
I. Topological vector spaces

1. Elementary properties
Definition 1. Let X be a vector space over K and � a topology on X . If the operations of addition and scalar multiplication are
continuous as mappingsCW X �X ! X and � W K �X ! X , then the pair .X; �/ is called a topological vector space.

The system of all neighbourhoods of a point x 2 X is denoted by �.x/.

Fact 2. Let X be a vector space and � a translation-invariant pseudometric na X . Then

(a) the operation of addition is continuous as a mappingCW .X; �/ � .X; �/! .X; �/ (it is even 2-Lipschitz);

(b) �.nx; 0/ � n�.x; 0/ for every x 2 X and n 2 N.

Proposition 3. Let X be a topological vector space over K.

(a) If a 2 X and � 2 K n f0g, then the operations x 7! x C a and x 7! �x are homeomorphisms of X onto X .

(b) �.x/ D x C �.0/ for every x 2 X .

(c) If U 2 �.0/, then there exists an open V 2 �.0/ such that V C V � U .

Definition 4. Let X be a vector space over K and A � X . The set A is called

� absorbing, if for each x 2 X there exists a �x > 0 such that tx 2 A for every t 2 Œ0; �x �;

� balanced, if ˛A � A for every ˛ 2 K, j˛j � 1.

Proposition 5. Let X be a topological vector space.

(a) Every U 2 �.0/ is absorbing.

(b) �.0/ has a basis consisting of open balanced sets.

Theorem 6 (John von Neumann (1935)). Let X be a vector space and U a system of subsets of X containing 0, which is a basis
of a filter (i.e. it is non-empty and for each U1; U2 2 U there exists a U 2 U such that U � U1 \ U2). Assume that U has the
following properties:

(i) For each U 2 U there exists a V 2 U such that V C V � U .

(ii) Each set in U is absorbing.

(iii) Each set in U is balanced.

Then there is a unique topology � on X such that .X; �/ is a topological vector space and U is a basis of neighbourhoods of 0.

Theorem 7. Let X be a topological vector space.

(a) Let K � X be compact and C � X closed and disjoint from K. Then there exists an open balanced V 2 �.0/ such that
.K C V / \ .C C V / D ;.

(b) X is regular (i.e. a point and a closed set can be separated by open sets).

(c) The following statements are equivalent:

(i) X is Hausdorff.

(ii) X is T1 (i.e. points are closed sets).

(iii) f0g is a closed set.

(iv) f0g D
T
fU I U 2 �.0/g.

Proposition 8. Let X be a topological vector space.

(a) If G � X is open and A � X arbitrary, then ACG is open.

(b) If F � X is closed and K � X compact, then F CK is closed.

(c) If K;L � X are compact, then K C L is also compact.

Proposition 9. Let X be a topological vector space over K and A;B � X . Then the following hold:

(a) A D
T
fAC U I U 2 �.0/g.
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(b) AC B � AC B and IntAC IntB � Int.AC B/.

(c) �A D �A and � IntA D Int.�A/ for any � 2 K n f0g.

(d) If Y is a subspace of X , then Y is also a subspace of X .

(e) If A is convex, then A and IntA are convex. Moreover, if IntA is non-empty, then A D IntA.

(f) If A is balanced, then A is balanced.

(g) If A is balanced and 0 2 IntA, then IntA is balanced.

Theorem 10. Let X be a topological vector space, Y � X a closed subspace and Z � X a finite-dimensional subspace. Then
Y CZ is closed.

Corollary 11. Let X be a Hausdorff topological vector space. Every finite-dimensional subspace of X is closed in X .

2. Bounded sets, metrisability
Definition 12. Let X be a topological vector space and A � X . The set A is called bounded if for every U 2 �.0/ there exists a
t > 0 such that A � tU .

Proposition 13. Let X be a topological vector space over K and A � X . Then the following statements are equivalent:

(i) The set A is bounded.

(ii) nxn ! 0 for every sequence fxng � A and every sequence fng � K, n ! 0.

(iii) 1
n
xn ! 0 for every sequence fxng � A.

Proposition 14. Let X be a topological vector space and let A;B � X be bounded. Then the following hold:

(a) The sets A [ B and AC B are bounded.

(b) The set �A is bounded for any � 2 K.

(c) The set A is bounded.

Lemma 15. Let X be a topological vector space over K, V 2 �.0/ and fıng � K n f0g, ın ! 0. Then fınV I n 2 Ng is a basis
of neighbourhoods of 0 if and only if V is bounded.

Theorem 16. Let X be a topological vector space. Then the following statements are equivalent:

(i) X has a countable basis of neighbourhoods of 0.

(ii) X is pseudometrisable.

(iii) X is pseudometrisable by a translation-invariant pseudometric.

If X is Hausdorff, that the prefix pseudo- above can be omitted.

Definition 17. Let X be a topological vector space. We say that X is locally bounded if every x 2 X has a bounded neighbour-
hood.

Theorem 18. Let X be a locally bounded topological vector space. Then X is pseudometrisable.

3. Total boundedness and compactness
Definition 19. Let X be a topological vector space and A � X . The set A is called totally bounded if for every U 2 �.0/ there
exists a finite F � A such that A � F C U .

Proposition 20. Let X be a topological vector space and A;B � X . Then the following hold:

(a) A is totally bounded if and only if for every U 2 �.0/ there exists a finite F � X such that A � F C U .

(b) If A is totally bounded and B � A, then B is also totally bounded.

(c) If A, B are totally bounded, then also A [ B and AC B are totally bounded.

(d) If A is totally bounded and � 2 K, then also �A is totally bounded.

(e) If A is totally bounded, then also A is totally bounded.
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Proposition 21. Let X be a topological vector space. Compact subsets of X are totally bounded and totally bounded subsets
of X are bounded.

Fact 22. Let .X; �/ be a topological vector space pseudometrisable by a translation-invariant pseudometric �. Then A � X is
� -totally bounded if and only if it is �-totally bounded.

Definition 23. Let .X; �X /, .Y; �Y / be topological vector spaces and f W X ! Y . We say that f is uniformly continuous if for
every V 2 �Y .0/ there exists a U 2 �X .0/ such that f .x/ 2 f .y/C V whenever x; y 2 X are such that x 2 y C U .

Proposition 24. Let .X; �X /, .Y; �Y / be topological vector spaces and let f W X ! Y be uniformly continuous. If A � X is
totally bounded, then f .A/ is also totally bounded.

4. Linear mappings
A linear image of a balanced set is again a balanced set, a pre-image of a balanced set under a linear mapping is again a balanced
set.

Theorem 25. Let X and Y be topological vector spaces and T W X ! Y a linear mapping. Consider the following statements:

(i) T is bounded on some neighbourhood of 0.

(ii) T is continuous at 0.

(iii) T is continuous.

(iv) T is uniformly continuous.

(v) T is sequentially continuous.

(vi) T .A/ is bounded for every bounded A � X .

(vii) The set fT .xn/I n 2 Ng is bounded whenever fxng � X , xn ! 0.

Then (i))(ii),(iii),(iv))(v))(vi),(vii). If Y is locally bounded, then (i)–(iv) are equivalent. If X is pseudometrisable,
then (ii)–(vii) are equivalent.

Lemma 26. Let X be a pseudometrisable topological vector space. If fxng � X converges to 0, then there exists a sequence
fng � N such that n !C1 and nxn ! 0.

Theorem 27. Let X be a topological vector space over K and let f W X ! K be a non-zero linear form. Then the following
statements are equivalent:

(i) f is continuous.

(ii) Kerf is closed.

(iii) Kerf ¤ X .

As usual, linear forms will be also called (linear) functionals.

Definition 28. Let X be a topological vector space. The symbol X# denotes the space of all linear forms (functionals) on X and
it is called the algebraic dual. The symbol X� denotes the subspace of X# consisting of linear functionals that are continuous on
X and it it is called the topological dual (or just the dual).

Definition 29. Let X and Y be topological vector spaces and T W X ! Y a linear mapping. We say that T is an isomorphism of
X onto Y (or just an isomorphism) if T is a homeomorphism of X onto Y ; we say that T is an isomorphism of X into Y (or just
an isomorphism into) if T is an isomorphism of X onto RngT .

Fact 30. Let X be a vector space, Y a topological vector space, and fTg2� a net of linear mappings from X into Y . If
T W X ! Y is a pointwise limit of the net fTg, then T is linear.

5. Finite-dimensional spaces
Theorem 31. Let X be a topological vector space over K. Then the following statements are equivalent:

(i) X is Hausdorff and dimX <1.

(ii) The exists an n 2 N such that X is isomorphic to .Kn; k�k2/.

(iii) X is Hausdorff and has a totally bounded neighbourhood of 0.

(iv) X is pseudometrisable and every linear mapping from X into some topological vector space is continuous.

(v) X is pseudometrisable and every linear form on X is continuous.

Corollary 32. Let X be a finite-dimensional vector space. Then there exists only one Hausdorff vector topology on X .
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6. Locally convex spaces
Fact 33. Let X be a vector space over K, A;B � X convex, and ˛ 2 K. Then the sets ˛A and AC B are convex.

Definition 34. Let X be a vector space over K. A set A � X is called absolutely convex if it is convex and balanced.

Fact 35. Let X be a vector space over K and A � X . Then the following hold:

(a) If A is balanced, then convA is balanced and so absolutely convex.

(b) A is absolutely convex if and only if ˛x C ˇy 2 A for every x; y 2 A and ˛; ˇ 2 K, j˛j C jˇj � 1.

Fact 36. Let X be a vector space and p a seminorm on X . Then the following hold:

(a) jp.x/ � p.y/j � p.x � y/ for every x; y 2 X .

(b) The set Z D p�1.0/ is a subspace of X . If x; y 2 X are such that x � y 2 Z, then p.x/ D p.y/.

(c) The sets fx 2 X I p.x/ < cg and fx 2 X I p.x/ � cg are absolutely convex for every c 2 Œ0;C1/.

Definition 37. Let X be a vector space and f W X ! R. We say that f is positively homogeneous if f .tx/ D tf .x/ for every
t � 0.

Fact 38. Let X be a vector space and f a positively homogeneous function on X . Denote Fc D fx 2 X I f .x/ � cg and
Gc D fx 2 X I f .x/ < cg for c 2 R. For every c > 0 the sets Fc and Gc are absorbing and moreover Fc D cF1, Gc D cG1.

Definition 39. Let X be a vector space and let A � X be absorbing. The Minkowski functional of the set A is a function
�A W X ! Œ0;C1/ defined by

�A.x/ D inf f� > 0I x 2 �Ag:

Theorem 40. Let X be a vector space and let A � X be absorbing. Then the following hold:

(a) If B � A, then �B � �A.

(b) �A is positively homogeneous.

(c) If A is convex, then �A is a non-negative sub-linear functional.

(d) If A is absolutely convex, then �A is a seminorm.

(e) A � fx 2 X I �A.x/ � 1g.

(f) If A is balanced or convex, then fx 2 X I �A.x/ < 1g � A � fx 2 X I �A.x/ � 1g.

(g) Let p W X ! Œ0;C1/ be positively homogeneous and B � X .

� If B is absorbing and B � fx 2 X I p.x/ � 1g, then �B � p.

� If fx 2 X I p.x/ < 1g � B , then �B � p.

So, if fx 2 X I p.x/ < 1g � B � fx 2 X I p.x/ � 1g, then �B D p.

Proposition 41. Let X be a topological vector space and let A � X be absorbing. Then IntA � fx 2 X I �A.x/ < 1g. If
moreover A is balanced or convex, then

IntA � fx 2 X I �A.x/ < 1g � A � fx 2 X I �A.x/ � 1g � A:

Lemma 42. Let X be a topological vector space and p a sub-linear functional on X . Then p is uniformly continuous if and only
if it is bounded above on some neighbourhood of 0.

Corollary 43. Let X be a topological vector space and A � X an absorbing convex set. Then �A is continuous if and only if A
is a neighbourhood of 0. In this case

IntA D fx 2 X I �A.x/ < 1g � A � fx 2 X I �A.x/ � 1g D A:

Theorem 44. Let X be a topological vector space. Then X� ¤ f0g if and only if there is a convex neighbourhood of 0 in X that
is different from X .

Definition 45.

� We say that a topological vector space is locally convex if it has a basis of neighbourhoods of 0 consisting of convex sets.
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� A locally convex space whose topology is induced by a complete translation-invariant metric is called a Fréchet space.

� We say that a topological vector space is normable if its topology is generated by a norm.

Proposition 46. LetX be a topological vector space. IfU 2 �.0/ is convex, then there exists an open absolutely convex V 2 �.0/
such that V � U .

Corollary 47. In a locally convex space �.0/ has a basis consisting of open absolutely convex absorbing sets and also a basis
consisting of closed absolutely convex absorbing sets.

Let X be a vector space, p1; : : : ; pn seminorms on X , and " > 0. We denote

Up1;:::;pn;" D fx 2 X I p1.x/ < "; : : : ; pn.x/ < "g:

Theorem 48. Let X be a vector space and P a system of seminorms on X . Then there is a locally convex topology � on X
such that the system S D fUp;"I p 2 P ; " > 0g is a sub-basis of neighbourhoods of 0 and the system U D fUp1;:::;pn;"I

n 2 N; p1; : : : ; pn 2 P ; " > 0g is a basis of neighbourhoods of 0. The topology � has the following properties:

(a) Every seminorm p 2 P is � -continuous.

(b) A set A � X is � -bounded if and only if p.A/ is bounded for each p 2 P .

(c) A net fxg2� � X converges to x 2 X in � if and only if p.x � x/! 0 for each p 2 P .

The topology � will be called a topology generated by the system of seminorms P .
On the other hand, if .X; �/ is a locally convex space and V is a sub-basis of neighbourhoods of 0 consisting of absolutely

convex sets, then � is generated by the system of seminorms f�V I V 2 Vg.

Proposition 49. Let .X; �/ be a locally convex space. The following statements are equivalent:

(i) X is Hausdorff.

(ii) Every system of seminorms P generating � has the following property:
For each x 2 X n f0g there is a p 2 P such that p.x/ > 0.

(iii) There exists a system of seminorms P generating � with the property from statement (ii).

Lemma 50. Let .X; �/ be a locally convex space generated by a countable system of seminorms fpng. Then

�.x; y/ D

1X
nD1

1

2n
minfpn.x � y/; 1g

is a translation-invariant pseudometric on X generating � .

Theorem 51 (A. N. Kolmogorov (1934)). Let .X; �/ be a topological vector space. Then X is seminormable (resp. normable, if
X is Hausdorff) if and only if it has a bounded convex neighbourhood of 0.

Proposition 52. Let X be a locally convex space and A � X . Then the following hold:

(a) If A is bounded, then also the set convA is bounded.

(b) If A is totally bounded, then also the set convA is totally bounded.

7. Separation theorems
Lemma 53. Let X be a topological vector space and f 2 X� n f0g. Then f is an open mapping.

Theorem 54. Let X be a topological vector space and let A;B � X be disjoint convex sets. Then the following hold:

(a) If A is open, then there exist f 2 X� such that Ref .x/ < infB Ref for every x 2 A.

(b) IfX is locally convex, A closed and B compact, then there exists f 2 X� such that supA Ref < infB Ref . If A is moreover
absolutely convex, then even supAjf j < infB Ref .

Corollary 55. Let X be a locally convex space. Then the following hold:

(a) If X is Hausdorff, then X� separates the points of X .

(b) If Y is a closed subspace of X and x 2 X n Y , then there exists f 2 X� such that f �Y D 0 and f .x/ D 1.

(c) If Y is a subspace of X and f 2 Y �, then there exists F 2 X� such that F�Y D f .
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8. Weak topologies and polars
Weak topologies

Lemma 56. Let X be a vector space and let f; f1; : : : ; fn be linear forms on X . Then f 2 spanff1; : : : ; fng if and only ifTn
jD1 Kerfj � Kerf .

Fact 57. Let X; Y;Z be vector spaces and L W X ! Y and S W X ! Z linear mappings. Then there exists a linear mapping
T W Z ! Y such that L D T B S if and only if KerS � KerL.

Definition 58. LetX be a vector space and letM � X# be non-empty. The symbol �.X;M/ denotes the locally convex topology
on X generated by the system of seminorms fjf jI f 2M g.

Proposition 59. Let X be a vector space and letM;N � X# be non-empty. Then �.X;M/ D �.X;N / if and only if spanM D
spanN . In particular, �.X;M/ D �.X; spanM/.

Proposition 60. Let X be a vector space and let M � X# be non-empty. Then the topology �.X;M/ is Hausdorff if and only if
M separates the points of X .

Theorem 61. Let X be a vector space and let M � X# be non-empty. Then .X; �.X;M//� D spanM .

Definition 62. Let X be a topological vector space.

� The topology w D �.X;X�/ is called the weak topology on X .

� The topology w� D �.X�; ".X// is called the weak star topology on X�.

Corollary 63. Let .X; �/ be a topological vector space. Then the following hold:

(a) w � � and .X;w/� D X�.

(b) .X�; w�/� D ".X/.

Proposition 64. Let X be a Banach space. Then X is reflexive if and only if on the space .X�; k�k/ the topologies weak and w�

coincide.

Proposition 65. Let X be a topological vector space and Y a subspace of X . Denote by wXY the restriction of the topology
�.X;X�/ onto Y . Then wXY � �.Y; Y �/. If X is locally convex, then wXY D �.Y; Y �/. In other words, in a locally convex
space X the original weak topology on Y coincides with the topology inherited from X .

Theorem 66. Let X be a locally convex space and let A � X be convex. Then the following hold:

(a) A
w
D A.

(b) A is weakly closed if and only if it is closed.

(c) If X is pseudometrisable and xn ! x weakly, then there exist yn 2 convfxj I j � ng such that yn ! x.

Theorem 67 (George Whitelaw Mackey (1946)). Let X be a locally convex space and A � X . Then A is bounded if and only if
it is weakly bounded.

Proposition 68. Let X be a Banach space and A � X�. Then A is bounded if and only if it is w�-bounded.

Theorem 69. Let X , Y be topological vector spaces and let T W X ! Y be a continuous linear mapping. Then T is w–w
continuous, i.e. it is continuous as a mapping T W .X;w/! .Y; w/.

Proposition 70. Let X be a vector space and let M � X# be non-empty. Then �.X;M/ is pseudometrisable if and only if
spanM has a countable algebraic basis.

Proposition 71. Let X be an infinite-dimensional topological vector space metrisable by a complete metric. Then X does not
have a countable algebraic basis.

Corollary 72.

(a) Let X be a normed linear space. Then .X;w/ is metrisable if and only if X is finite-dimensional. In this case the weak
topology coincides with the norm topology.

(b) Let X be a Fréchet space. Then .X�; w�/ is metrisable if and only if X is finite-dimensional.
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Polars

Definition 73. Let X be a vector space and A � X . The absolutely convex hull of the set A is defined by

aconvA D
\
fB � AI B � X is absolutely convexg:

Proposition 74. Let X be a vector space over K and A � X . Then

aconvA D

(
nX
iD1

�ixi I x1; : : : ; xn 2 A; �1; : : : ; �n 2 K;
nX
iD1

j�i j � 1; n 2 N

)
:

Definition 75. Let X be a topological vector space and A � X . The closed absolutely convex hull of A is defined by

aconvA D
\
fB � AI B � X is closed absolutely convexg:

Proposition 76. Let X be a topological vector space and A � X . Then spanA D spanA, convA D convA, and aconvA D
aconvA.

Definition 77. If X is a topological vector space and A � X , then we define the (absolute) polar of the set A by

Aı D ff 2 X�I jf .x/j � 1 for every x 2 Ag:

For the set B � X� we define the (absolute) prepolar by

Bı D fx 2 X I jf .x/j � 1 for every f 2 Bg:

Fact 78. Let X be a topological vector space, A � X , and B � X�. If we consider X� with the topology w�, then Aı D ".A/ı,
".Bı/ D B

ı, and .Bı/ı D .Bı/ı.

Proposition 79. Let X be a topological vector space over K, A � X , and B � X�. Then the following hold:

(a) The set Aı is absolutely convex and w�-closed. The set Bı is absolutely convex and weakly closed.

(b) If A is a subspace of X , then Aı D A?. If B is a subspace of X�, then Bı D B?.

(c) f0gı D X�, Xı D f0g, f0gı D X , and if X� separates the points of X , then .X�/ı D f0g.

(d) If � 2 K n f0g, then .�A/ı D 1
�
Aı and .�B/ı D 1

�
Bı.

(e) If A � X ,  2 � is an arbitrary system, then
�S

2� A

�ı
D
T
2� A

ı
 . If B � X�,  2 � is an arbitrary system, then�S

2� B

�
ı
D
T
2� .B /ı.

Theorem 80 (Bipolar theorem; Jean Dieudonné (1950)). Let X be a topological vector space.

(a) If A � X , then .Aı/ı D aconvw A (D aconvA if X is locally convex).

(b) If B � X�, then .Bı/ı D aconvw
�

B .

Lemma 81. Let X be a topological vector space and A � X , B � X�. Then

(a) A? is a w�-closed subspace of X�,

(b) B? is a weakly closed subspace of X ,

(c) .A?/? D spanw A (D spanA if X is locally convex),

(d) .B?/? D spanw
�

B .

Theorem 82. If X , Y are topological vector spaces such that Y � separates the points of Y , and T W X ! Y is a continuous
linear mapping, then

(a) KerT � D .RngT /?,

(b) KerT D .RngT �/?,

(c) RngT
w
D .KerT �/?,

(d) RngT �
w�

D .KerT /?.
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Theorem 83 (Herman Heine Goldstine (1938)). If X is a normed linear space, then ".BX /
w�

D BX�� .

Theorem 84 (Banach-Alaoglu-Bourbaki). Let X be a topological vector space. If U is a neighbourhood of 0 in X , then U ı is a
w�-compact set.

Corollary 85. Let X be a normed linear space. Then BX� is w�-compact.

Proposition 86. Let X be a separable topological vector space and let fxng1nD1 be dense in X . If U � X is a neighbourhood
of 0, then .U ı; w�/ is a topological space metrisable by the metric

�.f; g/ D

1X
nD1

1

2n
minfj.f � g/.xn/j; 1g:

Fact 87. Let X be a normed linear space. Then the canonical embedding " W X ! X�� is an isomorphism of locally convex
spaces .X;w/ and .".X/; w�/. In particular, " is a homeomorphism of topological spaces .BX ; w/ and .".BX /; w�/.

Proposition 88. Let X be a normed linear space.

(a) If X is separable and fxng is dense in SX , then .BX� ; w�/ is metrisable by the metric

�.f; g/ D

1X
nD1

1

2n
j.f � g/.xn/j:

(b) If X� is separable and ffng is dense in SX� , then .BX ; w/ is metrisable by the metric

�.x; y/ D

1X
nD1

1

2n
jfn.x � y/j:

Theorem 89. If X is a Banach space, then X is reflexive if and only if BX is weakly compact.

Theorem 90. LetX be a reflexive Banach space. Then BX is weakly sequentially compact. That is every bounded sequence inX
has a weakly convergent subsequence.

Proposition 91. LetX be a normed linear space. Then the mapping x 7! "x�BX� is a linear isometry fromX intoC..BX� ; w�//.
So every normed linear space is isometric to a subspace of C.K/ for some Hausdorff compact K.

II. Theory of distributions
Lemma 92. Let ˝ � Rd be open.

(a) Let � be a Borel complex measure on ˝. If
R
˝
' d� D 0 for every non-negative ' 2 D.˝;R/, then � D 0.

(b) Let f 2 Lloc
1 .˝; �/. If

R
˝
f ' d� D 0 for every non-negative ' 2 D.˝;R/, then f D 0 a. e. on ˝.

(c) Let � be a Borel complex measure on˝ and f 2 Lloc
1 .˝; �/. If

R
˝
' d� D

R
˝
f ' d� for every non-negative ' 2 D.˝;R/,

then f 2 L1.˝; �/ and �.A/ D
R
A
f d� for every Borel A � ˝.

Lemma 93. LetA;U � Rd be such that dist.A;Rd nU/ > 0. Then there exists ' 2 C1.Rd / such that 0 � ' � 1, supp' � U ,
and ' D 1 on A.

Corollary 94. Let K � Rd be compact and let G � Rd be open such that G � K. Then there exist U � G open, U � K and
' 2 D.G/ such that 0 � ' � 1 and ' D 1 on U .

1. Weak derivatives
Proposition 95. Let .a; b/ � R and f 2 C 1..a; b//. ThenZ b

a

f 0' d� D �
Z b

a

f '0 d�

for every ' 2 D..a; b//.
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Definition 96. Let .a; b/ � R and f 2 Lloc
1 ..a; b//. We say that a function g 2 Lloc

1 ..a; b// is the weak derivative of f ifZ b

a

g' d� D �
Z b

a

f '0 d�

for every ' 2 D..a; b//. We say that a Borel complex measure � on .a; b/ is the weak derivative of f ifZ b

a

' d� D �
Z b

a

f '0 d�

for every ' 2 D..a; b//.

Theorem 97. The weak derivative of a function f 2 Lloc
1 ..a; b// is uniquely determined. More precisely, if g1; g2 2 Lloc

1 ..a; b//

are weak derivatives of f , then g1 D g2 almost everywhere. If Borel complex measures �1; �2 on .a; b/ are weak derivatives of
f , then �1 D �2. If g 2 Lloc

1 ..a; b// and a Borel complex measure � on .a; b/ are weak derivatives of f , then g 2 L1..a; b//
and �.A/ D

R
A
g d� for every Borel A � .a; b/.

Proposition 98. Let .a; b/ � R and f 2 Lloc
1 ..a; b//. Then the weak derivative of f is zero if and only if f is a. e. constant (i.e.

there exists c 2 K such that f D c a. e. on .a; b/).

Theorem 99. Let .a; b/ � R and f 2 Lloc
1 ..a; b//.

(a) Let a; b 2 R. If f is absolutely continuous on Œa; b�, then it has a finite derivative a. e., f 0 2 L1..a; b//, and f 0 is the weak
derivative of f . On the other hand, if f has a weak derivative g 2 L1..a; b//, then there exists a function f0 absolutely
continuous on Œa; b� such that f D f0 a. e. Then g D f 00 a. e.

(b) The function f has a weak derivative in Lloc
1 ..a; b// if and only if there exists a function f0 locally absolutely continuous on

.a; b/ such that f D f0 a. e.

(c) Let a; b 2 R. The function f has a weak derivative equal to a Borel complex measure � on Œa; b� if and only if there exists a
left continuous function f0 of bounded variation on Œa; b� such that f D f0 a. e. In this case �.Œa; x// D f0.x/� f0.a/ for
every x 2 Œa; b�.

2. The space of test functions and distributions
Definition 100. For N 2 N0 and ' 2 D.Rd / we define

k'kN D max
j˛j�N

kD˛'k1:

The sequence of norms fk�kN g1ND0 on D.Rd / generates a Hausdorff locally convex topology �� metrisable by a translation
invariant metric

�.';  / D

1X
ND0

1

2N
min

˚
k' �  kN ; 1

	
for '; 2 D.Rd /.

Theorem 101. The metric � has the following properties:

(a) Let f'ng be a sequence in D.Rd / and ' 2 D.Rd /. The following statements are equivalent:

(i) 'n ! ' in the metric �.

(ii) k'n � 'kN ! 0 for each N 2 N0.

(iii) D˛'n ! D˛' uniformly on Rd for each multi-index ˛ of length d .

(b) If ˛ is a multi-index of length d , then the mapping ' 7! D˛' is continuous as a mapping from .D.Rd /; �/ to .D.Rd /; �/.

(c) .D.K/; �/ is a complete metric space for every compact K � Rd .

Theorem 102. Let ˝ � Rd be open. Set

U D
˚
U � D.˝/I U absolutely convex, U \D.K/ 2 �K.0/ for every compact K � ˝

	
:

Then U is a basis of neighbourhoods of 0 for a Hausdorff locally convex topology � on D.˝/ which has the following properties:

(a) ���D.˝/ � � .
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(b) D.K/ is a closed subspace of .D.˝/; �/ and ��D.K/ D �K for every compact K � ˝.

(c) If A � .D.˝/; �/ is bounded, then there exists a compact K � ˝ such that A � D.K/.

(d) Let f'ng be a sequence in D.˝/ and ' 2 D.˝/. Then 'n ! ' in � if and only if there exists a compact K � ˝ such that
supp'n � K for each n 2 N and D˛'n ! D˛' uniformly on Rd for each multi-index ˛ of length d .

(e) If ˝ is non-empty, then .D.˝/; �/ is of the first category in itself.

Proposition 103. Let ˝ � Rd be open, let Y be a locally convex space, and let T W .D.˝/; �/ ! Y be linear. The following
statements are equivalent:

(i) T is continuous.

(ii) The set fT .'n/I n 2 Ng is bounded for every sequence f'ng � D.˝/ converging to 0 in � .

(iii) For every compact K � ˝ the restriction T �D.K/ is continuous.

Definition 104. Let ˝ � Rd be open. Continuous linear functionals on .D.˝/; �/ are called distributions on ˝. The space of
all distributions on ˝ is therefore the space D.˝/� D .D.˝/; �/�.

Theorem 105. Let ˝ � Rd be open and let � W D.˝/ ! K be linear. Then � 2 D.˝/� if and only if for every compact
K � ˝ there exist N 2 N0 and C � 0 such that j�.'/j � Ck'kN for every ' 2 D.K/.

Definition 106. Let ˝ � Rd be open and � 2 D.˝/�. If there exists N 2 N0 such that for every compact K � ˝ there exists
C � 0 such that j�.'/j � Ck'kN for every ' 2 D.K/, then the smallest such N is called the order of the distribution �. If no
such N exists, then the order of � is defined as infinity.

3. Operations with distributions
Lemma 107. Let k 2 N, suppose that f 2 C k.Rd / has all partial derivatives up to order k bounded and let ˛ 2 Nd

0 , j˛j � k.
Then Z

Rd
D˛f ' d� D .�1/j˛j

Z
Rd
fD˛' d�

for every ' 2 D.Rd /.

Definition 108. Let ˝ � Rd be open and � 2 D.˝/�. For a multi-index ˛ of length d we define the derivative D˛ of the
distribution � as a functional on D.˝/ given by the formula

.D˛�/.'/ D .�1/j˛j�.D˛'/:

For a function f 2 C1.˝/ we define the product of the function f and the distribution � as a functional on D.˝/ given
by the formula

.f�/.'/ D �.f '/:

Proposition 109. Let ˝ � Rd be open, � 2 D.˝/�, ˛ 2 Nd
0 , and f 2 C1.˝/. Then the following hold:

(a) D˛� 2 D.˝/�.

(b) f� 2 D.˝/�.

(c) If g 2 Lloc
1 .˝/, then f�g D �fg .

(d) If g 2 C j˛j.˝/, then D˛�g D �D˛g .

(e) If d D 1, ˝ D .a; b/, and g 2 Lloc
1 ..a; b//, then

� �0g D �h, where h 2 Lloc
1 ..a; b//, if and only if h is the weak derivative of g;

� �0g D ��, where � is a Borel complex measure on .a; b/, if and only if � is the weak derivative of g.

Fact 110. Let ˛ 2 Nd
0 . Then there exist constants c˛

ˇ
2 N, ˇ 2 Nd

0 , ˇ � ˛ (the inequality of vectors is understood coordinate-
wise) such that for every open ˝ � Rd and every f; g 2 C j˛j.˝/ the following holds:

D˛.fg/ D
X
ˇ2Nd

0

ˇ�˛

c˛ˇD
ˇfD˛�ˇg:
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4. The space of distributions
Proposition 111. Let ˝ � Rd be open.

(a) Let ˛ 2 Nd
0 and g 2 C1.˝/. Then the mappings � 7! D˛� and � 7! g� are continuous linear mappings of the space

.D.˝/�; w�/ into itself.

(b) If fn; f 2 Lloc
1 .˝/ and if

R
K
jfn � f j d�! 0 for each compact K � ˝, then �fn ! �f .

(c) The mapping ' 7! �' is a one-to-one continuous linear mapping of .D.˝/; �/ into .D.˝/�; w�/.

(d) If 1 � p � 1 and fn ! f in Lp.˝/, then �fn ! �f .

Theorem 112. Let ˝ � Rd be open and let f�ng be a sequence in D.˝/� such that �.'/ D limn!1�n.'/ exists for every
' 2 D.˝/. Then � 2 D.˝/�.

5. The support of a distribution
Definition 113. Let˝ � Rd be open and let� be a distribution on˝. We say that an open setG � ˝ is null for� if�.'/ D 0
for every ' 2 D.G/.

Theorem 114. Let ˝ � Rd be open and let � be a distribution on ˝. The set G D
S
fH � ˝I H is null for �g is null for �

and it is the largest null set for �, i.e. if H � ˝ is null for �, then H � G.

Definition 115. Let˝ � Rd be open and let� be a distribution on˝. The support of the distribution� is defined as supp� D
˝ nG, where G is the largest null set for �.

Theorem 116. Let ˝ � Rd be open and let � be a distribution on ˝.

(a) If f 2 C.˝/, then supp�f D suppf .

(b) If � is a Borel complex measure on ˝, then supp�� D supp�.

(c) If supp� is compact, then there exist N 2 N0 and C � 0 such that j�.'/j � Ck'kN for every ' 2 D.˝/. In particular, �
is of a finite order.

(d) supp� D f´g for ´ 2 ˝ if and only if � D
P
j˛j�N c˛D

˛�ı´ for some N 2 N0 and constants c˛ , ˛ 2 Nd
0 , j˛j � N not

all zero.

6. Schwartz space
Lemma 117. For N 2 N the function x 7! .1 C kxk2/N is a polynomial on Rd . For every polynomial P on Rd there exist
N 2 N and C > 0 such that jP.x/j � C.1C kxk2/N for each x 2 Rd .

Definition 118. The Schwartz space on Rd is defined as follows:

Sd D
˚
f 2 C1.Rd ;C/I PD˛f is bounded for each ˛ 2 Nd

0 and each polynomial P on Rd
	
:

Lemma 119. Let d 2 N, 1 � p <1, N > d
2p

, and h.x/ D 1
.1Ckxk2/N

for x 2 Rd . Then h 2 Lp.Rd /.

Proposition 120. The Schwartz space has the following properties:

(a) D.Rd / � Sd � C0.R
d / \

T
1�p<1Lp.R

d /.

(b) If f 2 Sd , a 2 R n f0g, b 2 Rd , and h.x/ D f .ax C b/, then h 2 Sd .

(c) If f 2 Sd and ˛ is a multi-index of length d , then D˛f 2 Sd .

(d) If f 2 Sd and if g 2 C1.Rd / is bounded and has all partial derivatives of all orders bounded (in particular, if g 2 Sd ),
then fg 2 Sd .

(e) If f 2 Sd and P W Rd ! C is a polynomial, then Pf 2 Sd .

For N 2 N0 and f 2 Sd put
�N .f / D max

j˛j�N

x 7! .1C kxk2/ND˛f .x/

1
:

Denote by � the Hausdorff locally convex topology on Sd generated by the system f�N g1ND0 . This topology is metrisable by
the metric from Lemma 50.
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Theorem 121. The metric from Lemma 50 corresponding to the system f�N g1ND0 is complete. The space .Sd ; �/ is then a
Fréchet space. The topology � has the following properties:

(a) Let ffng be a sequence in Sd and f 2 Sd . The following statements are equivalent:

(i) fn ! f in the topology � .

(ii) .1C kxk2/ND˛fn ! .1C kxk2/ND˛f uniformly on Rd for every N 2 N0 and every multi-index ˛ of length d .

(iii) PD˛fn ! PD˛f uniformly on Rd for every polynomial P and every multi-index ˛ of length d .

(b) If fn ! f in the space .Sd ; �/, then fn ! f in Lp.Rd / for each 1 � p <1.

(c) If ˛ is a multi-index of length d , P is a polynomial on Rd , and g 2 Sd , then the mappings f 7! D˛f , f 7! Pf , and
f 7! gf are continuous linear mappings from .Sd ; �/ to .Sd ; �/.

Proposition 122. Let f 2 Sd and ˛ 2 Nd
0 .

(a) 1D˛f .t/ D .i t/˛bf .t/ for every t 2 Rd .

(b) D˛bf D1m˛f , where m˛.x/ D .�ix/˛ .

Theorem 123. The Fourier transform is an isomorphism of the space .Sd ; �/ onto itself. Moreover, if f 2 Sd , then

bbf .x/ D f .�x/ for every x 2 Rd and
bbbbf D f:

7. Tempered distributions
Lemma 124. Let K � Rd be compact. Then ��D.K/ D �K .

Proposition 125. The subspace D.Rd / is dense in .Sd ; �/ and ��D.Rd / � � . In other words, the embedding Id W .D.Rd /; �/!
.Sd ; �/ is continuous and onto a dense subset.

Definition 126. Distributions on Rd which are restrictions of functionals from .Sd ; �/
� are called tempered distributions.

Theorem 127. Let � 2 D.Rd /�. The following statements are equivalent:

(i) � is tempered.

(ii) � is continuous also in the (weaker) topology � .

(iii) There exist N 2 N0 and C � 0 such that j�.'/j � C�N .'/ for every ' 2 D.Rd /.

Proposition 128. Let� be a tempered distribution on Rd , ˛ 2 Nd
0 , g 2 Sd , and let P be a polynomial on Rd . ThenD˛�, g�,

and P� are also tempered distributions and the formulas

� D˛�.f / D .�1/j˛j�.D˛f /,

� .g�/.f / D �.gf /, and

� .P�/.f / D �.Pf /

hold for every f 2 Sd . Further, the mappings � 7! D˛�, � 7! g�, and � 7! P� are continuous linear mappings from the
space .S�

d
; w�/ into itself.

Definition 129. The Fourier transform of a tempered distribution� on Rd is defined by the formula b�.f / D �.bf / for f 2 Sd .

Theorem 130.

(a) If g 2 L1.Rd /, then �bg is a tempered distribution and c�g D �bg . If g 2 L2.Rd /, then c�g D �F.g/, where F is the
extension of the Fourier transform from Plancherel’s theorem.

(b) If � is a tempered distribution on Rd and ˛ 2 Nd
0 , then

� 1D˛� D s˛b�, where s˛.x/ D .ix/˛ , and

� D˛b� D1m˛�, where m˛.x/ D .�ix/˛ .

(c) The Fourier transform F of tempered distributions is an isomorphism of the space .S�
d
; w�/ onto itself. The following holds:

F 4 D Id .
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III. The Bochner integral

1. Measurable mappings
Proposition 131. Let ˝ be a measurable space and X a metric space. Then the pointwise limit of a sequence of measurable
mappings from ˝ to X is a measurable mapping.

Definition 132. Let ˝ and X be sets. A mapping f W ˝ ! X is called simple if f .˝/ is a finite set.

Theorem 133. Let ˝ be a measurable space and X a separable metric space. Then f W ˝ ! X is measurable if and only if it
is a pointwise limit of a sequence of simple measurable mappings from ˝ to X .

If .˝;�/ is a measure space and M a set, then the symbol Æ.˝;M/ denotes the set of all mappings defined �-a. e. on ˝
with values in M .

Definition 134 (Salomon Bochner (1933)). Let .˝;�/ be a measure space and X a metric space. A mapping from Æ.˝;X/ is
called strongly measurable (or Bochner measurable) with respect to � if it is a �-a. e. pointwise limit of a sequence of simple
measurable mappings from ˝ to X .

Lemma 135. Let .˝;�/ be a space with a complete measure, X a metric space, and f 2 Æ.˝;X/. Then f is strongly
measurable if and only if it is measurable and there exists E � ˝ such that �.E/ D 0 and f .˝ nE/ is separable.

Corollary 136. Let .˝;�/ be a space with a complete measure, X a metric space, and ffng � Æ.˝;X/ a sequence of strongly
measurable mappings that converges pointwise a. e. to f 2 Æ.˝;X/. Then f is strongly measurable.

Lemma 137. Let ˝ and X be measurable spaces. Assume that X is also a vector space over K, f; g W ˝ ! X are simple
measurable mappings, and ˛ 2 K. Then f C g and f̨ are simple measurable mappings.

Corollary 138. Let .˝;�/ be a measure space, X a normed linear space over K, f; g 2 Æ.˝;X/ strongly measurable, and
˛ 2 K. Then f C g and f̨ are strongly measurable mappings.

Definition 139 (Izrail Moisejevič Gelfand (1938), Billy James Pettis (1938)). Let .˝;�/ be a measure space and X a normed
linear space. A mapping f 2 Æ.˝;X/ s called weakly measurable if � B f is a measurable function for every � 2 X�.

Definition 140. Let X be a normed linear space. We say that A � BX� is 1-norming if kxk D supf 2Ajf .x/j for every x 2 X .

Lemma 141. Let X be a normed linear space. If A � BX� is w�-dense in BX� , then A is 1-norming.

Lemma 142. Let X be a normed linear space and let A � BX� be 1-norming. Then Aı D BX . More generally, B.x; r/ DT
f 2Afy 2 X I jf .y/ � f .x/j � rg for every x 2 X and r > 0.

Lemma 143. Let X be a normed linear space and A � X . Then spanQA is dense in spanA and BX \ spanQA is dense in
BX \ spanA. It follows that if M � X is separable, then spanM is also separable.

Theorem 144. Let .˝;�/ be a space with a complete measure, X a normed linear space, and f 2 Æ.˝;X/. The following
statements are equivalent:

(i) f is strongly measurable.

(ii) f is measurable and there exists E � ˝ such that �.E/ D 0 and f .˝ nE/ is separable.

(iii) f is weakly measurable and there exists E � ˝ such that �.E/ D 0 and f .˝ nE/ is separable.

(iv) There exist E � ˝, Y � X a separable subspace, and A � BY � countable such that �.E/ D 0, f .˝ n E/ � Y ,
BY � \ spanA is w�-dense in BY � , and � B f is measurable for each � 2 A.

Proposition 145. Let .˝;�/ be a space with a complete measure, X a normed linear space, and let f 2 Æ.˝;X/ be strongly
measurable. If � B f D 0 a. e. for every � 2 X�, then f D 0 a. e.

2. The Bochner integral
Definition 146. Let .˝;�/ be a measure space and X a normed linear space. A mapping f W ˝ ! X is called a step mapping
if it is simple, measurable, and �.f �1.x// < C1 for each x 2 f .˝/ n f0g.

Definition 147. Let .˝;�/ be a measure space, X a normed linear space, and f W ˝ ! X a step mapping. Then for each
measurable E � ˝ we define the Bochner integral of f over E asZ

E

f d� D
X

x2f .˝/nf0g

�.f �1.x/ \E/x:
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Lemma 148. Let .˝;�/ be a measure space, X a normed linear space, and f W ˝ ! X a step mapping. If A;B � ˝ are
disjoint measurable sets, then

R
A[B

f d� D
R
A
f d�C

R
B
f d�.

Theorem 149. Let .˝;�/ be a measure space,X a normed linear space over K, f; g W ˝ ! X step mappings, and ˛ 2 K. Then
f C g and f̨ are step mappings and

R
E
.f C g/ d� D

R
E
f d�C

R
E
g d� and

R
E
f̨ d� D ˛

R
E
f d� for every meaurable

E � ˝.

If .˝;�/ is a measure space, X a normed linear space, and f 2 Æ.˝;X/ a measurable mapping, then the function t 7!
kf .t/k is measurable on ˝, since it is a composition of a continuous function k�k with a measurable mapping f . This function
will be denoted by kf k.

Lemma 150. Let .˝;�/ be a measure space, X a normed linear space, and f W ˝ ! X a simple measurable mapping. Then
f is a step mapping if and only if

R
˝
kf k d� < C1. In this case

R
E
f d�

 � R
E
kf k d� for every measurable E � ˝.

Lemma 151. Let .˝;�/ be a measure space, X a Banach space, f 2 Æ.˝;X/, and let fn W ˝ ! X , n 2 N be a sequence
of step mappings such that limn!1

R
˝
kfn.t/ � f .t/k d�.t/ D 0. Then limn!1

R
E
fn d� exists for every measurable E � ˝.

Moreover, if gn W ˝ ! X , n 2 N is a sequence of step mappings with the same property as ffng, then limn!1

R
E
gn d� D

limn!1

R
E
fn d�.

Definition 152. Let .˝;�/ be a measure space, X a Banach space, and f 2 Æ.˝;X/. We say that f is Bochner integrable if
there exists a sequence fn W ˝ ! X , n 2 N of step mappings such that limn!1

R
˝
kfn � f k d� D 0. For every measurable

E � ˝ we then define the Bochner integral of f over E asZ
E

f d� D lim
n!1

Z
E

fn d�:

Theorem 153. Let .˝;�/ be a space with a complete measure, X a Banach space, and f 2 Æ.˝;X/. Then f is Bochner
integrable if and only if it is strongly measurable and kf k is Lebesgue integrable. In this case

R
E
f d�

 � R
E
kf k d� for

every measurable E � ˝.

Theorem 154. Let .˝;�/ be a space with a complete measure, X a Banach space over K, f; g 2 Æ.˝;X/ Bochner integrable
and ˛ 2 K. Then the mappings f Cg and f̨ are Bochner integrable and

R
E
.f Cg/ d� D

R
E
f d�C

R
E
g d� and

R
E
f̨ d� D

˛
R
E
f d� for every measurable E � ˝.

Theorem 155 (dominated convergence). Let .˝;�/ be a space with a complete measure, X a Banach space, and let ffng �
Æ.˝;X/ be a sequence of strongly measurable mappings. Let f 2 Æ.˝;X/ be such that fn ! f pointwise a. e. and let
g 2 L1.�/ be such that for each n 2 N we have kfn.t/k � g.t/ for a. a. t 2 ˝. Then fn and f are Bochner integrable and
lim
n!1

R
˝
kfn � f k d� D 0. In particular,

R
˝
f d� D lim

n!1

R
˝
fn d�.

Theorem 156. Let .˝;�/ be a space with a finite complete measure, X a Banach space, and let ffng � Æ.˝;X/ be a
sequence of strongly measurable mappings. Let f 2 Æ.˝;X/ be Bochner integrable such that fn ! f uniformly a. e. on ˝.
Then

R
˝
f d� D lim

n!1

R
˝
fn d�.

Theorem 157 (absolute continuity of the Bochner integral). Let .˝;�/ be a space with a complete measure, X a Banach space,
and let f 2 Æ.˝;X/ be Bochner integrable. Then for each " > 0 there exists ı > 0 such that

R
E
f d�

 < " whenever E � ˝
is such that �.E/ < ı.

Theorem 158. Let .˝;�/ be a space with a complete measure, X and Y Banach spaces, and let f 2 Æ.˝;X/ be Bochner
integrable and T 2 L.X; Y /. Then T B f is Bochner integrable andZ

E

T B f d� D T
�Z

E

f d�
�

for every measurable E � ˝.

Fact 159. Let .˝;�/ be a space with a complete measure, X a Banach space, x 2 X , and f 2 L1.�/. Then
R
E
f .t/x d�.t/ D�R

E
f d�

�
x for every measurable E � ˝.

Theorem 160. Let .˝;�/ be a space with a complete measure,X a Banach space, and let f 2 Æ.˝;X/ be Bochner integrable.
If
R
E
f d� D 0 for each measurable E � ˝, then f D 0 a. e.

Theorem 161. Let .˝;�/ be a space with a complete measure,X a Banach space, and let f 2 Æ.˝;X/ be Bochner integrable.
Then

1

�.E/

Z
E

f d� 2 convf .E/:

for each E � ˝ of positive measure.
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Theorem 162 (Fubini’s theorem for the Bochner integral). Let .˝1; �1/ and .˝2; �2/ be spaces with � -finite complete measures
and let � be a completion of the product measure �1 � �2. Let X be a Banach space and let f 2 Æ.˝1 �˝2; X/ be Bochner
integrable with respect to �. Then for �1-a. a. s 2 ˝1 the mapping t 7! f .s; t/ is Bochner integrable on ˝2, for �2-a. a.
t 2 ˝2 the mapping s 7! f .s; t/ is Bochner integrable on ˝1; the mappings  1.s/ D

R
˝2
f .s; t/ d�2.t/ and  2.t/ DR

˝1
f .s; t/ d�1.s/ defined a. e. on ˝1, resp. ˝2 are Bochner integrable andZ

˝1

 1 d�1 D
Z
˝1�˝2

f d� D
Z
˝2

 2 d�2:

3. The Lebesgue-Bochner spaces
Definition 163. Let .˝;�/ be a space with a complete measure, X a Banach space, and 1 � p � 1. The symbol Lp.�;X/
denotes the set of all strongly measurable mappings from Æ.˝;X/ such that kf k 2 Lp.�/, factorised by the equality �-a. e.

Further, for f 2 Lp.�;X/ we define kf kLp.�;X/ D
t 7! kf .t/k

Lp.�/
.

Theorem 164. Let .˝;�/ be a space with a complete measure, X a Banach space, and 1 � p � 1.

(a) Lp.�;X/ is a Banach space with the norm kf kLp.�;X/.

(b) If X is a Hilbert space, then L2.�;X/ is a Hilbert space with the scalar product

hf; giL2.�;X/ D

Z
˝

hf .t/; g.t/i d�:

Theorem 165. Let .˝;�/ be a space with a complete measure, X a Banach space, and 1 � p <1.

(a) The set of all step mappings from ˝ to X is dense in Lp.�;X/.

(b) If X and Lp.�/ are separable, then Lp.�;X/ is also separable.

IV. Compact convex sets
Definition 166. Let C be a convex subset of a vector space. We say that x 2 C is an extreme point of the set C if x is not an
inner point of any segment lying in C , i.e. if u; v 2 C and x D �uC .1 � �/v for some � 2 .0; 1/, then u D v. The set of all
extreme points of C is denoted by extC .

Definition 167. Let C be a convex subset of a real vector space X . An affine hyperplane W � X is called a supporting
hyperplane of the set C (at a point x 2 C ), if W \ C ¤ ; (resp. x 2 W \ C ) and C lies completely in one of the half-spaces
determined by W (i.e. there exist a non-zero linear form f on X and ˛ 2 R such that W D f �1.˛/ and supC f � ˛).

Fact 168. Let C be a convex set in a vector space X .

(a) If B � C is convex, then B \ extC � extB .

(b) If Y is a vector space and T W X ! Y is an affine mapping, then T preserves convex combinations. If T is one-to-one, then
extT .C / D T .extC/.

(c) If X is real and W � X is a supporting hyperplane of the set C , then ext.C \W / D W \ extC .

Theorem 169. If C is a compact convex subset of Rn, then each point of the set C is a convex combination of at most n C 1
extreme points of the set C . Therefore C D conv extC .

Lemma 170. Let C � Rn be convex. The either IntC ¤ ;, or C lies in some affine hyperplane in Rn.

Corollary 171. If A � Rn and x 2 convA, then there exists at most .nC 1/-element subset B � A such that x 2 convB .

Corollary 172. Let K � Rn be compact. Then convK is also compact.

Proposition 173. Let X be a Fréchet space and let K � X be compact. Then convK and aconvK are compact.

Definition 174. Let C be a convex subset of a vector space. We say that a non-empty E � C is an extreme subset of C if no
point of E is a non-trivial convex combination of points from C some of which lie outside of E, i.e. if �x C .1 � �/y 2 E for
some x; y 2 C and � 2 .0; 1/, then x; y 2 E.

Definition 175. Let C be a convex subset of a vector space. We say that a function f W C ! R is convex if f .�xC .1��/y/ �
�f .x/C .1 � �/f .y/ for every x; y 2 C and � 2 Œ0; 1�.
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Lemma 176. Let C be a convex subset of a vector space, let f W C ! R be convex, and let E be an extreme subset of C . Then
the set of points at which f attains its maximum over E is either empty, or an extreme subset of C .

Lemma 177. LetX be a topological vector space such thatX� separates the points ofX (e.g. a Hausdorff locally convex space)
and let C � X be convex. Then every compact extreme subset of C contains an extreme point of C .

Recall that a real function f on a topological spaceX is called upper semi-continuous if the set fx 2 X I f .x/ � ˛g is closed
for every ˛ 2 R.

Theorem 178 (Bauer’s maximum principle). Let X be a topological vector space such that X� separates the points of X (e.g.
a Hausdorff locally convex space), let K � X be a non-empty compact convex set and f W K ! R an upper semi-continuous
convex function. Then f attains its maximum over K in an extreme point of K.

Theorem 179 (Kreı̆n-Milman). Let X be a topological vector space such that X� separates the points of X (e.g. a Hausdorff
locally convex space) and let K � X be compact and convex. Then K D conv extK.
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