Second look at cyclic terms

Marcin Kozik
and Libor Barto

TCS @ Jagiellonian
Krakéw, Poland

JardaFest 2010

| acknowledge the financial support of RIMS Research Meeting and Foundation for Polish Science (MF EOG) and MSHE.

Marcin Kozik and Libor Barto (Krakéw) Second look at cyclic terms Prague, June 2010 1/20



A term t(xi,...,Xp) is
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N
A term t(xi,...,Xp) is

» idempotent if t(x,...,x) = x;
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-
A term t(xi,...,Xp) is
» idempotent if t(x,...,x) = x;

» a Taylor term if it is idempotent and, for any j < n;
t(l:‘l, Lo, ..., Dn) =~ t(Al, No, ..., An),

where U;'s and A;'s are either x or y, but [J; is x while AA; is y;
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» idempotent if t(x,...,x) = x;

» a Taylor term if it is idempotent and, for any j < n;
t(l:‘l, Lo, ..., Dn) =~ t(Al, No, ..., An),

where U;'s and A;'s are either x or y, but [J; is x while AA; is y;

> weak near-unanimity if it is idempotent and

ty,x...,x) = t(x,y,x, ..., x) & = t(x,...,x,y)
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-
A term t(xi,...,Xp) is
» idempotent if t(x,...,x) = x;

» a Taylor term if it is idempotent and, for any j < n;
t(l:‘l, Lo, ..., |:|,,) =~ t(Al, No, ..., An),

where U;'s and A;'s are either x or y, but [J; is x while AA; is y;

> weak near-unanimity if it is idempotent and

ty,x...,x) = t(x,y,x, ..., x) & = t(x,...,x,y)

Theorem (Maréti and McKenzie)

Let V be a locally finite variety then TFAE:
» )V has a Taylor term;

» )V has a weak near-unanimity term.
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-
A term t(xi,...,Xp) is
» idempotent if t(x,...,x) = x;

» a Taylor term if it is idempotent and, for any j < n;
t(l:‘l, Lo, ..., |:|,,) =~ t(Al, No, ..., An),

where U;'s and A;'s are either x or y, but [J; is x while AA; is y;

> weak near-unanimity if it is idempotent and

t(y,x...,x) R t(x,y,X,...,x) = = t(x,...,x,y)

Theorem (Maréti and McKenzie)

Let f be an n-ary function on a finite set satisfying identities of a Taylor
term. By composing and identifying coordinates a function satisfying the
weak near-unanimity identities can be produced from f.
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A term t(xi,...,Xp) is

» cyclic if it is idempotent and t(x1,...,Xxn) = t(X2, ..., Xn, X1).
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A term t(xi,...,Xp) is

» cyclic if it is idempotent and t(x1,...,Xxn) = t(X2, ..., Xn, X1).

Theorem (Barto, Kozik)
For a finite algebra A TFAE:

» A has a Taylor term;
» A has a cyclic term;

» A has a cyclic term of arity p, for every prime p > |A|.
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-
We start slowly:

Lemma

Let A be a finite idempotent algebra. Then there exists a term t such that
for any B C A and any b € Sga(B) there exists by, ..., b, € B such that
t(bl,.. .,b,,) = b.
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for any B C A and any b € Sga(B) there exists by, ..., b, € B such that
t(bl,.. .,b,,) = b.

» the term t(x,...,x,) works for (B, c) if there are by,...,b, € B
such that
t(bl,...,bn) =cC
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-
We start slowly:

Lemma

Let A be a finite idempotent algebra. Then there exists a term t such that
for any B C A and any b € Sga(B) there exists by, ..., b, € B such that
t(bl,.. .,b,,) = b.

» the term t(x,...,x,) works for (B, c) if there are by,...,b, € B
such that
t(bl,...,bn) =cC

» for two terms t(xi,...,Xp) and s(xi,...,xn) the term
s(t(X1y -y Xn)s oy t(Xnm—nt1, -+ Xam))
works for (B, ¢) given t(x1,...,xn) or s(x1,...,xm) work for (B, c).
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Definition (VBD-absorbing subalgebra)

Let A be a finite idempotent algebra. The subalgebra B < A is VBD-
absorbing if there exists a term t(xi, ..., xn) such that

t(ai,...,an) € B whenever {a1,...,ap} N B # ()
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Definition (VBD-absorbing subalgebra)

Let A be a finite idempotent algebra. The subalgebra B < A is VBD-
absorbing if there exists a term t(x, y) such that

t(a, b) € B wheneverac Borbe B
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Definition (VBD-absorbing subalgebra)

Let A be a finite idempotent algebra. The subalgebra B < A is VBD-
absorbing if there exists a term t(x,y) such that

t(a, b) € B wheneverac Borbe B

Lemma (Barto)

Let A be a finite idempotent algebra with a Taylor term then:
» A has a proper VBD-absorbing subalgebra, or

> there is a term t(xi,...,x,) (a magic term) such that, for any
b,c € Aand any j < n there are a1,...,a;_1,3j41,...,a, such that:
t(al, ceey @1, b, A4l a,,) = cC.
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» blue is a subuniverse that can be obtained
from s(xi,...,x,) with b at position j;
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» blue is a subuniverse that can be obtained
from s(xi,...,x,) with b at position j;

> we define a new term
T(s(x1,-- s %n)y -y S(Xnm—nt1s- -+ Xom))
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» blue is a subuniverse that can be obtained
from s(xi,...,x,) with b at position j;

> we define a new term
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» blue can be obtained from the new term
with b at position J;
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» blue can be obtained from the new term
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» blue is a subuniverse that can be obtained
from s(xi,...,x,) with b at position j;

> we define a new term
T(s(x1,-- s %n)y -y S(Xnm—nt1s- -+ Xom))

» blue can be obtained from the new term
with b at position J;

> Ti(x,y) =T(x,...) = T(y,...)
» blue is not VBD-absorbing, so Ti(b,c) =
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» blue is a subuniverse that can be obtained
from s(xi,...,x,) with b at position j;

> we define a new term
T(s(x1,-- s %n)y -y S(Xnm—nt1s- -+ Xom))

» blue can be obtained from the new term
with b at position J;

> Ti(x,y) =T(x,...) = T(y,...)
» blue is not VBD-absorbing, so Ti(b,c) =

» if bis blue then  can be obtained directly
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» blue is a subuniverse that can be obtained
from s(xi,...,x,) with b at position j;

> we define a new term
T(s(x1,-- s %n)y -y S(Xnm—nt1s- -+ Xom))

» blue can be obtained from the new term
with b at position J;

Ti(x,y) = T(x,...) = T(y,...)
blue is not VBD-absorbing, so Ty(b, c) =

if bis blue then ~ can be obtained directly

vV v v v

but if b is not blue then  can be obtained
as well since T1(b,c) = T(c,...)

Marcin Kozik and Libor Barto (Krakéw) Second look at cyclic terms Prague, June 2010 7 /20



» blue is a subuniverse that can be obtained
from s(xi,...,x,) with b at position j;

> we define a new term
T(s(x1,-- s %n)y -y S(Xnm—nt1s- -+ Xom))

» blue can be obtained from the new term
with b at position J;

Ti(x,y) = T(x,...) = T(y,...)
blue is not VBD-absorbing, so Ti(b, c) =

if bis blue then ~ can be obtained directly

vV v v v

but if b is not blue then  can be obtained
as well since T1(b,c) = T(c,...)

» using previous lemma we can obtain a
bigger subuniverse.
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Definition (Absorbing subalgebra)

Let A be a finite idempotent algebra. The subalgebra B < A is
absorbing (and write B <1 A) if there exists a term t(xi,...,Xn) such that

t(a1,...,an) € B whenever |{i:a; ¢ B}| <1.

Marcin Kozik and Libor Barto (Krakéw) Second look at cyclic terms Prague, June 2010 8 /20



Definition (Absorbing subalgebra)
Let A be a finite idempotent algebra. The subalgebra B < A is
absorbing (and write B <1 A) if there exists a term t(xi,...,Xn) such that

t(a1,...,an) € B whenever |{i:a; ¢ B}| <1.

Definition
Aset RCAx B islinkedifRoR YoRo---0R™! = B2 for some n.

n
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Definition (Absorbing subalgebra)
Let A be a finite idempotent algebra. The subalgebra B < A is
absorbing (and write B <1 A) if there exists a term t(xi,...,Xn) such that

t(a1,...,an) € B whenever |{i:a; ¢ B}| <1.

Definition
Aset RCAx B islinkedifRoR YoRo---0R™! = B2 for some n.

n

Theorem (Absorption theorem)

Let A <; B x C be algebras with a Taylor term, and let A C B x C be
linked. Then:

» A=B xC, or

» B or C has a proper absorbing subalgebra

Marcin Kozik and Libor Barto (Krakéw) Second look at cyclic terms Prague, June 2010 8 /20



Special case:

Marcin Kozik and Libor Barto (Krakéw) Second look at cyclic terms Prague, June 2010 9 /20



Special case:

Marcin Kozik and Libor Barto (Krakéw) Second look at cyclic terms Prague, June 2010 9 /20



Special case:

Marcin Kozik and Libor Barto (Krakéw) Second look at cyclic terms Prague, June 2010 9 /20



Special case:

» elements that arrow everything on red side
are
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Special case:

» elements that arrow everything on red side
are

> is a subuniverse of blue side

> is not absorbing so t(a1, a,,a3) =
for the magic term t(xy, x2, x3).
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Special case:

» elements that arrow everything on red side
are

> is a subuniverse of blue side

> is not absorbing so t(a1, a,,a3) =
for the magic term t(xy, x2, x3).

» b is fixed and . is arbitrary
both on the red side
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Special case:

» elements that arrow everything on red side
are

> is a subuniverse of blue side

> is not absorbing so t(a1, a,,a3) =
for the magic term t(xy, x2, x3).

» b is fixed and . is arbitrary
both on the red side

» by lemma we can find b, and b3 s.t.
t(bla b27 b3) =
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Special case:

» elements that arrow everything on red side
are

> is a subuniverse of blue side

v

is not absorbing so t(a1, a,,a3) =
for the magic term t(xy, x2, x3).

v

by is fixed and . is arbitrary
both on the red side

» by lemma we can find b, and b3 s.t.
t(bla b27 b3) =

v

this implies edge from . to
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Special case:

>

>

>

>

>

>

>

elements that arrow everything on red side
are

is a subuniverse of blue side

is not absorbing so t(a1, a,,a3) =
for the magic term t(xy, x2, x3).

by is fixed and . is arbitrary
both on the red side

by lemma we can find b, and b3 s.t.
t(bla b27 b3) =

this implies edge from . to

since . was arbitrary we get more edges
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Special case:

>

>

>

>

>

>

>

>

elements that arrow everything on red side
are

is a subuniverse of blue side

is not absorbing so t(a1, a,,a3) =
for the magic term t(xy, x2, x3).

by is fixed and . is arbitrary
both on the red side

by lemma we can find b, and b3 s.t.
t(bla b27 b3) =

this implies edge from . to
since . was arbitrary we get more edges

and can extend
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The general case:

> we can assume that A=l o A = B?
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The general case:
> we can assume that A=l o A = B?
> is a subuniverse of red side

» and we restrict to for now
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The general case:
> we can assume that A=l o A = B?
> is a subuniverse of red side
» and we restrict to for now

» inside this new set we can find absorbing
subuniverse
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The general case:
> we can assume that A=l o A = B?
> is a subuniverse of red side
» and we restrict to for now

» inside this new set we can find absorbing
subuniverse

» and consider its neighbours on blue side
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The general case:

>

>
>
>

v

we can assume that A=l o A = B?
is a subuniverse of red side
and we restrict to for now

inside this new set we can find absorbing
subuniverse

and consider its neighbours on blue side

but the left absorbs blue side
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The general case:

>

>
>
>

v

we can assume that A=l o A = B?
is a subuniverse of red side
and we restrict to for now

inside this new set we can find absorbing
subuniverse

and consider its neighbours on blue side

but the left absorbs blue side
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The general case:

>

>
>
>

v

we can assume that A=l o A = B?
is a subuniverse of red side
and we restrict to for now

inside this new set we can find absorbing
subuniverse

and consider its neighbours on blue side
but the left absorbs blue side

therefore is adjacent to whole blue side
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The general case:

>

>
>
>

v Vv

v

v

we can assume that A=l o A = B?
is a subuniverse of red side
and we restrict to for now

inside this new set we can find absorbing
subuniverse

and consider its neighbours on blue side
but the left absorbs blue side
therefore is adjacent to whole blue side

now we are in simple case
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The general case:
> we can assume that A=l o A = B?
is a subuniverse of red side

and we restrict to for now

vV v vV

inside this new set we can find absorbing
subuniverse

and consider its neighbours on blue side

v Vv

but the left absorbs blue side

v

therefore is adjacent to whole blue side

v

now we are in simple case

» and therefore have more edges
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The general case:
> we can assume that A=l o A = B?
is a subuniverse of red side

and we restrict to for now

vV v vV

inside this new set we can find absorbing
subuniverse

and consider its neighbours on blue side

v Vv

but the left absorbs blue side

therefore is adjacent to whole blue side
now we are in simple case

and therefore have more edges

vV v v v

looking from right to left we have a
situation from simple case again and we are
done
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-
The goal:

» A digraph is a pair G = (V,E) where EC V x V
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-
The goal:

» A digraph is a pair G = (V,E) where EC V x V
» A digraph G = (V, E) is smooth if E is subdirect in V x V;
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-
The goal:

» A digraph is a pair G = (V,E) where EC V x V
» A digraph G = (V, E) is smooth if E is subdirect in V x V;
» A smooth, connected digraph G = (V/, E) has algebraic length 1 if

R"oR "oR"0---0R™" = V? for some n:

n
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-
The goal:

» A digraph is a pair G = (V,E) where EC V x V
» A digraph G = (V, E) is smooth if E is subdirect in V x V;
» A smooth, connected digraph G = (V/, E) has algebraic length 1 if

R"oR "oR"0---0R™" = V? for some n:

n

» A smooth digraph has algebraic length 1 if one of its connected
components does.
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-
The goal:

» A digraph is a pair G = (V,E) where EC V x V
» A digraph G = (V, E) is smooth if E is subdirect in V x V;
» A smooth, connected digraph G = (V/, E) has algebraic length 1 if

R"oR "oR"0---0R™" = V? for some n;

n

» A smooth digraph has algebraic length 1 if one of its connected
components does.

Theorem (Smooth)

Let E <5 B x B be algebras with Taylor term such that (B, E) has
algebraic length 1. Then (b, b) € E for some b € B.
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-
The goal:

» A digraph is a pair G = (V,E) where EC V x V
» A digraph G = (V, E) is smooth if E is subdirect in V x V;
» A smooth, connected digraph G = (V/, E) has algebraic length 1 if

R"oR "oR"0---0R™" = V? for some n;

n

» A smooth digraph has algebraic length 1 if one of its connected
components does.

Theorem (Smooth)

Let E <5 B x B be algebras with Taylor term such that (B, E) has
algebraic length 1. Then (b, b) € E for some b € B.

But sometimes we need a more specific b. ..
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to be more specific:

Theorem (Smooth)

Let E <5 B x B be algebras with Taylor term such that (B, E) has

algebraic length 1. Then (b, b) € E for some b € B and, in fact, we can
find (b, b)
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to be more specific:

Theorem (Smooth)

Let E <5 B x B be algebras with Taylor term such that (B, E) has

algebraic length 1. Then (b, b) € E for some b € B and, in fact, we can
find (b, b)

» in every connected component of algebraic length 1 in (B, E);
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to be more specific:

Theorem (Smooth)

Let E <5 B x B be algebras with Taylor term such that (B, E) has
algebraic length 1. Then (b, b) € E for some b € B and, in fact, we can

find (b, b)
» in every connected component of algebraic length 1 in (B, E);

» in some minimal absorbing subuniverse in such a component (if there
is one).
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Case of an absorbing set (connected):
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Case of an absorbing set (connected):
> is an absorbing subuniverse
» so is its forward neighbourhood
» so is its forward neighbourhood

» backward neighbourhood of is the
whole graph and we stop
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Case of an absorbing set (connected):

>

>

is an absorbing subuniverse
so is its forward neighbourhood

so is its forward neighbourhood

backward neighbourhood of is the
whole graph and we stop
to find a cycle in we choose an

arbitrary element of
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> is an absorbing subuniverse
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» so is its forward neighbourhood

» backward neighbourhood of is the
whole graph and we stop

» to find a cycle in we choose an
arbitrary element of

» since backward neighbourhood of is
the whole graph we can find a new element
in with arrow from the old one
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» backward neighbourhood of is the
whole graph and we stop

» to find a cycle in we choose an
arbitrary element of

» since backward neighbourhood of is
the whole graph we can find a new element
in with arrow from the old one

> repeating this step we obtain a cycle inside
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» backward neighbourhood of is the
whole graph and we stop

» to find a cycle in we choose an
arbitrary element of

» since backward neighbourhood of is
the whole graph we can find a new element
in with arrow from the old one

> repeating this step we obtain a cycle inside

» all elements in smooth graph inside
form a new and better
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» since there are no absorbing subalgebras of
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Case of an no absorbing set (connected):

N
P

Marcin Kozik and Libor Barto (Krakéw)

>

>

if E is the set of edges, then E o E is dark
blue

take a minimal n such that:

EnOE_nOEnO"'OE_n:B2

n

note that E” is linked an subdirect
subuniverse of B x B

since there are no absorbing subalgebras of
Bweget E"=BxB

for big enough k

Er 1o E~ (Do Er-lo...0 g~(n=1)
k

is a congruence

and it is not the full congruence
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>

suppose EcEoc E =B x B
choose an arbitrary element
we can find another element congruent wrt

E20E20E%0..-0E2
k

therefore congruence class of the element
contains a smooth digraph

lets take only the elements from this
smooth digraph

element from inside is congruent to the
element from outside

and again

and we obtained a reduction to the inside
the congruence block
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