The lattice of strongly commutative semigroups, first order definability

Mariusz Grech

Mathematical Institute University of Wrocław

Praha, 21-25.06.2010

First-order definability – History

Problem (A. Tarski 1968, R. McKenzie 1971)

First-order definability in the lattices of equational theories.

First-order definability – History

Problem (A. Tarski 1968, R. McKenzie 1971)

First-order definability in the lattices of equational theories.

Solution in the general case (Ježek 1981-1986)

Each equational theory is definable in the lattice of given type (up to obvious syntactical automorphisms).

J. Ježek, R. McKenzie 1993

Each finitely axiomatizable locally finite theory is definable up to duality (up to inverting the order of occurrences of letters in words).

J. Ježek, R. McKenzie 1993

Each finitely axiomatizable locally finite theory is definable up to duality (up to inverting the order of occurrences of letters in words).

A. Kisielewicz

1994 - Description of the lattice of equational theories of commutative semigroups (L(Com))

J. Ježek, R. McKenzie 1993

Each finitely axiomatizable locally finite theory is definable up to duality (up to inverting the order of occurrences of letters in words).

A. Kisielewicz

1994 - Description of the lattice of equational theories of commutative semigroups (L(Com)) 2004

- Each Schwabauer theory is definable in L(Com)
- Example of automorphism of L(Com)

J. Ježek, R. McKenzie 1993

Each finitely axiomatizable locally finite theory is definable up to duality (up to inverting the order of occurrences of letters in words).

A. Kisielewicz

1994 - Description of the lattice of equational theories of commutative semigroups (L(Com))
2004

- Each Schwabauer theory is definable in L(Com)
- Example of automorphism of L(Com)

M. G.

Whole group of automorphisms of L(Com)

Strongly permutative semigroups

Definition (Strongly permutative semigroups)

semigroup satisfying a permutation identity

$$x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(k)}$$

with $\sigma(1) > 1$ and $\sigma(k) < k$.

Strongly permutative semigroups

Definition (Strongly permutative semigroups)

semigroup satisfying a permutation identity

$$X_1 \cdots X_n = X_{\sigma(1)} \cdots X_{\sigma(k)}$$

with $\sigma(1) > 1$ and $\sigma(k) < k$.

Equivalently, semigroup satisfying all permutation identity

$$x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}$$

for k > n, where n depends on the semigroup.

Equational theories of strongly permutative semigroups

Definition

Equational theory T of strongly permutative semigroups is a set of semigroup equation (closed under natural consequences, multiplications, substitutions, ...) such that there is n such that T contains all the identities

$$x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}, \sigma \in S_n$$

Equational theories of strongly permutative semigroups

Definition

Equational theory T of strongly permutative semigroups is a set of semigroup equation (closed under natural consequences, multiplications, substitutions, ...) such that there is n such that T contains all the identities

$$x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}, \sigma \in S_n$$

By n(T), we denote a minimal $n \ge 2$ that the property holds.

Equational theories of strongly permutative semigroups

Definition

Equational theory T of strongly permutative semigroups is a set of semigroup equation (closed under natural consequences, multiplications, substitutions, ...) such that there is n such that T contains all the identities

$$x_1 \cdots x_k = x_{\sigma(1)} \cdots x_{\sigma(k)}, \sigma \in S_n$$

By n(T), we denote a minimal $n \ge 2$ that the property holds.

If
$$n(T) = 2$$
, then $T \in L(Com)$.

Advantages of the lattice of equational theories of strongly permutative semigroups

 Every equational theory of strongly permutative semigroups is finitely generated. (Easy enough to work with).

Advantages of the lattice of equational theories of strongly permutative semigroups

- Every equational theory of strongly permutative semigroups is finitely generated. (Easy enough to work with).
- Greater than L(Com). (Is not commutative, therefore some techniques are available).

Advantages of the lattice of equational theories of strongly permutative semigroups

- Every equational theory of strongly permutative semigroups is finitely generated. (Easy enough to work with).
- Greater than L(Com). (Is not commutative, therefore some techniques are available).
- Near enough *L*(*Com*) to extend Kisielewicz's description.

Theorem

Every nontrivial equational theory of commutative semigroups is of the form

$$E(J, m, r, \pi)$$

Theorem

Every nontrivial equational theory of commutative semigroups is of the form

$$E(J, m, r, \pi)$$

J - an order filter on a quasi-ordering (W, \leq) , where W is the set of words,

Theorem

Every nontrivial equational theory of commutative semigroups is of the form

$$E(J, m, r, \pi)$$

J - an order filter on a quasi-ordering (W, \leq) , where W is the set of words,

m, r - natural numbers,

Theorem

Every nontrivial equational theory of commutative semigroups is of the form

$$E(J, m, r, \pi)$$

J - an order filter on a quasi-ordering (W, \leq) , where W is the set of words,

m, r - natural numbers,

 π - an equivalence relation on the set $W \setminus J$.

Extension

Theorem

Every nontrivial equational theory T of strongly permutative semigroups is of the form

$$T = T(n, J, m, r, \pi)$$

•
$$n = n(T)$$

- n = n(T)
- $J = \{v : (v = w) \in T \text{ for some } v \leq w\}$

- n = n(T)• $I = \{v : (v - w) \in T \text{ for som} \}$
- $J = \{v : (v = w) \in T \text{ for some } v \leq w\}$

 $|v|_x$ - the number of occurrences of the letter x in v

 $m((v = w)) = \min\{|v|_x, |w|_x : \text{ where } x \text{ runs over the set of those } x \text{ that } |v|_x \neq |w|_x\}$

 $r((v = w)) = \min\{||v|_x - |w|_x| : \text{ where } x \text{ runs over the set of those } x \text{ that } |v|_x \neq |w|_x\}$

- \bullet n = n(T)
- $J = \{v : (v = w) \in T \text{ for some } v \leq w\}$

 $|v|_x$ - the number of occurrences of the letter x in v

 $m((v = w)) = \min\{|v|_x, |w|_x : \text{ where } x \text{ runs over the set of those } x \text{ that } |v|_x \neq |w|_x\}$

 $r((v = w)) = \min\{||v|_x - |w|_x| : \text{ where } x \text{ runs over the set of those } x \text{ that } |v|_x \neq |w|_x\}$

- $m = \min\{m((v = w))\}$
- $r = \min\{r((v = w))\}$

- \bullet n = n(T)
- $J = \{v : (v = w) \in T \text{ for some } v \leq w\}$

 $|v|_x$ - the number of occurrences of the letter x in v

 $m((v = w)) = \min\{|v|_x, |w|_x : \text{ where } x \text{ runs over the set of those } x \text{ that } |v|_x \neq |w|_x\}$

 $r((v = w)) = \min\{||v|_x - |w|_x| : \text{ where } x \text{ runs over the set of those } x \text{ that } |v|_x \neq |w|_x\}$

- $m = \min\{m((v = w))\}$
- $r = \min\{r((v = w))\}$
- $\bullet \ \pi = T \setminus \{(v = w) : v, w \in J\}$

First order definability

Theorem

Every equational theory of strongly permutative semigroup is first order definable, up to duality.

• n – permutation groups, maximal subgroups of S_n .

- n permutation groups, maximal subgroups of S_n .
- *J* quasi-ordering properties.

- n permutation groups, maximal subgroups of S_n .
- J − quasi-ordering properties.
- m, r semigroups methods, L(Com) is definable.

- n permutation groups, maximal subgroups of S_n .
- J quasi-ordering properties.
- m, r semigroups methods, L(Com) is definable.
- π permutation groups, cyclic permutation groups, number theory.