribution on \mathbb{R}^d , $\alpha \in \mathbb{N}_0^d$, $g \in \mathcal{S}_d$, and let P be a polynomial on \mathbb{R}^d . Then $D^{\alpha}\Lambda$, $g\Lambda$, and $P\Lambda$ are also tempered distributions and the formulas

- $D^{\alpha}\Lambda(f) = (-1)^{|\alpha|}\Lambda(D^{\alpha}f),$
- $(g\Lambda)(f) = \Lambda(gf)$, and
- $(P\Lambda)(f) = \Lambda(Pf)$

hold for every $f \in \mathscr{S}_d$. Further, the mappings $\Lambda \mapsto D^{\alpha} \Lambda$, $\Lambda \mapsto g\Lambda$, and $\Lambda \mapsto P\Lambda$ are continuous linear mappings from the space (\mathscr{S}_d^*, w^*) into itself.

Definition 129 The Fourier transform of a tempered distribution Λ on \mathbb{R}^d is defined by the formula $\widehat{\Lambda}(f) = \Lambda(\widehat{f})$ for $f \in \mathscr{S}_d$. Definition 129 The Fourier transform of a tempered distribution Λ on \mathbb{R}^d is defined by the formula $\widehat{\Lambda}(f) = \Lambda(\widehat{f})$ for $f \in \mathscr{S}_d$.

Theorem 130

(a) If $g \in L_1(\mathbb{R}^d)$, then $\Lambda_{\widehat{g}}$ is a tempered distribution and $\widehat{\Lambda_g} = \Lambda_{\widehat{g}}$.

Definition 129 The Fourier transform of a tempered distribution Λ on \mathbb{R}^d is defined by the formula $\widehat{\Lambda}(f) = \Lambda(\widehat{f})$ for $f \in \mathscr{S}_d$.

Theorem 130

(a) If $g \in L_1(\mathbb{R}^d)$, then $\Lambda_{\widehat{g}}$ is a tempered distribution and $\widehat{\Lambda_g} = \Lambda_{\widehat{g}}$. If $g \in L_2(\mathbb{R}^d)$, then $\widehat{\Lambda_g} = \Lambda_{F(g)}$, where *F* is the extension of the Fourier transform from Plancherel's theorem.

Definition 129 The Fourier transform of a tempered distribution Λ on \mathbb{R}^d is defined by the formula $\widehat{\Lambda}(f) = \Lambda(\widehat{f})$ for $f \in \mathscr{S}_d$.

Theorem 130

(a) If $g \in L_1(\mathbb{R}^d)$, then $\Lambda_{\widehat{g}}$ is a tempered distribution and $\widehat{\Lambda_g} = \Lambda_{\widehat{g}}$. If $g \in L_2(\mathbb{R}^d)$, then $\widehat{\Lambda_g} = \Lambda_{F(g)}$, where *F* is the extension of the Fourier transform from Plancherel's theorem.

(b) If Λ is a tempered distribution on \mathbb{R}^d and $\alpha \in \mathbb{N}_0^d$, then

•
$$\widehat{D^{\alpha}\Lambda} = s_{\alpha}\widehat{\Lambda}$$
, where $s_{\alpha}(x) = (ix)^{\alpha}$, and

•
$$D^{\alpha}\widehat{\Lambda} = \widehat{m_{\alpha}\Lambda}$$
, where $m_{\alpha}(x) = (-ix)^{\alpha}$.

Definition 129 The Fourier transform of a tempered distribution Λ on \mathbb{R}^d is defined by the formula $\widehat{\Lambda}(f) = \Lambda(\widehat{f})$ for $f \in \mathscr{S}_d$.

Theorem 130

(a) If $g \in L_1(\mathbb{R}^d)$, then $\Lambda_{\widehat{g}}$ is a tempered distribution and $\widehat{\Lambda_g} = \Lambda_{\widehat{g}}$. If $g \in L_2(\mathbb{R}^d)$, then $\widehat{\Lambda_g} = \Lambda_{F(g)}$, where *F* is the extension of the Fourier transform from Plancherel's theorem.

- (b) If Λ is a tempered distribution on \mathbb{R}^d and $\alpha \in \mathbb{N}_0^d$, then
 - $\widehat{D^{\alpha}\Lambda} = s_{\alpha}\widehat{\Lambda}$, where $s_{\alpha}(x) = (ix)^{\alpha}$, and
 - $D^{\alpha}\widehat{\Lambda} = \widehat{m_{\alpha}\Lambda}$, where $m_{\alpha}(x) = (-ix)^{\alpha}$.

(c) The Fourier transform \mathcal{F} of tempered distributions is an isomorphism of the space (\mathscr{S}_d^*, w^*) onto itself. The following holds: $\mathcal{F}^4 = Id$.

III. The Bochner integral

1. Measurable mappings

III. The Bochner integral

1. Measurable mappings

Proposition 131

Let Ω be a measurable space and X a metric space. Then the pointwise limit of a sequence of measurable mappings from Ω to X is a measurable mapping.

Definition 132

Let Ω and X be sets. A mapping $f: \Omega \to X$ is called simple if $f(\Omega)$ is a finite set.

Definition 132

Let Ω and X be sets. A mapping $f: \Omega \to X$ is called simple if $f(\Omega)$ is a finite set.

Theorem 133

Let Ω be a measurable space and X a separable metric space. Then $f: \Omega \to X$ is measurable if and only if it is a pointwise limit of a sequence of simple measurable mappings from Ω to X. If (Ω, μ) is a measure space and *M* a set, then the symbol $\mathcal{E}(\Omega, M)$ denotes the set of all mappings defined μ -a. e. on Ω with values in *M*.

If (Ω, μ) is a measure space and *M* a set, then the symbol $\mathcal{E}(\Omega, M)$ denotes the set of all mappings defined μ -a. e. on Ω with values in *M*.

Definition 134 (Salomon Bochner (1933))

Let (Ω, μ) be a measure space and X a metric space. A mapping from $\mathcal{A}(\Omega, X)$ is called strongly measurable (or Bochner measurable) with respect to μ if it is a μ -a. e. pointwise limit of a sequence of simple measurable mappings from Ω to X.

If (Ω, μ) is a measure space and *M* a set, then the symbol $\mathcal{E}(\Omega, M)$ denotes the set of all mappings defined μ -a. e. on Ω with values in *M*.

Definition 134 (Salomon Bochner (1933))

Let (Ω, μ) be a measure space and X a metric space. A mapping from $\mathcal{A}(\Omega, X)$ is called strongly measurable (or Bochner measurable) with respect to μ if it is a μ -a. e. pointwise limit of a sequence of simple measurable mappings from Ω to X.

Lemma 135

Let (Ω, μ) be a space with a complete measure, X a metric space, and $f \in \mathcal{R}(\Omega, X)$. Then f is strongly measurable if and only if it is measurable and there exists $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.

Corollary 136

Let (Ω, μ) be a space with a complete measure, X a metric space, and $\{f_n\} \subset \mathcal{R}(\Omega, X)$ a sequence of strongly measurable mappings that converges pointwise a. e. to $f \in \mathcal{R}(\Omega, X)$. Then f is strongly measurable.

Lemma 137

Let Ω and X be measurable spaces. Assume that X is also a vector space over \mathbb{K} , $f, g: \Omega \to X$ are simple measurable mappings, and $\alpha \in \mathbb{K}$. Then f + g and αf are simple measurable mappings.

Lemma 137

Let Ω and X be measurable spaces. Assume that X is also a vector space over \mathbb{K} , $f, g: \Omega \to X$ are simple measurable mappings, and $\alpha \in \mathbb{K}$. Then f + g and αf are simple measurable mappings.

Corollary 138

Let (Ω, μ) be a measure space, X a normed linear space over \mathbb{K} , $f, g \in \mathcal{F}(\Omega, X)$ strongly measurable, and $\alpha \in \mathbb{K}$. Then f + g and αf are strongly measurable mappings.

Definition 139 (Izrail Moisejevič Gelfand (1938), Billy James Pettis (1938))

Let (Ω, μ) be a measure space and X a normed linear space. A mapping $f \in \mathcal{A}(\Omega, X)$ s called weakly measurable if $\phi \circ f$ is a measurable function for every $\phi \in X^*$.

Definition 140 Let *X* be a normed linear space. We say that $A \subset B_{X^*}$ is 1-norming if $||x|| = \sup_{f \in A} |f(x)|$ for every $x \in X$.

Definition 140

Let *X* be a normed linear space. We say that $A \subset B_{X^*}$ is 1-norming if $||x|| = \sup_{f \in A} |f(x)|$ for every $x \in X$.

Lemma 141 Let X be a normed linear space. If $A \subset B_{X^*}$ is w^{*}-dense in B_{X^*} , then A is 1-norming.

Lemma 142

Let X be a normed linear space and let $A \subset B_{X^*}$ be 1-norming. Then $A_\circ = B_X$.

Lemma 142

Let X be a normed linear space and let $A \subset B_{X^*}$ be 1-norming. Then $A_\circ = B_X$. More generally, $B(x, r) = \bigcap_{f \in A} \{y \in X; |f(y) - f(x)| \le r\}$ for every $x \in X$ and r > 0.

Lemma 142

Let X be a normed linear space and let $A \subset B_{X^*}$ be 1-norming. Then $A_\circ = B_X$. More generally, $B(x, r) = \bigcap_{f \in A} \{y \in X; |f(y) - f(x)| \le r\}$ for every $x \in X$ and r > 0.

Lemma 143

Let X be a normed linear space and $A \subset X$. Then span_Q A is dense in span A and $B_X \cap \text{span}_Q A$ is dense in $B_X \cap \text{span} A$.

Lemma 142

Let X be a normed linear space and let $A \subset B_{X^*}$ be 1-norming. Then $A_\circ = B_X$. More generally, $B(x, r) = \bigcap_{f \in A} \{y \in X; |f(y) - f(x)| \le r\}$ for every $x \in X$ and r > 0.

Lemma 143

Let X be a normed linear space and $A \subset X$. Then $\operatorname{span}_{\mathbb{Q}} A$ is dense in $\operatorname{span} A$ and $B_X \cap \operatorname{span}_{\mathbb{Q}} A$ is dense in $B_X \cap \operatorname{span} A$. It follows that if $M \subset X$ is separable, then $\operatorname{span} M$ is also separable.

Let (Ω, μ) be a space with a complete measure, X a normed linear space, and $f \in \mathcal{F}(\Omega, X)$. The following statements are equivalent:

(i) f is strongly measurable.

Let (Ω, μ) be a space with a complete measure, X a normed linear space, and $f \in \mathcal{E}(\Omega, X)$. The following statements are equivalent:

- (i) f is strongly measurable.
- (ii) *f* is measurable and there exists $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.

Let (Ω, μ) be a space with a complete measure, X a normed linear space, and $f \in \mathcal{F}(\Omega, X)$. The following statements are equivalent:

- (i) f is strongly measurable.
- (ii) *f* is measurable and there exists $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.
- (iii) *f* is weakly measurable and there exists $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.

Let (Ω, μ) be a space with a complete measure, X a normed linear space, and $f \in \mathcal{F}(\Omega, X)$. The following statements are equivalent:

- (i) f is strongly measurable.
- (ii) *f* is measurable and there exists $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.
- (iii) *f* is weakly measurable and there exists $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.
- (iv) There exist E ⊂ Ω, Y ⊂ X a separable subspace, and A ⊂ B_{Y*} countable such that μ(E) = 0, f(Ω \ E) ⊂ Y, B_{Y*} ∩ span A is w*-dense in B_{Y*}, and φ ∘ f is measurable for each φ ∈ A.

Proposition 145

Let (Ω, μ) be a space with a complete measure, X a normed linear space, and let $f \in \mathcal{F}(\Omega, X)$ be strongly measurable. If $\phi \circ f = 0$ a. e. for every $\phi \in X^*$, then f = 0 a. e.

2. The Bochner integral

Definition 146

Let (Ω, μ) be a measure space and X a normed linear space. A mapping $f: \Omega \to X$ is called a step mapping if it is simple, measurable, and $\mu(f^{-1}(x)) < +\infty$ for each $x \in f(\Omega) \setminus \{0\}$.

Definition 146

Let (Ω, μ) be a measure space and X a normed linear space. A mapping $f: \Omega \to X$ is called a step mapping if it is simple, measurable, and $\mu(f^{-1}(x)) < +\infty$ for each $x \in f(\Omega) \setminus \{0\}$.

Definition 147

Let (Ω, μ) be a measure space, *X* a normed linear space, and $f: \Omega \to X$ a step mapping. Then for each measurable $E \subset \Omega$ we define the Bochner integral of *f* over *E* as

$$\int_E f \,\mathrm{d}\mu = \sum_{x \in f(\Omega) \setminus \{0\}} \mu(f^{-1}(x) \cap E) x.$$

Lemma 148

Let (Ω, μ) be a measure space, X a normed linear space, and f: $\Omega \to X$ a step mapping. If A, B $\subset \Omega$ are disjoint measurable sets, then $\int_{A \cup B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu$.

Lemma 148

Let (Ω, μ) be a measure space, X a normed linear space, and f: $\Omega \to X$ a step mapping. If A, B $\subset \Omega$ are disjoint measurable sets, then $\int_{A \cup B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu$.

Theorem 149

Let (Ω, μ) be a measure space, X a normed linear space over \mathbb{K} , $f, g: \Omega \to X$ step mappings, and $\alpha \in \mathbb{K}$. Then f + g and αf are step mappings and $\int_E (f + g) d\mu = \int_E f d\mu + \int_E g d\mu$ and $\int_E \alpha f d\mu = \alpha \int_E f d\mu$ for every meaurable $E \subset \Omega$. If (Ω, μ) is a measure space, *X* a normed linear space, and $f \in \mathcal{F}(\Omega, X)$ a measurable mapping, then the function $t \mapsto ||f(t)||$ is measurable on Ω , since it is a composition of a continuous function $||\cdot||$ with a measurable mapping *f*. This function will be denoted by ||f||. If (Ω, μ) is a measure space, *X* a normed linear space, and $f \in \mathcal{F}(\Omega, X)$ a measurable mapping, then the function $t \mapsto ||f(t)||$ is measurable on Ω , since it is a composition of a continuous function $||\cdot||$ with a measurable mapping *f*. This function will be denoted by ||f||.

Lemma 150

Let (Ω, μ) be a measure space, X a normed linear space, and $f: \Omega \to X$ a simple measurable mapping. Then f is a step mapping if and only if $\int_{\Omega} ||f|| d\mu < +\infty$. In this case $||\int_{E} f d\mu|| \leq \int_{E} ||f|| d\mu$ for every measurable $E \subset \Omega$.

Lemma 151

Let (Ω, μ) be a measure space, X a Banach space, $f \in \mathcal{A}(\Omega, X)$, and let $f_n: \Omega \to X$, $n \in \mathbb{N}$ be a sequence of step mappings such that $\lim_{n\to\infty} \int_{\Omega} ||f_n(t) - f(t)|| d\mu(t) = 0$. Then $\lim_{n\to\infty} \int_E f_n d\mu$ exists for every measurable $E \subset \Omega$.

Lemma 151

Let (Ω, μ) be a measure space, X a Banach space, $f \in \mathcal{R}(\Omega, X)$, and let $f_n: \Omega \to X$, $n \in \mathbb{N}$ be a sequence of step mappings such that $\lim_{n\to\infty} \int_{\Omega} ||f_n(t) - f(t)|| d\mu(t) = 0$. Then $\lim_{n\to\infty} \int_E f_n d\mu$ exists for every measurable $E \subset \Omega$. Moreover, if $g_n: \Omega \to X$, $n \in \mathbb{N}$ is a sequence of step mappings with the same property as $\{f_n\}$, then $\lim_{n\to\infty} \int_E g_n d\mu = \lim_{n\to\infty} \int_E f_n d\mu$.

Definition 152

Let (Ω, μ) be a measure space, *X* a Banach space, and $f \in \mathcal{A}(\Omega, X)$. We say that *f* is Bochner integrable if there exists a sequence $f_n: \Omega \to X$, $n \in \mathbb{N}$ of step mappings such that $\lim_{n\to\infty} \int_{\Omega} ||f_n - f|| \, d\mu = 0$. For every measurable $E \subset \Omega$ we then define the Bochner integral of *f* over *E* as

$$\int_E f \,\mathrm{d}\mu = \lim_{n \to \infty} \int_E f_n \,\mathrm{d}\mu.$$

Let (Ω, μ) be a space with a complete measure, X a Banach space, and $f \in \mathcal{F}(\Omega, X)$. Then f is Bochner integrable if and only if it is strongly measurable and ||f|| is Lebesgue integrable. In this case $\left\|\int_{E} f d\mu\right\| \leq \int_{E} ||f|| d\mu$ for every measurable $E \subset \Omega$.

Let (Ω, μ) be a space with a complete measure, X a Banach space over \mathbb{K} , $f, g \in \mathcal{F}(\Omega, X)$ Bochner integrable and $\alpha \in \mathbb{K}$. Then the mappings f + g and αf are Bochner integrable and $\int_E (f + g) d\mu = \int_E f d\mu + \int_E g d\mu$ and $\int_E \alpha f d\mu = \alpha \int_E f d\mu$ for every measurable $E \subset \Omega$.

Theorem 155 (dominated convergence)

Let (Ω, μ) be a space with a complete measure, X a Banach space, and let $\{f_n\} \subset \mathcal{A}(\Omega, X)$ be a sequence of strongly measurable mappings. Let $f \in \mathcal{A}(\Omega, X)$ be such that $f_n \to f$ pointwise a. e. and let $g \in L_1(\mu)$ be such that for each $n \in \mathbb{N}$ we have $||f_n(t)|| \leq g(t)$ for a. a. $t \in \Omega$. Then f_n and f are Bochner integrable and $\lim_{n \to \infty} \int_{\Omega} ||f_n - f|| \, d\mu = 0$. In particular, $\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$.

Theorem 155 (dominated convergence)

Let (Ω, μ) be a space with a complete measure, X a Banach space, and let $\{f_n\} \subset \mathcal{A}(\Omega, X)$ be a sequence of strongly measurable mappings. Let $f \in \mathcal{A}(\Omega, X)$ be such that $f_n \to f$ pointwise a. e. and let $g \in L_1(\mu)$ be such that for each $n \in \mathbb{N}$ we have $||f_n(t)|| \leq g(t)$ for a. a. $t \in \Omega$. Then f_n and f are Bochner integrable and $\lim_{n \to \infty} \int_{\Omega} ||f_n - f|| \, d\mu = 0$. In particular, $\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$.

Theorem 156

Let (Ω, μ) be a space with a finite complete measure, X a Banach space, and let $\{f_n\} \subset \mathcal{F}(\Omega, X)$ be a sequence of strongly measurable mappings. Let $f \in \mathcal{F}(\Omega, X)$ be Bochner integrable such that $f_n \to f$ uniformly a. e. on Ω . Then $\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu$.

Theorem 157 (absolute continuity of the Bochner integral)

Let (Ω, μ) be a space with a complete measure, X a Banach space, and let $f \in \mathcal{F}(\Omega, X)$ be Bochner integrable. Then for each $\varepsilon > 0$ there exists $\delta > 0$ such that $\left\| \int_{E} f d\mu \right\| < \varepsilon$ whenever $E \subset \Omega$ is such that $\mu(E) < \delta$.

Let (Ω, μ) be a space with a complete measure, X and Y Banach spaces, and let $f \in \mathcal{E}(\Omega, X)$ be Bochner integrable and $T \in \mathcal{L}(X, Y)$. Then $T \circ f$ is Bochner integrable and

$$\int_{E} T \circ f \, \mathrm{d}\mu = T \left(\int_{E} f \, \mathrm{d}\mu \right)$$

for every measurable $E \subset \Omega$.

Fact 159 Let (Ω, μ) be a space with a complete measure, X a Banach space, $x \in X$, and $f \in L_1(\mu)$. Then $\int_E f(t) x d\mu(t) = (\int_E f d\mu) x$ for every measurable $E \subset \Omega$.

Let (Ω, μ) be a space with a complete measure, X a Banach space, and let $f \in \mathcal{R}(\Omega, X)$ be Bochner integrable. If $\int_E f d\mu = 0$ for each measurable $E \subset \Omega$, then f = 0 a. e.

Let (Ω, μ) be a space with a complete measure, X a Banach space, and let $f \in \mathcal{F}(\Omega, X)$ be Bochner integrable. Then

$$\frac{1}{\mu(E)}\int_E f\,\mathrm{d}\mu\in\overline{\mathrm{conv}}\,f(E).$$

for each $E \subset \Omega$ of positive measure.

Theorem 162 (Fubini's theorem for the Bochner integral)

Let (Ω_1, μ_1) and (Ω_2, μ_2) be spaces with σ -finite complete measures and let ν be a completion of the product measure $\mu_1 \times \mu_2$. Let X be a Banach space and let $f \in \mathcal{R}(\Omega_1 \times \Omega_2, X)$ be Bochner integrable with respect to ν . Then for μ_1 -a. a. $s \in \Omega_1$ the mapping $t \mapsto f(s, t)$ is Bochner integrable on Ω_2 , for μ_2 -a. a. $t \in \Omega_2$ the mapping $s \mapsto f(s, t)$ is Bochner integrable on Ω_1 ;

Theorem 162 (Fubini's theorem for the Bochner integral)

Let (Ω_1, μ_1) and (Ω_2, μ_2) be spaces with σ -finite complete measures and let ν be a completion of the product measure $\mu_1 \times \mu_2$. Let X be a Banach space and let $f \in \mathcal{R}(\Omega_1 \times \Omega_2, X)$ be Bochner integrable with respect to ν . Then for μ_1 -a. a. $s \in \Omega_1$ the mapping $t \mapsto f(s, t)$ is Bochner integrable on Ω_2 , for μ_2 -a. a. $t \in \Omega_2$ the mapping $s \mapsto f(s, t)$ is Bochner integrable on Ω_1 ; the mappings $\psi_1(s) = \int_{\Omega_2} f(s, t) d\mu_2(t)$ and $\psi_2(t) = \int_{\Omega_1} f(s, t) d\mu_1(s)$ defined a. e. on Ω_1 , resp. Ω_2 are Bochner integrable and

$$\int_{\Omega_1} \psi_1 \, \mathrm{d}\mu_1 = \int_{\Omega_1 \times \Omega_2} f \, \mathrm{d}\nu = \int_{\Omega_2} \psi_2 \, \mathrm{d}\mu_2.$$

3. The Lebesgue-Bochner spaces

Definition 163

Let (Ω, μ) be a space with a complete measure, X a Banach space, and $1 \le p \le \infty$. The symbol $L_p(\mu, X)$ denotes the set of all strongly measurable mappings from $\mathcal{F}(\Omega, X)$ such that $||f|| \in L_p(\mu)$, factorised by the equality μ -a. e.

Definition 163

Let (Ω, μ) be a space with a complete measure, X a Banach space, and $1 \le p \le \infty$. The symbol $L_p(\mu, X)$ denotes the set of all strongly measurable mappings from $\mathcal{A}(\Omega, X)$ such that $||f|| \in L_p(\mu)$, factorised by the equality μ -a. e. Further, for $f \in L_p(\mu, X)$ we define

 $\|f\|_{L_{p}(\mu,X)} = \|t \mapsto \|f(t)\|\|_{L_{p}(\mu)}.$

Let (Ω, μ) be a space with a complete measure, X a Banach space, and $1 \le p \le \infty$.

(a) $L_p(\mu, X)$ is a Banach space with the norm $||f||_{L_p(\mu, X)}$.

Let (Ω, μ) be a space with a complete measure, X a Banach space, and $1 \le p \le \infty$.

- (a) $L_p(\mu, X)$ is a Banach space with the norm $||f||_{L_p(\mu, X)}$.
- (b) If X is a Hilbert space, then L₂(μ, X) is a Hilbert space with the scalar product

$$\langle f, g \rangle_{L_2(\mu, X)} = \int_{\Omega} \langle f(t), g(t) \rangle \,\mathrm{d}\mu.$$

Let (Ω, μ) be a space with a complete measure, X a Banach space, and $1 \le p < \infty$.

(a) The set of all step mappings from Ω to X is dense in $L_{\rho}(\mu, X)$.

Let (Ω, μ) be a space with a complete measure, X a Banach space, and $1 \le p < \infty$.

- (a) The set of all step mappings from Ω to X is dense in $L_p(\mu, X)$.
- (b) If X and L_p(μ) are separable, then L_p(μ, X) is also separable.

IV. Compact convex sets

Let *C* be a convex subset of a vector space. We say that $x \in C$ is an extreme point of the set *C* if *x* is not an inner point of any segment lying in *C*, i.e. if $u, v \in C$ and $x = \lambda u + (1 - \lambda)v$ for some $\lambda \in (0, 1)$, then u = v.

Let *C* be a convex subset of a vector space. We say that $x \in C$ is an extreme point of the set *C* if *x* is not an inner point of any segment lying in *C*, i.e. if $u, v \in C$ and $x = \lambda u + (1 - \lambda)v$ for some $\lambda \in (0, 1)$, then u = v. The set of all extreme points of *C* is denoted by ext *C*.

Let *C* be a convex subset of a real vector space *X*. An affine hyperplane $W \subset X$ is called a supporting hyperplane of the set *C* (at a point $x \in C$), if $W \cap C \neq \emptyset$ (resp. $x \in W \cap C$) and *C* lies completely in one of the half-spaces determined by *W* (i.e. there exist a non-zero linear form *f* on *X* and $\alpha \in \mathbb{R}$ such that $W = f^{-1}(\alpha)$ and $\sup_C f \leq \alpha$).

Fact 168 Let C be a convex set in a vector space X. (a) If $B \subset C$ is convex, then $B \cap \text{ext } C \subset \text{ext } B$.

Fact 168

Let C be a convex set in a vector space X.

- (a) If $B \subset C$ is convex, then $B \cap \text{ext } C \subset \text{ext } B$.
- (b) If Y is a vector space and T: X → Y is an affine mapping, then T preserves convex combinations. If T is one-to-one, then ext T(C) = T(ext C).

Fact 168

Let C be a convex set in a vector space X.

- (a) If $B \subset C$ is convex, then $B \cap \text{ext } C \subset \text{ext } B$.
- (b) If Y is a vector space and T: X → Y is an affine mapping, then T preserves convex combinations. If T is one-to-one, then ext T(C) = T(ext C).
- (c) If X is real and $W \subset X$ is a supporting hyperplane of the set C, then $ext(C \cap W) = W \cap ext C$.

Theorem 169

If *C* is a compact convex subset of \mathbb{R}^n , then each point of the set *C* is a convex combination of at most n + 1 extreme points of the set *C*. Therefore C = conv ext C.

Theorem 169

If *C* is a compact convex subset of \mathbb{R}^n , then each point of the set *C* is a convex combination of at most n + 1 extreme points of the set *C*. Therefore C = conv ext C.

Lemma 170

Let $C \subset \mathbb{R}^n$ be convex. The either $\text{Int } C \neq \emptyset$, or C lies in some affine hyperplane in \mathbb{R}^n .

Theorem 169

If *C* is a compact convex subset of \mathbb{R}^n , then each point of the set *C* is a convex combination of at most n + 1 extreme points of the set *C*. Therefore C = conv ext C.

Lemma 170

Let $C \subset \mathbb{R}^n$ be convex. The either $\text{Int } C \neq \emptyset$, or C lies in some affine hyperplane in \mathbb{R}^n .

Corollary 171

If $A \subset \mathbb{R}^n$ and $x \in \text{conv } A$, then there exists at most (n + 1)-element subset $B \subset A$ such that $x \in \text{conv } B$.

Corollary 172 Let $K \subset \mathbb{R}^n$ be compact. Then conv K is also compact.

Corollary 172

Let $K \subset \mathbb{R}^n$ be compact. Then conv K is also compact.

Proposition 173

Let X be a Fréchet space and let $K \subset X$ be compact. Then $\overline{\text{conv}} K$ and $\overline{\text{aconv}} K$ are compact.

C171; P21, P76, P52(b), P20(e), F22, F35(a)

Let *C* be a convex subset of a vector space. We say that a non-empty $E \subset C$ is an extreme subset of *C* if no point of *E* is a non-trivial convex combination of points from *C* some of which lie outside of *E*, i.e. if $\lambda x + (1 - \lambda)y \in E$ for some *x*, $y \in C$ and $\lambda \in (0, 1)$, then $x, y \in E$.

Let *C* be a convex subset of a vector space. We say that a function $f: C \to \mathbb{R}$ is convex if $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ for every $x, y \in C$ and $\lambda \in [0, 1]$.

Lemma 176

Let *C* be a convex subset of a vector space, let $f: C \to \mathbb{R}$ be convex, and let *E* be an extreme subset of *C*. Then the set of points at which *f* attains its maximum over *E* is either empty, or an extreme subset of *C*.

Lemma 176

Let *C* be a convex subset of a vector space, let $f: C \to \mathbb{R}$ be convex, and let *E* be an extreme subset of *C*. Then the set of points at which *f* attains its maximum over *E* is either empty, or an extreme subset of *C*.

Lemma 177

Let X be a topological vector space such that X^* separates the points of X (e.g. a Hausdorff locally convex space) and let $C \subset X$ be convex. Then every compact extreme subset of C contains an extreme point of C. Recall that a real function *f* on a topological space *X* is called upper semi-continuous if the set $\{x \in X; f(x) \ge \alpha\}$ is closed for every $\alpha \in \mathbb{R}$.

Recall that a real function *f* on a topological space *X* is called upper semi-continuous if the set $\{x \in X; f(x) \ge \alpha\}$ is closed for every $\alpha \in \mathbb{R}$.

Theorem 178 (Bauer's maximum principle) Let X be a topological vector space such that X^* separates the points of X (e.g. a Hausdorff locally convex space), let $K \subset X$ be a non-empty compact convex set and $f: K \to \mathbb{R}$ an upper semi-continuous convex function. Then f attains its maximum over K in an extreme point of K.

Theorem 179 (Kreĭn-Milman)

Let *X* be a topological vector space such that X^* separates the points of *X* (e.g. a Hausdorff locally convex space) and let $K \subset X$ be compact and convex. Then $K = \overline{\text{conv}} \operatorname{ext} K$.