A Class of Rings for which the Lattice of Preradicals is not a Set

Rogelio Fernández-Alonso⁽¹⁾ Henry Chimal-Dzul⁽¹⁾ Silvia Gavito⁽²⁾

International Conference on Algebras and Lattices Prague, Czech Republic

- (1) Mathematics Department Universidad Autónoma Metropolitana
- (2) Mathematics Institute Universidad Nacional Autónoma de México

June, 2010

Index

- Preradicals
- Radical Rings
- Z-Coinitial Rings
- References

We denote by:

ullet \mathcal{OR} , the class of all ordinals.

- \bullet \mathcal{OR} , the class of all ordinals.
- R, an associative ring with 1.

- \bullet \mathcal{OR} , the class of all ordinals.
- R, an associative ring with 1.
- $\mathcal{Z}(R)$, the center of R.

- \bullet \mathcal{OR} , the class of all ordinals.
- R, an associative ring with 1.
- $\mathcal{Z}(R)$, the center of R.
- $\mathcal{I}(RR)$ ($\mathcal{I}(RR)$), the lattice of left (right) ideals of R.

- \mathcal{OR} , the class of all ordinals.
- R, an associative ring with 1.
- $\mathcal{Z}(R)$, the center of R.
- $\mathcal{I}(RR)$ ($\mathcal{I}(RR)$), the lattice of left (right) ideals of R.
- R-Mod, the category of left R-modules.

- \mathcal{OR} , the class of all ordinals.
- R, an associative ring with 1.
- $\mathcal{Z}(R)$, the center of R.
- $\mathcal{I}(RR)$ ($\mathcal{I}(RR)$), the lattice of left (right) ideals of R.
- R-Mod, the category of left R-modules.

We denote by:

- \bullet \mathcal{OR} , the class of all ordinals.
- R, an associative ring with 1.
- $\mathcal{Z}(R)$, the center of R.
- $\mathcal{I}(RR)$ ($\mathcal{I}(RR)$), the lattice of left (right) ideals of R.
- *R*-Mod, the category of left *R*-modules.

For each $M, N \in R$ -Mod,

- $Hom_R(M, N)$, the abelian group of all homomorphisms $f: M \to N$.
- $End_R(M)$, the ring of all endomorphisms $f: M \to M$.
- $Ext_R(M, N)$, the abelian group of all equivalence classes of extensions of N by M.

Preradicals Definition

Definition

A *preradical* over the ring R is a functor $\sigma: R\operatorname{-Mod} \to R\operatorname{-Mod}$ such that:

- **1** $\sigma(M)$ ≤ M for all $M \in R$ -Mod.
- ② For each $f \in Hom_R(M, N)$, $f(\sigma(M)) \leq \sigma(N)$.

Preradicals Definition

Definition

A *preradical* over the ring R is a functor $\sigma: R\text{-Mod} \to R\text{-Mod}$ such that:

- **1** σ (*M*) ≤ *M* for all *M* ∈ *R*-Mod.
- **2** For each $f \in Hom_R(M, N)$, $f(\sigma(M)) \leq \sigma(N)$.

The class of all preradicals over R is denoted by R-pr.

Let σ , $\tau \in R$ -pr.

• *Order:* $\sigma \leq \tau$ if, for every $M \in R$ -Mod, $\sigma(M) \leq \tau(M)$.

- *Order:* $\sigma \leq \tau$ if, for every $M \in R$ -Mod, $\sigma(M) \leq \tau(M)$.
- *Join*: $(\sigma \vee \tau)(M) = \sigma(M) + \tau(M)$.

- *Order:* $\sigma \leq \tau$ if, for every $M \in R$ -Mod, $\sigma(M) \leq \tau(M)$.
- Join: $(\sigma \vee \tau)(M) = \sigma(M) + \tau(M)$.
- *Meet*: $(\sigma \wedge \tau)(M) = \sigma(M) \cap \tau(M)$.

- *Order:* $\sigma \leq \tau$ if, for every $M \in R$ -Mod, $\sigma(M) \leq \tau(M)$.
- Join: $(\sigma \vee \tau)(M) = \sigma(M) + \tau(M)$.
- *Meet*: $(\sigma \wedge \tau)(M) = \sigma(M) \cap \tau(M)$.

Let σ , $\tau \in R$ -pr.

- *Order:* $\sigma \leq \tau$ if, for every $M \in R$ -Mod, $\sigma(M) \leq \tau(M)$.
- Join: $(\sigma \vee \tau)(M) = \sigma(M) + \tau(M)$.
- Meet: $(\sigma \wedge \tau)(M) = \sigma(M) \cap \tau(M)$.

Remark: R-pr has joins and meets for arbitrary subclasses.

Let σ , $\tau \in R$ -pr.

- *Order:* $\sigma \leq \tau$ if, for every $M \in R$ -Mod, $\sigma(M) \leq \tau(M)$.
- Join: $(\sigma \vee \tau)(M) = \sigma(M) + \tau(M)$.
- Meet: $(\sigma \wedge \tau)(M) = \sigma(M) \cap \tau(M)$.

Remark: R-pr has joins and meets for arbitrary subclasses.

- Least element: zero functor, denoted by 0.
- Greatest element: identity functor, denoted by 1.

Two Operations in R-pr Idempotent and Radical Preradicals

Two Operations in R-pr Idempotent and Radical Preradicals

impotent and Hadical Fredadical

Definition

1 Product:
$$(\sigma \tau)(M) = \sigma(\tau(M))$$
.

Idempotent and Radical Preradicals

Definition

- **1 Product:** $(\sigma \tau)(M) = \sigma(\tau(M))$.
- **2** Coproduct: $(\sigma : \tau)(M)$ is the submodule of M such that $\sigma(M) \leq (\sigma : \tau)(M)$ and $(\sigma : \tau)(M)/\sigma(M) = \tau(M/\sigma(M))$.

Idempotent and Radical Preradicals

Definition

- **1 Product:** $(\sigma \tau)(M) = \sigma(\tau(M))$.
- **2** Coproduct: $(\sigma : \tau)(M)$ is the submodule of M such that $\sigma(M) \leq (\sigma : \tau)(M)$ and $(\sigma : \tau)(M)/\sigma(M) = \tau(M/\sigma(M))$.

Idempotent and Radical Preradicals

Definition

Let σ , $\tau \in R$ -pr.

- **1 Product:** $(\sigma \tau)(M) = \sigma(\tau(M))$.
- **2** Coproduct: $(\sigma : \tau)(M)$ is the submodule of M such that $\sigma(M) \leq (\sigma : \tau)(M)$ and $(\sigma : \tau)(M)/\sigma(M) = \tau(M/\sigma(M))$.

Definition

Let $\sigma \in R$ -pr.

1 σ is *idempotent* if $\sigma \sigma = \sigma$.

Idempotent and Radical Preradicals

Definition

Let σ , $\tau \in R$ -pr.

- **1 Product:** $(\sigma \tau)(M) = \sigma(\tau(M))$.
- **2** Coproduct: $(\sigma : \tau)(M)$ is the submodule of M such that $\sigma(M) \leq (\sigma : \tau)(M)$ and $(\sigma : \tau)(M)/\sigma(M) = \tau(M/\sigma(M))$.

Definition

Let $\sigma \in R$ -pr.

- **1** σ is *idempotent* if $\sigma \sigma = \sigma$.
- ② σ is a *radical* if $(\sigma : \sigma) = \sigma$.

Definition

Let $\sigma \in R$ -pr. For each $\gamma \in \mathcal{OR}$, σ^{γ} is defined recursively as follows:

$$\bullet$$
 $\sigma^1 := \sigma$.

Definition

Let $\sigma \in R$ -pr. For each $\gamma \in \mathcal{OR}, \ \sigma^{\gamma}$ is defined recursively as follows:

- \bullet $\sigma^1 := \sigma$.
- $\bullet \ \sigma^{\gamma+1} := \sigma \sigma^{\gamma}.$

Definition

Let $\sigma \in R$ -pr. For each $\gamma \in \mathcal{OR}$, σ^{γ} is defined recursively as follows:

- \bullet $\sigma^1 := \sigma$.
- $\bullet \ \sigma^{\gamma+1} := \sigma \sigma^{\gamma}.$
- If γ is a limit ordinal, then $\sigma^{\gamma} := \bigwedge \{ \sigma^{\beta} \mid \beta < \gamma \}$.

Definition

Let $\sigma \in R$ -pr. For each $\gamma \in \mathcal{OR}$, σ^{γ} is defined recursively as follows:

- \bullet $\sigma^1 := \sigma$.
- $\bullet \ \sigma^{\gamma+1} := \sigma \sigma^{\gamma}.$
- If γ is a limit ordinal, then $\sigma^{\gamma} := \bigwedge \{ \sigma^{\beta} \mid \beta < \gamma \}$.

Definition

Let $\sigma \in R$ -pr. For each $\gamma \in \mathcal{OR}, \ \sigma^{\gamma}$ is defined recursively as follows:

- \bullet $\sigma^1 := \sigma$.
- $\bullet \ \sigma^{\gamma+1} := \sigma \sigma^{\gamma}.$
- If γ is a limit ordinal, then $\sigma^{\gamma} := \bigwedge \{ \sigma^{\beta} \mid \beta < \gamma \}$.

Remarks:

- For each $\gamma \in \mathcal{OR}$, $\sigma^{\gamma} \in R$ -pr.
- If $\gamma, \eta \in \mathcal{OR}$ are such that $\gamma < \eta$, then $\sigma^{\eta} \prec \sigma^{\gamma}$.

σ -length of a Module

Definition

Let $\sigma \in R$ -pr and $M \in R$ -Mod. The σ -length of M, denoted by $I_{\sigma}(M)$, is the least $\lambda \in \mathcal{OR}$ such that

$$\sigma^{\lambda}(M) = \sigma^{\lambda+1}(M).$$

σ -length of a Module

Definition

Let $\sigma \in R$ -pr and $M \in R$ -Mod. The σ -length of M, denoted by $I_{\sigma}(M)$, is the least $\lambda \in \mathcal{OR}$ such that

$$\sigma^{\lambda}(M) = \sigma^{\lambda+1}(M).$$

Remark: For each $M \in R$ -Mod, $I_{\sigma}(M)$ always exists: $\{\sigma^{\lambda}(M)\}_{\lambda \in \mathcal{OR}}$ is a descending chain of submodules of M.

Alpha and Omega Preradicals

Definition

Let $M \in R$ -Mod. A submodule N of M is called *fully invariant* in M (denoted $N \leq_{fi} M$) if for each $f \in End_R(M)$ it follows that $f(N) \leq N$.

Alpha and Omega Preradicals

Definition

Let $M \in R$ -Mod. A submodule N of M is called *fully invariant* in M (denoted $N \leq_{fi} M$) if for each $f \in End_R(M)$ it follows that $f(N) \leq N$.

Definition

Let $M \in R$ -Mod and $N \leq_{fi} M$. The preradicals α_N^M and ω_N^M are defined as follows. If $K \in R$ -Mod, then:

$$\alpha_N^M(K) = \sum \{ f(N) \mid f \in Hom_R(M, K) \},$$

$$\omega_N^M(K) = \bigcap \{ f^{-1}(N) \mid f \in Hom_R(K, M) \}.$$

Alpha and Omega Preradicals Some Properties

Let $\sigma \in R$ -pr.

Alpha and Omega Preradicals

Some Properties

Let $\sigma \in R$ -pr.

Proposition

Let $M, N \in R$ -Mod. Then:

$$\sigma(M) = N \Leftrightarrow N \leq_{fi} M \text{ and } \alpha_N^M \preceq \sigma \preceq \omega_N^M.$$

Alpha and Omega Preradicals

Some Properties

Let $\sigma \in R$ -pr.

Proposition

Let $M, N \in R$ -Mod. Then:

$$\sigma(M) = N \Leftrightarrow N \leq_{fi} M \text{ and } \alpha_N^M \preceq \sigma \preceq \omega_N^M.$$

Proposition

$$\sigma = \bigvee \{\alpha_{\sigma M}^{M} \mid M \in R\text{-Mod}\} = \bigwedge \{\omega_{\sigma M}^{M} \mid M \in R\text{-Mod}\}.$$

Alpha and Omega Preradicals

Some Properties

Let $\sigma \in R$ -pr.

Proposition

Let $M, N \in R$ -Mod. Then:

$$\sigma(M) = N \Leftrightarrow N \leq_{fi} M \text{ and } \alpha_N^M \preceq \sigma \preceq \omega_N^M.$$

Proposition

$$\sigma = \bigvee \{\alpha_{\sigma M}^{M} \mid M \in R\text{-Mod}\} = \bigwedge \{\omega_{\sigma M}^{M} \mid M \in R\text{-Mod}\}.$$

Proposition

- σ is idempotent $\Leftrightarrow \sigma = \bigvee \{\alpha_M^M \mid M \in R\text{-Mod}, \ \sigma(M) = M\}.$
- ② σ is a radical $\Leftrightarrow \sigma = \bigwedge \{ \omega_0^M \mid M \in R\text{-Mod}, \ \sigma(M) = 0 \}.$

Radical Modules and Rings Definition

Definition

Let $M \in R$ -Mod. We call M a *radical module* if there exist $L \in R$ -Mod and a radical $\sigma \in R$ -pr, $\sigma \neq 1$, such that $M = \sigma(L)$.

Radical Modules and Rings Definition

Definition

Let $M \in R$ -Mod. We call M a *radical module* if there exist $L \in R$ -Mod and a radical $\sigma \in R$ -pr, $\sigma \neq 1$, such that $M = \sigma(L)$.

Definition

A ring R is *left radical* if the regular module $_RR$ is a radical module.

Radical Rings A Characterization

Proposition

For a ring *R* the following conditions are equivalent:

(a) R is left radical.

Radical Rings A Characterization

Proposition

For a ring *R* the following conditions are equivalent:

- (a) R is left radical.
- (b) There is a radical $\sigma \in R$ -pr, $\sigma \neq 1$, such that $\overline{\mathbb{T}}_{\sigma} = R$ -Mod, where $\overline{\mathbb{T}}_{\sigma} = \{\sigma(M) \mid M \in R$ -Mod $\}$.

Radical Rings A Characterization

Proposition

For a ring *R* the following conditions are equivalent:

- (a) R is left radical.
- (b) There is a radical $\sigma \in R$ -pr, $\sigma \neq 1$, such that $\overline{\mathbb{T}}_{\sigma} = R$ -Mod, where $\overline{\mathbb{T}}_{\sigma} = \{\sigma(M) \mid M \in R$ -Mod $\}$.
- (c) Every $M \in R$ -Mod is a radical module.

R-pr is not a Set for Left Radical Rings Following [Mines, 1971] for Z-Mod

Theorem

If *R* is a left radical ring, then *R*-pr is not a set.

R-pr is not a Set for Left Radical Rings Following [Mines, 1971] for Z-Mod

Theorem

If R is a left radical ring, then R-pr is not a set.

Step 1

Let $\sigma \in R$ -pr be a radical, $\sigma \neq 1$, such that $\overline{\mathbb{T}}_{\sigma} = R$ -Mod. There is a sequence $\{M_n\}_{n\geq 1} \subseteq R$ -Mod such that:

•
$$M_1 = R$$
,

R-pr is not a Set for Left Radical Rings

Following [Mines, 1971] for \mathbb{Z} -Mod

Theorem

If *R* is a left radical ring, then *R*-pr is not a set.

Step 1

Let $\sigma \in R$ -pr be a radical, $\sigma \neq 1$, such that $\overline{\mathbb{T}}_{\sigma} = R$ -Mod. There is a sequence $\{M_n\}_{n\geq 1} \subseteq R$ -Mod such that:

- $M_1 = R$,
- $\sigma(M_{n+1}) = M_n$ for each $n \ge 1$.

R-pr is not a Set for Left Radical Rings Following [Mines, 1971] for Z-Mod

Step 2

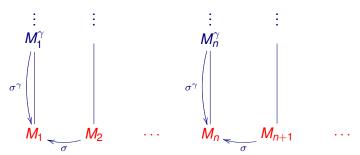
For each $n \ge 1$ and for each $\gamma \in \mathcal{OR}$ there is $M_n^{\gamma} \in R$ -Mod such that $\sigma^{\gamma}(M_n^{\gamma}) = M_n$.

R-pr is not a Set for Left Radical Rings

Following [Mines, 1971] for Z-Mod

Step 2

For each $n \ge 1$ and for each $\gamma \in \mathcal{OR}$ there is $M_n^{\gamma} \in R$ -Mod such that $\sigma^{\gamma}(M_n^{\gamma}) = M_n$.



R-pr is not a Set for Left Radical Rings Following [Mines, 1971] for Z-Mod

Step 3

It follows that, for each $\gamma \in \mathcal{OR}$, $I_{\sigma}(M_{1}^{\gamma}/M_{1}) = \gamma$.

R-pr is not a Set for Left Radical Rings Following [Mines, 1971] for Z-Mod

Step 3

It follows that, for each $\gamma \in \mathcal{OR}$, $I_{\sigma}(M_1^{\gamma}/M_1) = \gamma$.

Step 4

Thus, there exists a chain of radicals $\{\sigma^{\gamma}\}_{\gamma \in \mathcal{OR}}$ such that $\sigma^{\gamma} \neq \sigma^{\gamma+1}$ for all $\gamma \in \mathcal{OR}$. This chain is not a set.

Z-Coinitial Rings Definition

Definition

Let $\langle P, \leq \rangle$ be a poset. A set $Q \subseteq P$ is *coinitial* in P if for any $x \in P$ there is a $y \in Q$ such that $y \leq x$.

Definition

Let $\langle P, \leq \rangle$ be a poset. A set $Q \subseteq P$ is *coinitial* in P if for any $x \in P$ there is a $y \in Q$ such that $y \leq x$.

Definition

Let Z be an integral domain. If Z and R are not division rings, we call R a *left (right)* Z-coinitial ring if

Definition

Let $\langle P, \leq \rangle$ be a poset. A set $Q \subseteq P$ is *coinitial* in P if for any $x \in P$ there is a $y \in Q$ such that $y \leq x$.

Definition

Let Z be an integral domain. If Z and R are not division rings, we call R a *left (right)* Z-coinitial ring if

• Z is a subring of R such that $Z \subseteq \mathcal{Z}(R)$.

Definition

Let $\langle P, \leq \rangle$ be a poset. A set $Q \subseteq P$ is *coinitial* in P if for any $x \in P$ there is a $y \in Q$ such that $y \leq x$.

Definition

Let Z be an integral domain. If Z and R are not division rings, we call R a *left (right)* Z-coinitial ring if

- Z is a subring of R such that $Z \subseteq \mathcal{Z}(R)$.
- $\{nR \mid n \in Z\}$ is coinitial in the poset $\mathcal{I}(RR) \setminus \{0\}$ $(\mathcal{I}(RR) \setminus \{0\})$;

Definition

Let $\langle P, \leq \rangle$ be a poset. A set $Q \subseteq P$ is *coinitial* in P if for any $x \in P$ there is a $y \in Q$ such that $y \leq x$.

Definition

Let Z be an integral domain. If Z and R are not division rings, we call R a *left (right)* Z-coinitial ring if

- Z is a subring of R such that $Z \subseteq \mathcal{Z}(R)$.
- $\{nR \mid n \in Z\}$ is coinitial in the poset $\mathcal{I}(RR) \setminus \{0\}$ ($\mathcal{I}(RR) \setminus \{0\}$); **that is**, for each $x \in R \setminus \{0\}$ there exist $a \in R$ and $n \in Z \setminus \{0\}$ such that ax = n (xa = n).

Theorem

If R is a **countable**, Z-**coinitial** and **left hereditary** ring, then R is a left radical ring.

Theorem

If R is a **countable**, Z-**coinitial** and **left hereditary** ring, then R is a left radical ring.

Step 1

 $Ext_R(R^{\mathbb{N}}, R)$ is a non zero divisible *Z*-module.

Theorem

If R is a **countable**, Z-**coinitial** and **left hereditary** ring, then R is a left radical ring.

Step 1

 $Ext_R(R^{\mathbb{N}}, R)$ is a non zero divisible *Z*-module.

Step 2

 $Ext_{R}(R^{\mathbb{N}}, R)$ has a Z-torsionfree element.

Preradicals Radical Rings Z-Coinitial Rings References

A Subclass of the Class of Left Radical Rings Following [Mines, 1971] for $R = Z = \mathbb{Z}$

Let $E: 0 \to R \stackrel{i}{\hookrightarrow} M \to M/R \to 0$ be an exact sequence.

Step 3

The following conditions are equivalent:

- (a) $[E] \in Ext_R(M/R, R)$ is Z-torsionfree.
- (b) $Hom_R(i,R): Hom_R(M,R) \to End_R(R)$ is the zero homomorphism.

Step 4

If M/R is cogenerated by R, the following conditions are equivalent:

- (b) $Hom_R(i,R): Hom_R(M,R) \to End_R(R)$ is the zero homomorphism.
- (c) $\omega_0^R(M) = R$.

A Subclass of the Class of Left Radical Rings Following [Mines, 1971] for $R = Z = \mathbb{Z}$

Remarks:

• ω_0^R is a radical.

Following [Mines, 1971] for $R = Z = \mathbb{Z}$

Remarks:

- ω_0^R is a radical.
- $R^{\mathbb{N}}$ is cogenerated by R.

Following [Mines, 1971] for $R = Z = \mathbb{Z}$

Remarks:

- ω_0^R is a radical.
- $R^{\mathbb{N}}$ is cogenerated by R.

Following [Mines, 1971] for $R = Z = \mathbb{Z}$

Remarks:

- ω_0^R is a radical.
- $R^{\mathbb{N}}$ is cogenerated by R.

Step 5

It follows that R is a left radical ring.

Corollary

The following rings R are countable, Z-coinitial and left hereditary for some integral domain Z. Therefore, R-pr is not a set:

Corollary

The following rings R are countable, Z-coinitial and left hereditary for some integral domain Z.

Therefore, *R*-pr is not a set:

$$\bullet$$
 $R = \mathbb{Z}$.

Corollary

The following rings R are countable, Z-coinitial and left hereditary for some integral domain Z.

Therefore, *R*-pr is not a set:

- \bullet $R = \mathbb{Z}$.
- All countable Dedekind domains. For example,
 R = F[x], with F a countable field.

Corollary

The following rings R are countable, Z-coinitial and left hereditary for some integral domain Z. Therefore, R-pr is not a set:

_

- \bullet $R=\mathbb{Z}.$
- All countable Dedekind domains. For example,
 R = F[x], with F a countable field.
- All countable maximal *Z*-orders for some Dedekind domain *Z*. For example, $R = \Lambda \oplus \mathbb{Z}a$, where $\Lambda = \mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k$ and $a = \frac{1+i+j+k}{2}$.

Main References

- T.H. Fay, E.P. Oxford and G.L. Walls, Preradicals in abelian groups, Houston J. Math 8(1) (1982) 39-52.
- R. Fernández-Alonso, F. Raggi, J. Ríos, H. Rincón and C. Signoret, The lattice structure of preradicals, Comm. Algebra 30(3) (2002) 1533-1544.
- R. Mines, Radicals and torsion free groups, Seminar Notes, (New Mexico State University, Las Cruces, 1971).
- R.J. Nunke, Slender groups, Acta Sci. Math. Szeiged 23 (1962) 67-73.