Second look at cyclic terms

Marcin Kozik and Libor Barto

TCS @ Jagiellonian Kraków, Poland

JardaFest 2010

I acknowledge the financial support of RIMS Research Meeting and Foundation for Polish Science (MF EOG) and MSHE.

▶ idempotent if $t(x,...,x) \approx x$;

- ▶ idempotent if $t(x,...,x) \approx x$;
- ▶ a Taylor term if it is idempotent and, for any $j \le n$;

$$t(\square_1, \square_2, \ldots, \square_n) \approx t(\triangle_1, \triangle_2, \ldots, \triangle_n),$$

where \square_i 's and \triangle_i 's are either x or y, but \square_j is x while \triangle_j is y;

- ▶ idempotent if $t(x,...,x) \approx x$;
- ▶ a Taylor term if it is idempotent and, for any $j \le n$;

$$t(\square_1, \square_2, \ldots, \square_n) \approx t(\triangle_1, \triangle_2, \ldots, \triangle_n),$$

where \square_i 's and \triangle_i 's are either x or y, but \square_i is x while \triangle_i is y;

weak near-unanimity if it is idempotent and

$$t(y,x,\ldots,x) \approx t(x,y,x,\ldots,x) \approx \cdots \approx t(x,\ldots,x,y)$$

- ▶ idempotent if $t(x,...,x) \approx x$;
- ▶ a Taylor term if it is idempotent and, for any $j \le n$;

$$t(\square_1, \square_2, \ldots, \square_n) \approx t(\triangle_1, \triangle_2, \ldots, \triangle_n),$$

where \square_i 's and \triangle_i 's are either x or y, but \square_j is x while \triangle_j is y;

weak near-unanimity if it is idempotent and

$$t(y,x,\ldots,x) \approx t(x,y,x,\ldots,x) \approx \cdots \approx t(x,\ldots,x,y)$$

Theorem (Maróti and McKenzie)

Let V be a locally finite variety then TFAE:

- V has a Taylor term;
- V has a weak near-unanimity term.

- ▶ idempotent if $t(x,...,x) \approx x$;
- ▶ a Taylor term if it is idempotent and, for any $j \le n$;

$$t(\square_1, \square_2, \ldots, \square_n) \approx t(\triangle_1, \triangle_2, \ldots, \triangle_n),$$

where \square_i 's and \triangle_i 's are either x or y, but \square_j is x while \triangle_j is y;

weak near-unanimity if it is idempotent and

$$t(y,x,\ldots,x) \approx t(x,y,x,\ldots,x) \approx \cdots \approx t(x,\ldots,x,y)$$

Theorem (Maróti and McKenzie)

Let f be an n-ary function on a finite set satisfying identities of a Taylor term. By composing and identifying coordinates a function satisfying the weak near-unanimity identities can be produced from f.

▶ cyclic if it is idempotent and $t(x_1,...,x_n) \approx t(x_2,...,x_n,x_1)$.

▶ cyclic if it is idempotent and $t(x_1,...,x_n) \approx t(x_2,...,x_n,x_1)$.

Theorem (Barto, Kozik)

For a finite algebra **A** TFAE:

- ► A has a Taylor term;
- A has a cyclic term;
- ▶ **A** has a cyclic term of arity p, for every prime p > |A|.

We start slowly:

Lemma

Let **A** be a finite idempotent algebra. Then there exists a term t such that for any $B \subseteq A$ and any $b \in \operatorname{Sg}_{\mathbf{A}}(B)$ there exists $b_1, \ldots, b_n \in B$ such that $t(b_1, \ldots, b_n) = b$.

We start slowly:

Lemma

Let **A** be a finite idempotent algebra. Then there exists a term t such that for any $B \subseteq A$ and any $b \in \operatorname{Sg}_{\mathbf{A}}(B)$ there exists $b_1, \ldots, b_n \in B$ such that $t(b_1, \ldots, b_n) = b$.

▶ the term $t(x_1,...,x_n)$ works for (B,c) if there are $b_1,...,b_n \in B$ such that

$$t(b_1,\ldots,b_n)=c$$

We start slowly:

Lemma

Let **A** be a finite idempotent algebra. Then there exists a term t such that for any $B \subseteq A$ and any $b \in \operatorname{Sg}_{\mathbf{A}}(B)$ there exists $b_1, \ldots, b_n \in B$ such that $t(b_1, \ldots, b_n) = b$.

▶ the term $t(x_1,...,x_n)$ works for (B,c) if there are $b_1,...,b_n \in B$ such that

$$t(b_1,\ldots,b_n)=c$$

• for two terms $t(x_1,\ldots,x_n)$ and $s(x_1,\ldots,x_m)$ the term

$$s(t(x_1,\ldots,x_n),\ldots,t(x_{nm-n+1},\ldots,x_{nm}))$$

works for (B, c) given $t(x_1, \ldots, x_n)$ or $s(x_1, \ldots, x_m)$ work for (B, c).

Definition (VBD-absorbing subalgebra)

Let **A** be a finite idempotent algebra. The subalgebra **B** \leq **A** is VBD-absorbing if there exists a term $t(x_1, ..., x_n)$ such that

$$t(a_1,\ldots,a_n)\in B$$
 whenever $\{a_1,\ldots,a_n\}\cap B\neq\emptyset$

Definition (VBD-absorbing subalgebra)

Let **A** be a finite idempotent algebra. The subalgebra $\mathbf{B} \leq \mathbf{A}$ is VBD-absorbing if there exists a term t(x,y) such that

 $t(a,b) \in B$ whenever $a \in B$ or $b \in B$

Definition (VBD-absorbing subalgebra)

Let **A** be a finite idempotent algebra. The subalgebra $\mathbf{B} \leq \mathbf{A}$ is VBD-absorbing if there exists a term t(x,y) such that

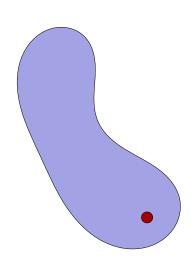
$$t(a,b) \in B$$
 whenever $a \in B$ or $b \in B$

Lemma (Barto)

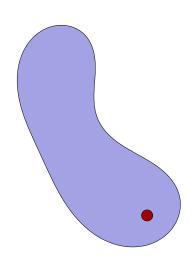
Let **A** be a finite idempotent algebra with a Taylor term then:

- ▶ A has a proper VBD-absorbing subalgebra, or
- ▶ there is a term $t(x_1,...,x_n)$ (a magic term) such that, for any $b,c\in A$ and any $j\leq n$ there are $a_1,...,a_{j-1},a_{j+1},...,a_n$ such that:

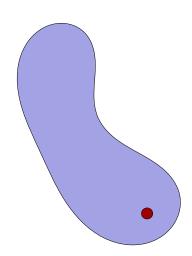
$$t(a_1,\ldots,a_{j-1},b,a_{j+1},\ldots,a_n)=c.$$



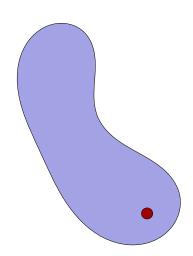
blue is a subuniverse that can be obtained from $s(x_1,...,x_n)$ with b at position j;



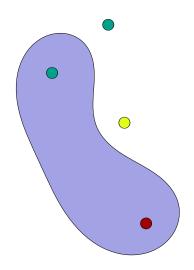
- blue is a subuniverse that can be obtained from $s(x_1,...,x_n)$ with b at position j;
- we define a new term $T(s(x_1,...,x_n),...,s(x_{nm-n+1},...,x_{nm}))$



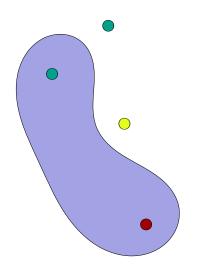
- blue is a subuniverse that can be obtained from $s(x_1, ..., x_n)$ with b at position j;
- we define a new term $T(s(x_1,...,x_n),...,s(x_{nm-n+1},...,x_{nm}))$
- blue can be obtained from the new term with b at position j;



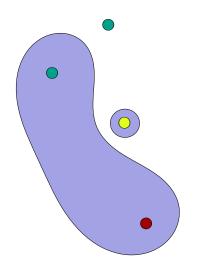
- blue is a subuniverse that can be obtained from $s(x_1, ..., x_n)$ with b at position j;
- we define a new term $T(s(x_1,...,x_n),...,s(x_{nm-n+1},...,x_{nm}))$
- blue can be obtained from the new term with b at position j;
- $ightharpoonup T_1(x,y) := T(x,\ldots) \approx T(y,\ldots)$



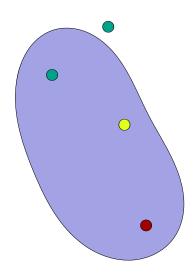
- blue is a subuniverse that can be obtained from $s(x_1, ..., x_n)$ with b at position j;
- we define a new term $T(s(x_1,...,x_n),...,s(x_{nm-n+1},...,x_{nm}))$
- blue can be obtained from the new term with b at position j;
- $T_1(x,y) := T(x,\dots) \approx T(y,\dots)$
- ▶ blue is not VBD-absorbing, so $T_1(b, c) = d$



- blue is a subuniverse that can be obtained from $s(x_1, ..., x_n)$ with b at position j;
- we define a new term $T(s(x_1,...,x_n),...,s(x_{nm-n+1},...,x_{nm}))$
- blue can be obtained from the new term with b at position j;
- $ightharpoonup T_1(x,y) := T(x,\dots) \approx T(y,\dots)$
- ▶ blue is not VBD-absorbing, so $T_1(b, c) = d$
- ▶ if b is blue then d can be obtained directly



- blue is a subuniverse that can be obtained from $s(x_1, ..., x_n)$ with b at position j;
- we define a new term $T(s(x_1,...,x_n),...,s(x_{nm-n+1},...,x_{nm}))$
- blue can be obtained from the new term with b at position j;
- $T_1(x,y) := T(x,\dots) \approx T(y,\dots)$
- ▶ blue is not VBD-absorbing, so $T_1(b, c) = d$
- ▶ if b is blue then d can be obtained directly
- but if b is not blue then d can be obtained as well since $T_1(b,c) = T(c,...)$



- blue is a subuniverse that can be obtained from $s(x_1, ..., x_n)$ with b at position j;
- we define a new term $T(s(x_1,...,x_n),...,s(x_{nm-n+1},...,x_{nm}))$
- blue can be obtained from the new term with b at position j;
- $T_1(x,y) := T(x,\dots) \approx T(y,\dots)$
- ▶ blue is not VBD-absorbing, so $T_1(b, c) = d$
- ▶ if b is blue then d can be obtained directly
- but if b is not blue then d can be obtained as well since $T_1(b,c) = T(c,...)$
- using previous lemma we can obtain a bigger subuniverse.

Definition (Absorbing subalgebra)

Let $\mathbf A$ be a finite idempotent algebra. The subalgebra $\mathbf B \leq \mathbf A$ is absorbing (and write $\mathbf B \lhd \mathbf A$) if there exists a term $t(x_1,\dots,x_n)$ such that

$$t(a_1,\ldots,a_n)\in B$$
 whenever $|\{i:a_i\notin B\}|\leq 1$.

Definition (Absorbing subalgebra)

Let **A** be a finite idempotent algebra. The subalgebra $\mathbf{B} \leq \mathbf{A}$ is absorbing (and write $\mathbf{B} \lhd \mathbf{A}$) if there exists a term $t(x_1, \dots, x_n)$ such that

$$t(a_1,\ldots,a_n)\in B \text{ whenever } |\{\text{ } i:a_i\notin B\}|\leq 1.$$

Definition

A set
$$R \subseteq A \times B$$
 is linked if $\underbrace{R \circ R^{-1} \circ R \circ \cdots \circ R^{-1}}_{p} = B^2$ for some n .

Definition (Absorbing subalgebra)

Let **A** be a finite idempotent algebra. The subalgebra $\mathbf{B} \leq \mathbf{A}$ is absorbing (and write $\mathbf{B} \lhd \mathbf{A}$) if there exists a term $t(x_1, \ldots, x_n)$ such that

$$t(a_1,\ldots,a_n)\in B \text{ whenever } |\{\,i:a_i\notin B\}|\leq 1.$$

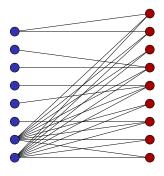
Definition

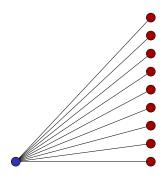
A set
$$R \subseteq A \times B$$
 is linked if $\underbrace{R \circ R^{-1} \circ R \circ \cdots \circ R^{-1}}_{n} = B^{2}$ for some n .

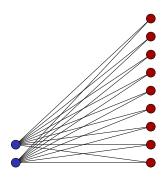
Theorem (Absorption theorem)

Let $\mathbf{A} \leq_s \mathbf{B} \times \mathbf{C}$ be algebras with a Taylor term, and let $A \subseteq B \times C$ be linked. Then:

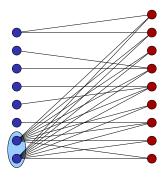
- $ightharpoonup A = B \times C$. or
- ▶ B or C has a proper absorbing subalgebra



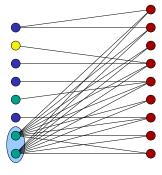




 elements that arrow everything on red side are blue



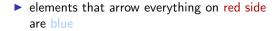
- elements that arrow everything on red side are blue
- ▶ blue is a subuniverse of blue side

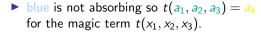


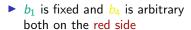
- elements that arrow everything on red side are blue
- ▶ blue is a subuniverse of blue side
- blue is not absorbing so $t(a_1, a_2, a_3) = a_4$ for the magic term $t(x_1, x_2, x_3)$.

- elements that arrow everything on red side are blue
- ▶ blue is a subuniverse of blue side
- blue is not absorbing so $t(a_1, a_2, a_3) = a_4$ for the magic term $t(x_1, x_2, x_3)$.

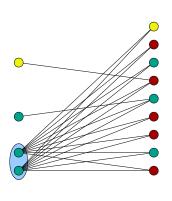
- elements that arrow everything on red side are blue
- ▶ blue is a subuniverse of blue side
- blue is not absorbing so $t(a_1, a_2, a_3) = a_4$ for the magic term $t(x_1, x_2, x_3)$.
- ▶ b_1 is fixed and b_4 is arbitrary both on the red side



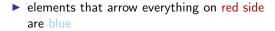




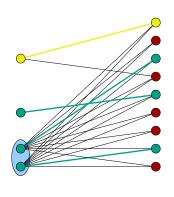
▶ by lemma we can find b_2 and b_3 s.t. $t(b_1, b_2, b_3) = b_4$



Special case:

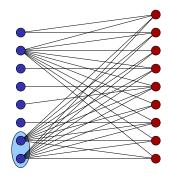


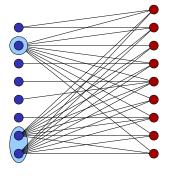
- ▶ blue is a subuniverse of blue side
- blue is not absorbing so $t(a_1, a_2, a_3) = a_4$ for the magic term $t(x_1, x_2, x_3)$.
- ▶ b_1 is fixed and b_4 is arbitrary both on the red side
- ▶ by lemma we can find b_2 and b_3 s.t. $t(b_1, b_2, b_3) = b_4$
- \blacktriangleright this implies edge from a_4 to b_4



Special case:

- elements that arrow everything on red side are blue
- blue is a subuniverse of blue side
- blue is not absorbing so $t(a_1, a_2, a_3) = a_4$ for the magic term $t(x_1, x_2, x_3)$.
- ▶ b₁ is fixed and b₄ is arbitrary both on the red side
- by lemma we can find b_2 and b_3 s.t. $t(b_1, b_2, b_3) = b_4$
- ▶ this implies edge from a₄ to b₄
- ▶ since b₄ was arbitrary we get more edges

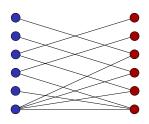




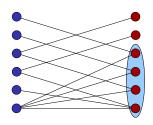
Special case:

- elements that arrow everything on red side are blue
- blue is a subuniverse of blue side
- blue is not absorbing so $t(a_1, a_2, a_3) = a_4$ for the magic term $t(x_1, x_2, x_3)$.
- ▶ b₁ is fixed and b₄ is arbitrary both on the red side
- ▶ by lemma we can find b_2 and b_3 s.t. $t(b_1, b_2, b_3) = b_4$
- ▶ this implies edge from a₄ to b₄
- \triangleright since b_4 was arbitrary we get more edges
- and can extend blue

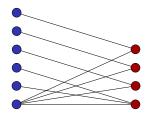
• we can assume that $A^{-1} \circ A = B^2$



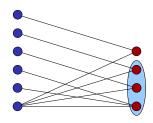
- we can assume that $A^{-1} \circ A = B^2$
- ▶ blue is a subuniverse of red side



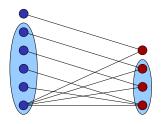
- we can assume that $A^{-1} \circ A = B^2$
- ▶ blue is a subuniverse of red side
- ▶ and we restrict to blue for now



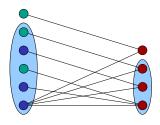
- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- ▶ and we restrict to blue for now
- ▶ inside this new set we can find absorbing subuniverse blue



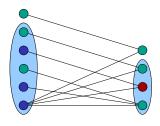
- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- ▶ and we restrict to blue for now
- ► inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side



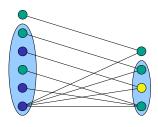
- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- ▶ and we restrict to blue for now
- inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side
- ▶ but the left blue absorbs blue side



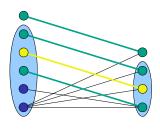
- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- ▶ and we restrict to blue for now
- inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side
- ▶ but the left blue absorbs blue side



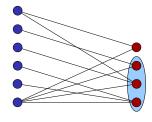
- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- ▶ and we restrict to blue for now
- ► inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side
- ▶ but the left blue absorbs blue side



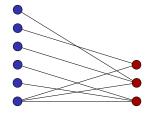
- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- ▶ and we restrict to blue for now
- ► inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side
- ▶ but the left blue absorbs blue side



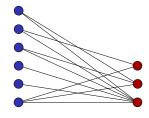
- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- and we restrict to blue for now
- inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side
- ▶ but the left blue absorbs blue side
- therefore blue is adjacent to whole blue side



- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- ▶ and we restrict to blue for now
- inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side
- ▶ but the left blue absorbs blue side
- ▶ therefore blue is adjacent to whole blue side
- now we are in simple case



- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- and we restrict to blue for now
- inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side
- ▶ but the left blue absorbs blue side
- ▶ therefore blue is adjacent to whole blue side
- now we are in simple case
- ▶ and therefore have more edges



- we can assume that $A^{-1} \circ A = B^2$
- blue is a subuniverse of red side
- and we restrict to blue for now
- inside this new set we can find absorbing subuniverse blue
- ▶ and consider its neighbours on blue side
- but the left blue absorbs blue side
- therefore blue is adjacent to whole blue side
- now we are in simple case
- ▶ and therefore have more edges
- looking from right to left we have a situation from simple case again and we are done

▶ A digraph is a pair $\mathbb{G} = (V, E)$ where $E \subseteq V \times V$

- ▶ A digraph is a pair $\mathbb{G} = (V, E)$ where $E \subseteq V \times V$
- ▶ A digraph $\mathbb{G} = (V, E)$ is smooth if E is subdirect in $V \times V$;

- ▶ A digraph is a pair $\mathbb{G} = (V, E)$ where $E \subseteq V \times V$
- ▶ A digraph $\mathbb{G} = (V, E)$ is smooth if E is subdirect in $V \times V$;
- lacktriangle A smooth, connected digraph $\mathbb{G}=(V,E)$ has algebraic length 1 if

$$\underbrace{R^n \circ R^{-n} \circ R^n \circ \cdots \circ R^{-n}}_{n} = V^2 \text{ for some } n;$$

- ▶ A digraph is a pair $\mathbb{G} = (V, E)$ where $E \subseteq V \times V$
- ▶ A digraph $\mathbb{G} = (V, E)$ is smooth if E is subdirect in $V \times V$;
- lacktriangle A smooth, connected digraph $\mathbb{G}=(V,E)$ has algebraic length 1 if

$$\underbrace{R^n \circ R^{-n} \circ R^n \circ \cdots \circ R^{-n}}_{n} = V^2 \text{ for some } n;$$

▶ A smooth digraph has algebraic length 1 if one of its connected components does.

- ▶ A digraph is a pair $\mathbb{G} = (V, E)$ where $E \subseteq V \times V$
- ▶ A digraph $\mathbb{G} = (V, E)$ is smooth if E is subdirect in $V \times V$;
- ightharpoonup A smooth, connected digraph $\mathbb{G}=(V,E)$ has algebraic length 1 if

$$\underbrace{R^n \circ R^{-n} \circ R^n \circ \cdots \circ R^{-n}}_{n} = V^2 \text{ for some } n;$$

▶ A smooth digraph has algebraic length 1 if one of its connected components does.

Theorem (Smooth)

Let $\mathbf{E} \leq_S \mathbf{B} \times \mathbf{B}$ be algebras with Taylor term such that (B, E) has algebraic length 1. Then $(b, b) \in E$ for some $b \in B$.

- ▶ A digraph is a pair $\mathbb{G} = (V, E)$ where $E \subseteq V \times V$
- ▶ A digraph $\mathbb{G} = (V, E)$ is smooth if E is subdirect in $V \times V$;
- ightharpoonup A smooth, connected digraph $\mathbb{G}=(V,E)$ has algebraic length 1 if

$$\underbrace{R^n \circ R^{-n} \circ R^n \circ \cdots \circ R^{-n}}_{n} = V^2 \text{ for some } n;$$

▶ A smooth digraph has algebraic length 1 if one of its connected components does.

Theorem (Smooth)

Let $\mathbf{E} \leq_S \mathbf{B} \times \mathbf{B}$ be algebras with Taylor term such that (B, E) has algebraic length 1. Then $(b, b) \in E$ for some $b \in B$.

But sometimes we need a more specific b...

to be more specific:

Theorem (Smooth)

Let $\mathbf{E} \leq_S \mathbf{B} \times \mathbf{B}$ be algebras with Taylor term such that (B,E) has algebraic length 1. Then $(b,b) \in E$ for some $b \in B$ and, in fact, we can find (b,b)

to be more specific:

Theorem (Smooth)

Let $\mathbf{E} \leq_S \mathbf{B} \times \mathbf{B}$ be algebras with Taylor term such that (B,E) has algebraic length 1. Then $(b,b) \in E$ for some $b \in B$ and, in fact, we can find (b,b)

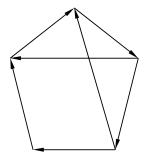
▶ in every connected component of algebraic length 1 in (B, E);

to be more specific:

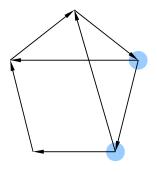
Theorem (Smooth)

Let $\mathbf{E} \leq_S \mathbf{B} \times \mathbf{B}$ be algebras with Taylor term such that (B,E) has algebraic length 1. Then $(b,b) \in E$ for some $b \in B$ and, in fact, we can find (b,b)

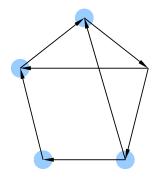
- ▶ in every connected component of algebraic length 1 in (B, E);
- in some minimal absorbing subuniverse in such a component (if there is one).



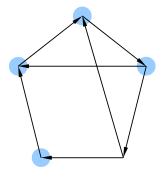
▶ blue is an absorbing subuniverse

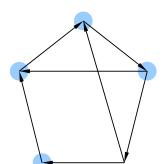


- ▶ blue is an absorbing subuniverse
- ▶ so is its forward neighbourhood

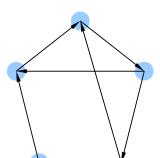


- blue is an absorbing subuniverse
- ▶ so is its forward neighbourhood
- ▶ so is its forward neighbourhood

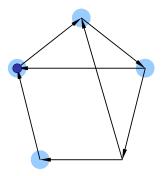




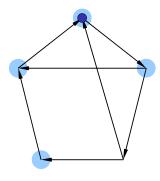
- blue is an absorbing subuniverse
- so is its forward neighbourhood
- so is its forward neighbourhood
- backward neighbourhood of blue is the whole graph and we stop



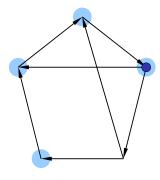
- blue is an absorbing subuniverse
- so is its forward neighbourhood
- so is its forward neighbourhood
- backward neighbourhood of blue is the whole graph and we stop
- ► to find a cycle in blue we choose an arbitrary element of blue



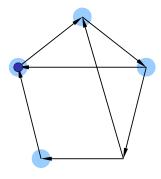
- blue is an absorbing subuniverse
- so is its forward neighbourhood
- so is its forward neighbourhood
- backward neighbourhood of blue is the whole graph and we stop
- ► to find a cycle in blue we choose an arbitrary element of blue
- since backward neighbourhood of blue is the whole graph we can find a new element in blue with arrow from the old one



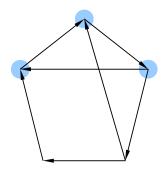
- blue is an absorbing subuniverse
- so is its forward neighbourhood
- so is its forward neighbourhood
- backward neighbourhood of blue is the whole graph and we stop
- ► to find a cycle in blue we choose an arbitrary element of blue
- since backward neighbourhood of blue is the whole graph we can find a new element in blue with arrow from the old one
- repeating this step we obtain a cycle inside blue



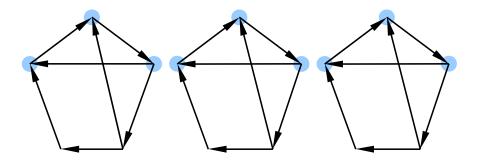
- blue is an absorbing subuniverse
- so is its forward neighbourhood
- so is its forward neighbourhood
- backward neighbourhood of blue is the whole graph and we stop
- ► to find a cycle in blue we choose an arbitrary element of blue
- since backward neighbourhood of blue is the whole graph we can find a new element in blue with arrow from the old one
- repeating this step we obtain a cycle inside blue

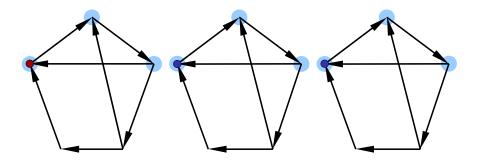


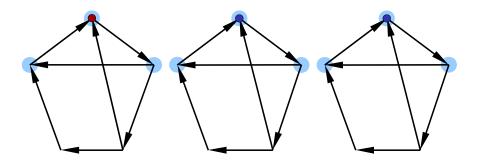
- blue is an absorbing subuniverse
- so is its forward neighbourhood
- so is its forward neighbourhood
- backward neighbourhood of blue is the whole graph and we stop
- ► to find a cycle in blue we choose an arbitrary element of blue
- since backward neighbourhood of blue is the whole graph we can find a new element in blue with arrow from the old one
- repeating this step we obtain a cycle inside blue

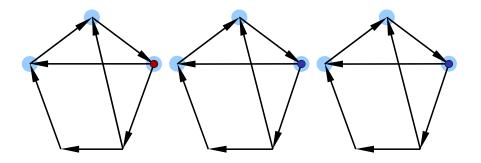


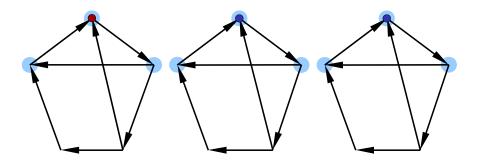
- blue is an absorbing subuniverse
- so is its forward neighbourhood
- so is its forward neighbourhood
- backward neighbourhood of blue is the whole graph and we stop
- ► to find a cycle in blue we choose an arbitrary element of blue
- since backward neighbourhood of blue is the whole graph we can find a new element in blue with arrow from the old one
- repeating this step we obtain a cycle inside blue
- all elements in smooth graph inside blue form a new and better blue

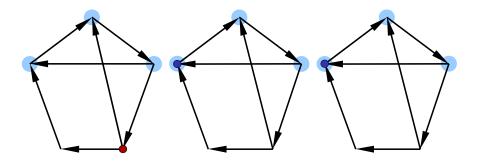


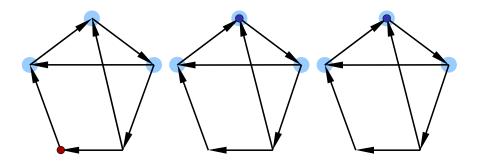


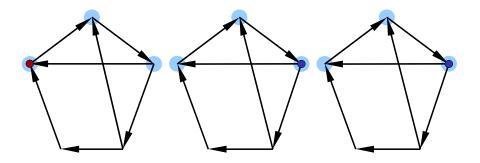


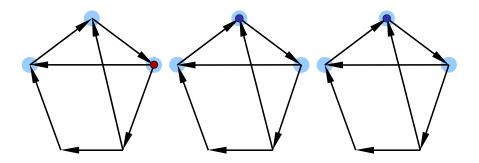


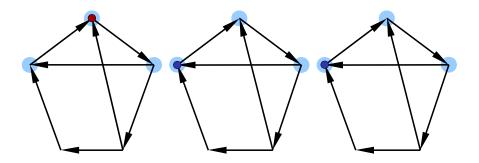


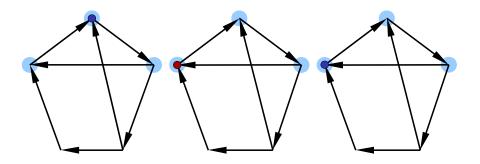


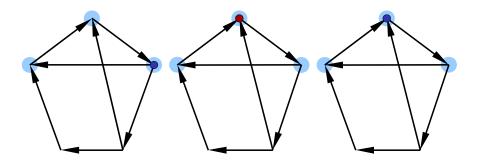


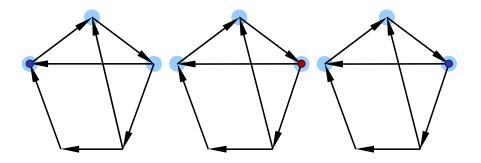


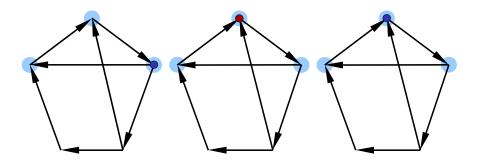


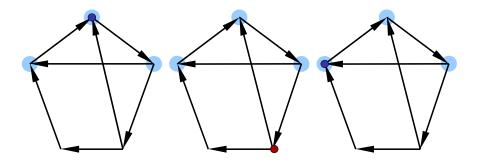


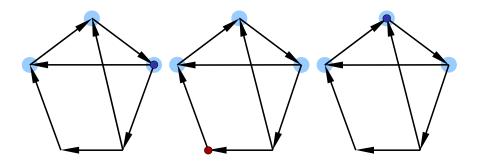


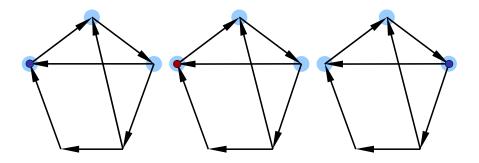


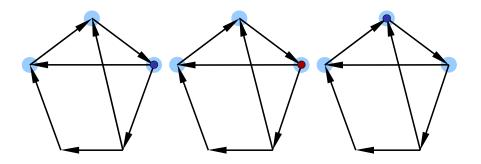


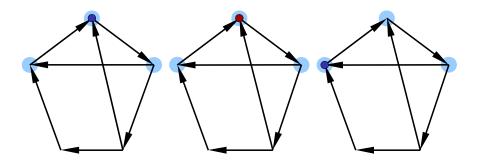


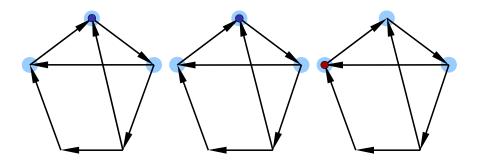


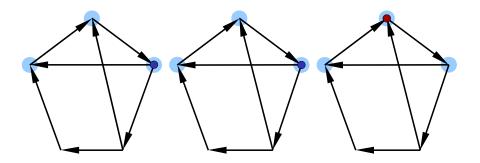


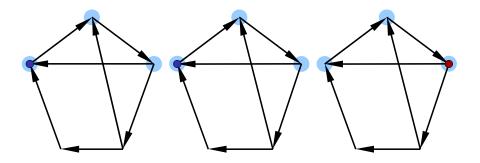


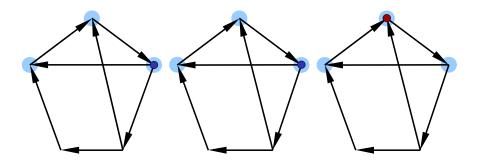


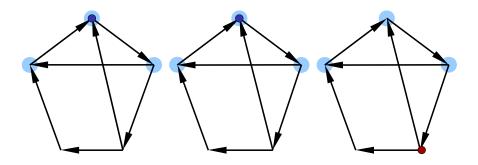


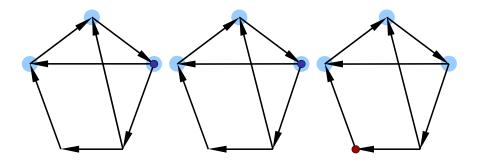


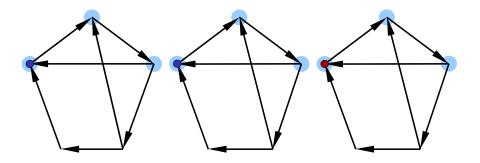


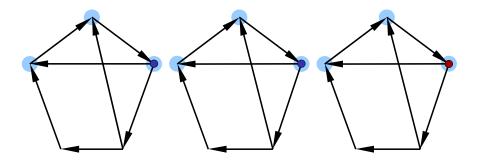


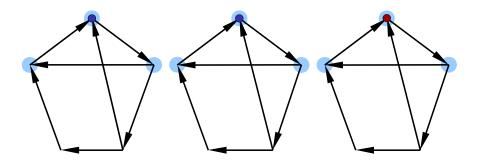


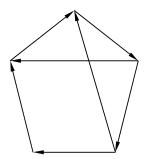


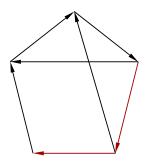


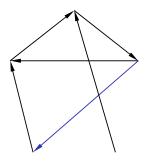


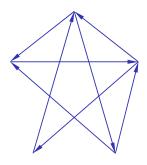






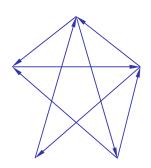






- if E is the set of edges, then $E \circ E$ is dark blue
- ▶ take a minimal *n* such that:

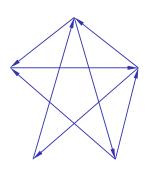
$$\underbrace{E^n \circ E^{-n} \circ E^n \circ \cdots \circ E^{-n}}_n = B^2$$



- if E is the set of edges, then $E \circ E$ is dark blue
- ▶ take a minimal *n* such that:

$$\underbrace{E^n \circ E^{-n} \circ E^n \circ \cdots \circ E^{-n}}_n = B^2$$

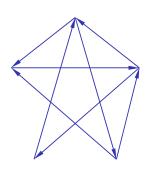
▶ note that Eⁿ is linked an subdirect subuniverse of B × B



- if E is the set of edges, then $E \circ E$ is dark blue
- take a minimal *n* such that:

$$\underbrace{E^n \circ E^{-n} \circ E^n \circ \cdots \circ E^{-n}}_n = B^2$$

- ▶ note that Eⁿ is linked an subdirect subuniverse of B × B
- ▶ since there are no absorbing subalgebras of **B** we get $E^n = B \times B$



Case of an no absorbing set (connected):

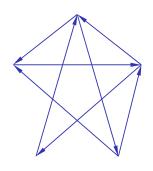
- if E is the set of edges, then $E \circ E$ is dark blue
- take a minimal *n* such that:

$$\underbrace{E^n \circ E^{-n} \circ E^n \circ \cdots \circ E^{-n}}_n = B^2$$

- ▶ note that Eⁿ is linked an subdirect subuniverse of B × B
- ▶ since there are no absorbing subalgebras of **B** we get $E^n = B \times B$
- ▶ for big enough *k*

$$\underbrace{E^{n-1} \circ E^{-(n-1)} \circ E^{n-1} \circ \cdots \circ E^{-(n-1)}}_{k}$$

is a congruence



Case of an no absorbing set (connected):

- if E is the set of edges, then $E \circ E$ is dark blue
- take a minimal *n* such that:

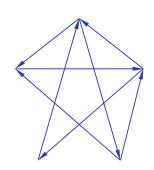
$$\underbrace{E^n \circ E^{-n} \circ E^n \circ \cdots \circ E^{-n}}_n = B^2$$

- ▶ note that E^n is linked an subdirect subuniverse of $\mathbf{B} \times \mathbf{B}$
- ▶ since there are no absorbing subalgebras of **B** we get $E^n = B \times B$
- \triangleright for big enough k

$$\underbrace{E^{n-1} \circ E^{-(n-1)} \circ E^{n-1} \circ \cdots \circ E^{-(n-1)}}_{k}$$

is a congruence

▶ and it is not the full congruence



▶ suppose $E \circ E \circ E = B \times B$

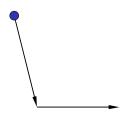
- ▶ suppose $E \circ E \circ E = B \times B$
- ► choose an arbitrary element

- ▶ suppose $E \circ E \circ E = B \times B$
- choose an arbitrary element
- we can find another element congruent wrt

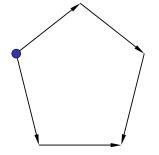
$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_k$$

▶ suppose
$$E \circ E \circ E = B \times B$$

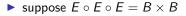
$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_{k}$$



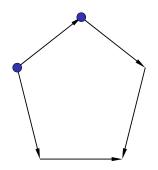
- ▶ suppose $E \circ E \circ E = B \times B$
- choose an arbitrary element
- we can find another element congruent wrt



$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_k$$



$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_{k}$$

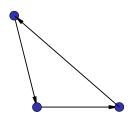


▶ suppose
$$E \circ E \circ E = B \times B$$

we can find another element congruent wrt

$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_k$$

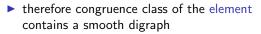
therefore congruence class of the element contains a smooth digraph



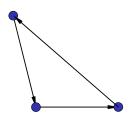
▶ suppose
$$E \circ E \circ E = B \times B$$

we can find another element congruent wrt

$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_k$$

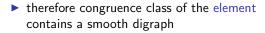


► lets take only the elements from this smooth digraph

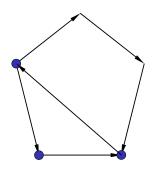


we can find another element congruent wrt

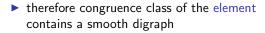
$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_{k}$$



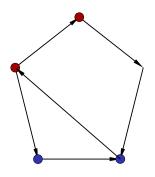
lets take only the elements from this smooth digraph



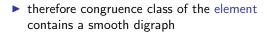
$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_{k}$$



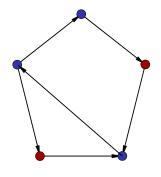
- lets take only the elements from this smooth digraph
- element from inside is congruent to the element from outside



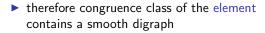
$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_{k}$$



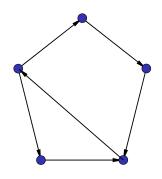
- lets take only the elements from this smooth digraph
- element from inside is congruent to the element from outside
- ▶ and again



$$\underbrace{E^2 \circ E^{-2} \circ E^2 \circ \cdots \circ E^{-2}}_{k}$$



- ► lets take only the elements from this smooth digraph
- element from inside is congruent to the element from outside
- and again
- ▶ and we obtained a reduction to the inside the congruence block



The remainder of this position is desired in the position in desired in the position of this theorem.

We have a price remaining p_i as for a light p_i worth p_i' and p_i' are the remaining an invariant consistence and p_i'' in the threadown with respect to the claim of A. Then A is a finite algebra in V_i , p_i' p_i' , and for all $B \in V$ with |B| < |A|. Be not a spin town of arity p_i' in p_i' points and notion an extended topic consistence and $B^{(i)}$ contained in the point of all the points of the point of arity p_i' in p_i' contains a constant topic consequent to provide the following data in each the following P_i' in an P_i' and the following P_i' in an P_i' in P_i' and P_i' contains a constant topic consequent to provide the following P_i' in an P_i' in P_i' in P_i' contains a constant topic consequent to P_i' in P_i The projection of R to any coordinate is a subalgebra of A. From cyclotic of R is follows that all projections are reput, say to R. R is a subsolverse of A and if it is a proper subset of R, then R \leq R 2 contains a constant topic by the minimality assumption, a contradic We will arrow the following two states by instaction on $a=1,2,\ldots,n$. Note that for n=1 both claims are salid and that prosents (P2) for n=n contradicts the absence of a constant basis in P3 (P1) There exists I = A such that I' = B. (P2) $I(I_1, ..., I_n) \in A$ and $I(I_1, ..., I_n) \cap B$, of $I(I_1, ..., I_n) \in B$. $S = \{((a_1, \dots, a_{n-1}), a_n) : (a_1, \dots, a_n) \in R_{n-1}\}$ and let $\hat{\mathbf{x}}$ denote the unindpoint of \mathbf{A}^{n-1} with universe $\hat{\mathbf{x}}$. Thus $\hat{\mathbf{x}}$ is businely $\hat{\mathbf{R}}_{n,i,i}$, but we limit at it as a (subdirect) product of two algebras $\hat{\mathbf{R}}_i$ and $\hat{\mathbf{A}}$: $\hat{\mathbf{x}} \leq g \hat{\mathbf{R}}_i \times \hat{\mathbf{A}}$ $(\mathbf{a}^i, v_{i-1}), (\mathbf{a}^i, v_i) \in S$ It is alway refering and symmetric. It is also transitive as we have shown A big enough. It follows immediately from the definition that \sim is a subsequence of \mathbb{A}^2 If I = A then S is linked. It is mary in which that X is an absorbing subsorbine of A. As $A^{n+1} \cap R$ is empty, X is disjoint from I. Let J be a J or A ($B^{n} \cap R$ is supply and I of I or I is supply and I of I is supply and I is a I or I is supply and I is supply and I is a I or I is supply and I is a I or I is supply and I is supply and I is a I in I is a I in I in I is supply and I is a I in I in I is a I in I Similarly we can show that there exists a minimal absorbing subalgebra I' of A distinct from I such that $(I \times I') \cap R_{i+1}$ is nonempty ter prior to act v. v. a component minim manage as n. v. an. .

The prior funds in a component minim manage as n. v. an. .

The prior funds in a prior fund of the prior funds of the pr Control of the contro

Let k_1, \dots, k_{i+1} be absorbing subalgebras of A such that $(k_1 \times \dots \times k_{i+1}) \cap R_{i+1} \neq \emptyset$. Now S is a Tobical substrines subsorborne of R and that $h \times \dots \times h$ is a relative $(k_1, k_2 \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$. By Corollary $(k_1)(h \times \dots \times h) \times h_{i+1} \cap S \neq \emptyset$.

By Thravers there exists a lamp inside a minimal alterating subscriptors: K of R_c. Since the projection J of K to the first coordinate is a minimal alterating subscriptors of A_c are actually get an element a \in 2 or A such that $\{a, \dots, a\} \in R_{1,1}$. Now (P2) follows from (P2) and the proof of Thravers is constituted

There is $X = \{(1, \dots, 1, 2, 3, 2, \dots, 1, 2, \dots, 1, \dots, 1$

As it is assumed as a resume as in the point of Gain T, to get it $s = q_1, \ldots, q_k$ is minimal absoluting substitutes on it is a (q_1, q_2, \ldots, q_k) in minimal absoluting substitutes on if A is the large (q_1, q_2, \ldots, q_k) in (q_1, q_2, \ldots, q_k) in (q_1, q_2, \ldots, q_k) in minimal absoluting substitutes on it is (q_1, q_2, \ldots, q_k) in (q_1, q_2, \ldots, q_k) i

