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Solution in the general case (Jezek 1981-1986)

Each equational theory is definable in the lattice of given type
(up to obvious syntactical automorphisms).
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Each finitely axiomatizable locally finite theory is definable up to
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2004

@ Each Schwabauer theory is definable in L(Com)
@ Example of automorphism of L(Com)

N,

Whole group of automorphisms of L(Com)




Strongly permutative semigroups

Definition (Strongly permutative semigroups)
semigroup satisfying a permutation identity

Xy Xn = X5(1) 0 Xo(k)
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Definition (Strongly permutative semigroups)
semigroup satisfying a permutation identity

Xy Xn = X5(1) 0 Xo(k)

with (1) > 1 and o (k) < k.

Equivalently,
semigroup satisfying all permutation identity

Xq - X :X0(1)"'Xa(k)

for k > n, where n depends on the semigroup.
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of semigroup equation (closed under natural consequences,
multiplications, substitutions, ...) such that there is n such that
T contains all the identities
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Equational theories of strongly permutative

semigroups

Definition

Equational theory T of strongly permutative semigroups is a set
of semigroup equation (closed under natural consequences,
multiplications, substitutions, ...) such that there is n such that
T contains all the identities

X1 Xk = Xg(1)*** Xo(k), 0 € Sn

By n(T), we denote a minimal n > 2 that the property holds.

If n(T) =2,then T € L(Com).
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Advantages of the lattice of equational theories of
strongly permutative semigroups

@ Every equational theory of strongly permutative
semigroups is finitely generated. (Easy enough to work
with).

@ Greater than L(Com). (Is not commutative, therefore some
techniques are available).

@ Near enough L(Com) to extend Kisielewicz’s description.
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Kisielewicz’s description

Every nontrivial equational theory of commutative semigroups
is of the form
E(J,m,r,m)

J - an order filter on a quasi-ordering (W, <), where W is the
set of words,

m, r - natural numbers,

7 - an equivalence relation on the set W'\ J.



Extension

Every nontrivial equational theory T of strongly permutative
semigroups is of the form

T=T(ndJ ,mr,x)
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Definition of the parameters

@ n=n(T)

@ J={v:(v=w)eTforsomev < w}
|v|x - the number of occurrences of the letter x in v
m((v = w)) = min{|v|x, |w|x : where x runs over the set of
those x that |v|x # |w|x}
r((v =w)) =min{||v|x — |w|x| : where x runs over the set of
those x that |v|x # |w|x}

@ m=min{m((v =w))}

@ r=min{r((v=w))}

er=T\{(v=w):v,welJd}



First order definability

Every equational theory of strongly permutative semigroup is
first order definable, up to duality.
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Various methods in the proof

@ n— permutation groups, maximal subgroups of S;.
@ J —quasi-ordering properties.
@ m, r —semigroups methods, L(Com) is definable.

@ 7 — permutation groups, cyclic permutation groups,
number theory.



