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Featured results

Outline

1 We reduce the graph isomorphism problem to 2-nilpotent
p-groups isomorphism problem and to 2-nilpotent Lie algebras
over the ring Z/p3Z.

2 We show that isomorphism problems in categories of graphs,
finite 2-nilpotent p-groups, and 2-nilpotent Lie algebras over
Z/p3Z are polynomially equivalent.

3 We show that classifying problems in categories graphs, finite
2-nilpotent p-groups, and 2-nilpotent Lie algebras are wild.
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Groups on graphs

Graph isomorphism ⇒ other isomorphisms

Kim and Roush ’80, Kayal and Saxena ’05:
Reducing graph isomorphism to isomorphism of rings and algebras
in polynomial time.

Graph isomorphism ⇒ infinite group isomorphism

C. Droms ’87:

For a graph Γ = (V ,E ), group G (Γ) is generated by vertices
V with relations xi · xj = xj · xi for every pair of adjacent
vertices xi and xj of graph Γ.

G (Γ1) and G (Γ2) are isomorphic if and only if the graphs Γ1

and Γ2 are isomorphic.
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Graphs and finite groups isomorphism

Polynomial equivalence: an outline

Graph isomorphism is reduced to isomorphism of 2-nilpotent
Lie algebras over the ring Z/p3Z.

Isomorphism of 2-nilpotent Lie algebras over Z/p3Z is reduced
to isomorphism of 2-nilpotent finite p-groups.

Isomorphism of finite groups is reduced back to graphs.

Result
Problems of distinguishing graphs, finite 2-nilpotent p-groups
and nilpotent of class 2 Lie algebras over the ring Z/p3Z up to
isomorphism are polynomially equivalent.
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Lie algebra of a graph (1)

Variables

Let Γ = (V ,E ) be an undirected loopless graph with the vertex set
V = {v1, ..., vn} and the edge set E , where |V | = n and |E | = m.
We introduce following variables:

v1, ..., vn

S = {k = (i , j), k = (j , i) where 1 ≤ i < j ≤ n} - a set of
l = n(n − 1) variables indexed by k and k .

Free Lie algebra

Let p be an odd prime. We construct a free Lie algebra

F = Z/p3Z(−→vi ,
−→ak ,
−→ak )
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Lie algebra of a graph (2)

Lie algebra of a graph

A 2-step nilpotent Lie algebra L(Γ) corresponding to the graph Γ is
defined as L(Γ) := F/I where ideal I has following relations:

1 for all 1 ≤ i < j ≤ n, [vi , vj ] = ak − ak where k = (i , j) and
k = (j , i),

2 [vi , as ] = [as , vi ] = [as , ar ] = 0 for all 1 ≤ i ≤ n and s, r ∈ S ,

3 for all 1 ≤ i < j ≤ n, if k = (i , j) and {vi , vj} ∈ E then
pak = pak = 0, otherwise p2ak = p2ak = 0.

Main theorem

For every two undirected simple graphs Γ1 and Γ2 it holds that

L(Γ1) ≈ L(Γ2)⇐⇒ Γ1 ≈ Γ2
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Lie algebra of a graph (3)

Let G be a Lie n-step nilpotent algebra over a ring K . A universal
enveloping n-nilpotent algebra of G is a pair (U ′(G ), i)
composed of a n-nilpotent associative algebra U ′(G ) together with
the map i satisfying the following conditions:

1 i is a Lie algebra homomorphism from G into Lie algebra
U ′(G )L.

2 Given any associative n-nilpotent algebra A and any Lie
algebra homomorphism f : G → AL, there exists a unique
algebra homomorphism f ′ : U ′ → A such that the following
diagram commutes:

U ′(G )L = U ′(G ) > A = AL

G

∧ >
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Lie algebra of a graph (4)

PBW theorem for nilpotent Lie algebras

If G is n-step nilpotent algebra over K and, in addition, it is a free
K -module, then G admits an universal enveloping n-nilpotent
algebra (U ′(G ), i) and i is an isomorphism.

A sketch of the proof of the Main theorem

Let L = L(Γ) be a 2-step nilpotent Lie algebra associated with
graph Γ. Let C be an ideal of U ′(L) generated by

v 2
1 , ..., v

2
n , a1, ..., al

Let U ′′(L) = U′(L)/C be a quotient algebra of U ′(L) modulo C .
The elements vivj , vi , ak , ak , where 1 ≤ i < j ≤ n and k, k ∈ S ,
form a basis of U ′′(L) over Z/p3Z.
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Proof steps (2)

Let Γ1 and Γ2 be two graphs and L1, L2 be the two algebras
associated with them. Suppose that φ : L1 → L2 is an isomorphism
of Lie algebras. Then φ can be extended to an isomorphism
φ′′ : U ′′(L1)→ U ′′(L2) of 2-nilpotent associative algebras
(PBW-argument). Let

φ′(v1) = c11v ′1 + ...+ c1nv ′n + (l.c. of a′i ’s)

where c1k ∈ Z/p3Z for all k . Since φ′(v 2
1 ) = 0, we get∑

1≤i<j≤n

(2c1ic1jv
′
i v ′j + c1ic1j(a′ij − a′ji )) = 0

An analysis shows that exactly one of the c1i is a unit, say c1i0 . We
can define a mapping π : [1n]→ [1n] with π(1) = i0. Thereby we
may construct a permutation π on [1n] so that π : Γ1 → Γ2 is an
isomorphism.
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Finite 2-nilpotent group of a graph

Construction

Let us observe 2-nilpotent Lie algebra L = L(Γ) of graph Γ as
Z/p3Z-module and its submodule V 0 =

⊕n
i=1(Z/p3Z)vi with

an additive basis B =< b1, ..., bn >.

V 0 = SpanZ/p3Z < b1, ..., bn >.

Denote by Z the center of L(Γ).

Gn = {g1, ..., gn} denotes a set of n elements and χ : B → Gn

is a bijection.

G = G (Γ) denotes the set of all formal expressions of the form

G := {gα1
1 ...gαn

n ak | ak ∈ Z , gi ∈ Gn, 0 ≤ αi ≤ p3 − 1},

where gi = χ(bi ) for i ∈ [1, ..., n].
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Multiplication in G (Γ)

We use the multiplicative notation bαi
i · b

αj

j instead of the additive
notation αibi + αjbj for the module operation on L(Γ)).

gα1
1 ...gαn

n agβ1
1 ...gβn

n b = gα1+β1
1 ...gαn+βn

n · a·

· b · ϕ(bα2
2 ...bαn

n , bβ1
1 )ϕ(bα3

3 ...bαn
n , bβ2

2 )...ϕ(bαn
n , b

βn−1

n−1 ),

where ϕ(bi , bj) = bi × bj is the multiplication on R0 and
αi + βi = αi + βi mod p3.

Example

For complete graph Kn and one lacking an edge Kn − e groups
G (Kn) and G (Kn − e) are generated by centers of different size.
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Properties of G (Γ)

Theorem (L. and V.)

G (Γ) is a p-group of exponent p3.

Proof. In the algebra L(Γ)) elements vi have order p3, elements ai

corresponding to the edges of Γ have order p and elements
corresponding to the non-edges of Γ - order p2.
Now assume that for x , y ∈ G the condition xp3

= yp3
= 1 is

fulfilled. Then:

(xy)p3
= x2y 2xy ...xy [y , x ] = xp3

yp3
[y , x ][y 2, x ]...[yp3−1, x ]

= [y , x ]1+2+...+(p3−1) = [y , x ]
(p3−1)p3

2 = 1.
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The main theorem

Theorem (L. and V.)

Let L(Γ1) and L(Γ2) be two 2-nilpotent Lie algebras and G (Γ1)
and G (Γ2) two groups corresponding to them. Then

L(Γ1) ≈ L(Γ2)⇐⇒ G (Γ1) ≈ G (Γ2)
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Graphs on finite groups (1)

Finite group

Finite group G on n elements V = {v1, ..., vn} with binary
operation · is assumed to be defined by specifying mapping
µ : V × V → V .

Hypergraph

Hypergraph H(G ) corresponding to finite group G has nodes V
and directed hyperedges (v , u, µ(v , u)) for all v , u ∈ V .

Ruvim Lipyanski and Natalia Vanetik Classifying finite 2-nilpotent p-groups, Lie algebras and graphs : equivalent and wild problems



Graphs on finite groups (2)

Directed colored graph

Graph Γ(G ) corresponding to a hypergraph H(G ) has nodes
V ∪ (V × V × V ). Every directed hyperedge (v , u, µ(v , u)) of
color is represented by three colored directed edges of Γ(G ):

1 edge (v , (v , u, µ(v , u))) of color 1,

2 edge (u, (v , u, µ(v , u))) of color 2,

3 edge (µ(v , u), (v , u, µ(v , u))) of color 3.

Γ(G ) has n3 + n nodes and 3n2 edges of 3 colors.

Note

Isomorphism problems for colored graphs, directed graphs,
undirected graphs, simple graphs, multigraphs and every
combination of the above are polynomially equivalent.
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Graphs on other algebraic structures

Note

Similar graph construction can be done for other finite algebraic
structures.

Example

Graphs on finite semigroups Graph Γ(S) of finite semigroup S of
order n also has n3 + n nodes and 3n2 edges. Edges of Γ(S) have 3
colors.

Example

Graphs on finite rings Graph Γ(R) of finite ring R of order n has
n3 + n nodes and 6n2 edges. Edges of Γ(R) have 6 colors.
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Klein group and a part of the corresponding graph
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Preserving isomorphisms and homomorphisms

Isomorphisms

Theorem

Let G1 and G2 be two finite groups. Then G1 ≈ G2 if and only if
Γ(G1) ≈ Γ(G2).

Homomorphisms

Theorem

Let G1 and G2 be two finite groups. Then for each homomorphism
φ : G1 → G2 there exists a homomorphism φ′ : Γ(G1)→ Γ(G2)
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Wildness

Definition

A pair of matrices matrix problem W is the problem of classifying
pairs of square matrices over a field up to simultaneous similarity.
A classification problem is called wild if it contains W, and tame
otherwise.

Theorem (V. Sergeichuk ’75)

Let G be a 2-nilpotent finite p-group which is an extension of an
abelian group A by an abelian group B:

1→ A→ G → B → 1.

Problem of classifying of such groups G with group A of the order
p is tame. However, if the order of A is more than p, the above
problem is wild.
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Our results (1)

Theorem (L. and V.)

The problems of classification of graphs, finite 2-nilpotent Lie
algebras over Z/p3Z and finite 2-nilpotent groups up to
isomorphism are wild.

Assumptions for complexity estimates

finite associative graph algebras are given by specifying the
product of its basis elements over Z/p3Z;

finite graph groups are given by systems of generators and
defining relations;

graphs are given by their adjacency matrices.
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Our results (2)

Theorem (L. and V.)

The problems of classification of graphs, finite 2-nilpotent Lie
algebras over Z/p3Z and finite 2-nilpotent groups up to
isomorphism are polynomially equivalent.

Complexity

Let G be a group of order n. Size of Γ(G ) is O(n3).
The size of a basis of the Lie algebra L(Γ) is O(|Γ|2).
Therefore

ΓI ≤P
T LI ≤P

T GI ≤P
T ΓI

where ΓI, LI, and GI denote the isomorphism problems for graphs,
2-nilpotent Lie algebras over Z/p3Z of graphs, and 2-nilpotent
p-groups of graphs.
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Thank you!

Questions?
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