Fernando Cornejo Montaño and Francisco Raggi

Proper Classes associated to Grothendieck Categories

Fernando Cornejo Montaño and Francisco Raggi

Instituto de Matemáticas.
Universidad Nacional Autónoma de México
Prague, June 2010

Fernando Cornejo Montaño and Francisco Raggi

Contents

- Proper classes
- Torsion Theories (Hereditary)

Fernando Cornejo Montaño and Francisco Raggi

Contents

- Proper classes
- Torsion Theories (Hereditary)

Fernando Cornejo Montaño and Francisco Raggi

Contents

- Proper classes
- Torsion Theories (Hereditary)

Fernando Cornejo Montaño and Francisco Raggi

Notation

- R is an associative ring with unit.
- R-Mod is the category of left R-modules.
- R-simp is a complete irredundant set of representatives of the isomorphism classes of simple left R-modules.

Fernando Cornejo Montaño and Francisco Raggi

Notation

- R is an associative ring with unit.
- R-Mod is the category of left R-modules.
- R-simp is a complete irredundant set of representatives of the isomorphism classes of simple left R-modules.

Fernando Cornejo Montaño and Francisco Raggi

Notation

- R is an associative ring with unit.
- R-Mod is the category of left R-modules.
- R-simp is a complete irredundant set of representatives of the isomorphism classes of simple left R-modules.

Fernando Cornejo Montaño and Francisco Raggi

Definition

- P0 \mathcal{E} is closed under isomophisms
- P1 All the splitting short exact sequences are in ${\mathcal E}$
- P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.
- P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense
- P3 If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- P3' If $\alpha\beta \in \mathcal{E}_{a}$, then $\alpha \in \mathcal{E}_{a}$.

Fernando Cornejo Montaño and Francisco Raggi

Definition

A Proper Class in R-mod is a family \mathcal{E} , of short exact sequences of left R-modules such that, if we denote by \mathcal{E}_m the monics of sequences of \mathcal{E} and by \mathcal{E}_e the epics of sequences of \mathcal{E} , then the following conditions hold:

P0 \mathcal{E} is closed under isomophisms.

P1 All the splitting short exact sequences are in ${\mathcal E}$

P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.

P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense

P3 If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.

P3' If $\alpha\beta \in \mathcal{E}_{\bullet}$, then $\alpha \in \mathcal{E}_{\bullet}$.

Fernando Cornejo Montaño and Francisco Raggi

Definition

- P0 \mathcal{E} is closed under isomophisms.
- P1 All the splitting short exact sequences are in ${\cal E}$
- P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.
- P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense
- P3 If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- P3' If $\alpha\beta \in \mathcal{E}_{\bullet}$, then $\alpha \in \mathcal{E}_{\bullet}$

Fernando Cornejo Montaño and Francisco Raggi

Definition

- P0 \mathcal{E} is closed under isomophisms.
- P1 All the splitting short exact sequences are in ${\cal E}$
- P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.
- P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense
- P3 If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$
- P3' If $\alpha\beta \in \mathcal{E}_{\alpha}$, then $\alpha \in \mathcal{E}_{\alpha}$

Definition

- P0 $\mathcal E$ is closed under isomophisms.
- P1 All the splitting short exact sequences are in ${\cal E}$
- P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.
- P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense.
- P3 If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- P3' If $\alpha\beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.

Fernando Cornejo Montaño and Francisco Raggi

Definition

- P0 \mathcal{E} is closed under isomophisms.
- P1 All the splitting short exact sequences are in ${\mathcal E}$
- P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.
- P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense.
- P3 If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- P3' If $\alpha\beta \in \mathcal{E}_{\alpha}$, then $\alpha \in \mathcal{E}_{\alpha}$

Fernando Cornejo Montaño and Francisco Raggi

Definition

- P0 $\mathcal E$ is closed under isomophisms.
- P1 All the splitting short exact sequences are in ${\mathcal E}$
- P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.
- P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense.
- P3 If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- P3' If $\alpha\beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.

Fernando Cornejo Montaño and Francisco Raggi

Definition

- P0 $\mathcal E$ is closed under isomophisms.
- P1 All the splitting short exact sequences are in ${\mathcal E}$
- P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.
- P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense.
- P3 If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- P3' If $\alpha\beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.

Fernando Cornejo Montaño and Francisco Raggi

- A Proper Class Injectively Generated by a family of modules \mathcal{O} is the greatest proper class $\iota^{-1}(\mathcal{O})$ such that each module in \mathcal{O} is injective for all short exact sequence in $\iota^{-1}(\mathcal{O})$
- A Proper Class Coinjectively Generated by a family of modules \mathcal{O} is the least proper class $\mathcal{K}_i(\mathcal{O})$ such that all the short exact sequences $A \rightarrowtail B \twoheadrightarrow C$, where C is in \mathcal{O} are in $\mathcal{K}_i(\mathcal{O})$.

Fernando Cornejo Montaño and Francisco Raggi

- A Proper Class Injectively Generated by a family of modules \mathcal{O} is the greatest proper class $\iota^{-1}(\mathcal{O})$ such that each module in \mathcal{O} is injective for all short exact sequence in $\iota^{-1}(\mathcal{O})$
- A Proper Class Coinjectively Generated by a family of modules \mathcal{O} is the least proper class $\mathcal{K}_i(\mathcal{O})$ such that all the short exact sequences $A \rightarrowtail B \twoheadrightarrow C$, where C is in \mathcal{O} , are in $\mathcal{K}_i(\mathcal{O})$.

Fernando Cornejo Montaño and Francisco Raggi

- A Proper Class Injectively Generated by a family of modules \mathcal{O} is the greatest proper class $\iota^{-1}(\mathcal{O})$ such that each module in \mathcal{O} is injective for all short exact sequence in $\iota^{-1}(\mathcal{O})$
- A Proper Class Coinjectively Generated by a family of modules \mathcal{O} is the least proper class $\mathcal{K}_i(\mathcal{O})$ such that all the short exact sequences $A \rightarrowtail B \twoheadrightarrow C$, where C is in \mathcal{O} , are in $\mathcal{K}_i(\mathcal{O})$.

Fernando Cornejo Montaño and Francisco Raggi

- Injective Relative If $\mathcal E$ is a class of short exact sequences. We say that a R-module M is injective relative to $\mathcal E$ if it is injective for all the short exact sequences in $\mathcal E$.
- Coinjective Relative A module M is coinjective relative to \mathcal{E} if all the short exact sequences that end in M are in \mathcal{E}

Fernando Cornejo Montaño and Francisco Raggi

- Injective Relative If $\mathcal E$ is a class of short exact sequences. We say that a R-module M is injective relative to $\mathcal E$ if it is injective for all the short exact sequences in $\mathcal E$.
- Coinjective Relative A module M is coinjective relative to $\mathcal E$ if all the short exact sequences that end in M are in $\mathcal E$

Fernando Cornejo Montaño an Francisco Raggi

Notation: We use SEC for denote the family of all the short exact sequences in R-mod.

Fernando Cornejo Montaño and Francisco Raggi

Lemma

Let $\mathcal{U} \subseteq \mathcal{V} \subseteq R$ — Mod and $\mathcal{D} \subseteq \mathcal{E} \subseteq SEC$

- $\bullet \ K_i^{-1}(\mathcal{U}) \subset K_i^{-1}(\mathcal{V})$
- $K_i(\mathcal{D}) \subset K_i(\mathcal{E})$
- If \mathcal{E} is a proper class, then $K_i(\mathcal{E})$ is a class closed under extensions, proper submodules, finite direct sums.
- If E is a proper class, then a R-module M is E — coinjective if and only if A is a proper subgroup of I, for I some injective module.

Fernando Cornejo Montaño and Francisco Raggi

Lemma

Let $\mathcal{U} \subseteq \mathcal{V} \subseteq R$ — Mod and $\mathcal{D} \subseteq \mathcal{E} \subseteq SEC$

- $\bullet K_i^{-1}(\mathcal{U}) \subset K_i^{-1}(\mathcal{V})$
- $K_i(\mathcal{D}) \subset K_i(\mathcal{E})$
- If \mathcal{E} is a proper class, then $K_i(\mathcal{E})$ is a class closed under extensions, proper submodules, finite direct sums.
- If E is a proper class, then a R-module M is E — coinjective if and only if A is a proper subgroup of I, for I some injective module.

Fernando Cornejo Montaño and Francisco Raggi

Lemma

Let $\mathcal{U} \subseteq \mathcal{V} \subseteq R$ — Mod and $\mathcal{D} \subseteq \mathcal{E} \subseteq SEC$

- $\bullet \ K_i^{-1}(\mathcal{U}) \subset K_i^{-1}(\mathcal{V})$
- $K_i(\mathcal{D}) \subset K_i(\mathcal{E})$
- If \mathcal{E} is a proper class, then $K_i(\mathcal{E})$ is a class closed under extensions, proper submodules, finite direct sums.
- If E is a proper class, then a R-module M is E — coinjective if and only if A is a proper subgroup of I, for I some injective module.

Fernando Cornejo Montaño and Francisco Raggi

Lemma

Let $\mathcal{U} \subseteq \mathcal{V} \subseteq R$ – Mod and $\mathcal{D} \subseteq \mathcal{E} \subseteq SEC$

- $\bullet \ K_i^{-1}(\mathcal{U}) \subset K_i^{-1}(\mathcal{V})$
- $K_i(\mathcal{D}) \subset K_i(\mathcal{E})$
- If \mathcal{E} is a proper class, then $K_i(\mathcal{E})$ is a class closed under extensions, proper submodules, finite direct sums.
- If \mathcal{E} is a proper class, then a R-module M is \mathcal{E} coinjective if and only if A is a proper subgroup of I, for I some injective module.

Fernando Cornejo Montaño and Francisco Raggi Example 1: Consider the category of Abelian Groups. Then $H = \{A \rightarrowtail B \twoheadrightarrow C \mid A \text{ is pure in } B\}$ is a proper class and and

- \bullet $K_p(H)$
- $K_i(H)$ =Pure subgroups of divisibles=divisibles
- $H = \iota^{-1}(Cocyclics)$ where Cocyclics are the groups \mathbb{Z}_{p^n} p is prime
- $H = \pi^{-1}(cyclics)$
- H has enough projectives and injectives

Fernando Cornejo Montaño and Francisco Raggi Example 1: Consider the category of Abelian Groups. Then $H = \{A \rightarrowtail B \twoheadrightarrow C \mid A \text{ is pure in } B\}$ is a proper class and and

- \bullet $K_p(H)$
- $K_i(H)$ =Pure subgroups of divisibles=divisibles
- $lackbreak H=\iota^{-1}(\mathit{Cocyclics})$ where Cocyclics are the groups \mathbb{Z}_{p^n} p is prime
- $\blacksquare H = \pi^{-1}(cyclics)$
- H has enough projectives and injectives

Fernando Cornejo Montaño and Francisco Raggi Example 1: Consider the category of Abelian Groups. Then $H = \{A \rightarrow B \twoheadrightarrow C \mid A \text{ is pure in } B\}$ is a proper class and and

- \bullet $K_p(H)$
- $K_i(H)$ =Pure subgroups of divisibles=divisibles
- $H = \iota^{-1}(Cocyclics)$

where Cocyclics are the groups \mathbb{Z}_{p^n} p is prime

- $H = \pi^{-1}(cyclics)$
- H has enough projectives and injectives

Fernando Cornejo Montaño and Francisco Raggi Example 1: Consider the category of Abelian Groups. Then $H = \{A \rightarrowtail B \twoheadrightarrow C \mid A \text{ is pure in } B\}$ is a proper class and and

- \bullet $K_p(H)$
- $K_i(H)$ =Pure subgroups of divisibles=divisibles
- $H = \iota^{-1}(Cocyclics)$ where Cocyclics are the groups \mathbb{Z}_{p^n} p is prime
- $H = \pi^{-1}(cyclics)$
- H has enough projectives and injectives

Fernando Cornejo Montaño and Francisco Raggi Example 1: Consider the category of Abelian Groups. Then $H = \{A \rightarrowtail B \twoheadrightarrow C \mid A \text{ is pure in } B\}$ is a proper class and and

- \bullet $K_p(H)$
- $K_i(H)$ =Pure subgroups of divisibles=divisibles
- $H = \iota^{-1}(Cocyclics)$ where Cocyclics are the groups \mathbb{Z}_{p^n} p is prime
- \blacksquare $H = \pi^{-1}(cyclics)$
- H has enough projectives and injectives

Fernando Cornejo Montaño and Francisco Raggi

Definition

A Torsion Theory is a couple $\tau = (\mathcal{T}_{\tau}, \mathcal{F}_{\tau})$ of classes of modules such that:

- $T_{\tau} \cap \mathcal{F}_{\tau} = 0$
- T_{τ} is closed under quotients
- lacksquare \mathcal{F}_{τ} is closed under submodules
- For each module D, there exist $A \in \mathcal{T}_{\tau}$ and $C \in \mathcal{F}_{\tau}$ such that $A \rightarrowtail D \twoheadrightarrow C$ is exact.

Fernando Cornejo Montaño and Francisco Raggi

Definition

An hereditary torsion theory is a torsion theory such that \mathcal{T}_{τ} is closed under submodules.

In the following we consider torsion theory instead of hereditary torsion theory unless otherwise stated.

We denote as R-tors the family of the hereditary torsion theories.

Fernando Cornejo Montaño and Francisco Raggi

Definition

An hereditary torsion theory is a torsion theory such that \mathcal{T}_{τ} is closed under submodules.

In the following we consider torsion theory instead of hereditary torsion theory unless otherwise stated.

We denote as R-tors the family of the hereditary torsion theories.

Fernando Cornejo Montaño and Francisco Raggi

Definition

If $\tau \in R$ — tors we say that an R-module M is τ -injective if it is injective for all the short exact sequences

$${A \rightarrowtail B \twoheadrightarrow C \mid C \in \mathcal{T}_{\tau}}$$

Definition

If $\tau \in R - tors$ we say that an R-module M is τ -projective if it is projective for all the short exact sequences

$$\{A \rightarrowtail B \twoheadrightarrow C \mid A \in \mathcal{T}_{\tau}\}$$

Fernando Cornejo Montaño and Francisco Raggi

Definition

If $\tau \in R-tors$ we say that an R-module M is τ -injective if it is injective for all the short exact sequences

$${A \rightarrowtail B \twoheadrightarrow C \mid C \in \mathcal{T}_{\tau}}$$

Definition

If $\tau \in R$ — tors we say that an R-module M is τ -projective if it is projective for all the short exact sequences

$$\{A \rightarrowtail B \twoheadrightarrow C \mid A \in \mathcal{T}_{\tau}\}$$

Fernando Cornejo Montaño and Francisco Raggi

Definition

If $\tau \in R-tors$ we say that an R-module M is τ -injective if it is injective for all the short exact sequences

$${A \rightarrowtail B \twoheadrightarrow C \mid C \in \mathcal{T}_{\tau}}$$

Definition

If $\tau \in R$ — tors we say that an R-module M is τ -projective if it is projective for all the short exact sequences

$$\{A \rightarrowtail B \twoheadrightarrow C \mid A \in \mathcal{T}_{\tau}\}$$

Cornejo
Montaño and
Francisco
Raggi

Definition

If $\tau \in R$ — tors we say that a R-module M is τ -divisible if it is injective for all the short exact sequences

$${A \rightarrowtail B \twoheadrightarrow C \mid C \in \mathcal{F}_{\tau}}$$

Definition

If $\tau \in R - tors$ we say that a R-module M is τ -codivisible if it is projective for all the short exact sequences

$$\{A \mapsto B \twoheadrightarrow C \mid A \in \mathcal{F}_{\tau}\}$$

Cornejo
Montaño and
Francisco
Raggi

Definition

If $\tau \in R$ — tors we say that a R-module M is τ -divisible if it is injective for all the short exact sequences

$${A \rightarrowtail B \twoheadrightarrow C \mid C \in \mathcal{F}_{\tau}}$$

Definition

If $\tau \in R$ — tors we say that a R-module M is τ -codivisible if it is projective for all the short exact sequences

$${A \rightarrowtail B \twoheadrightarrow C \mid A \in \mathcal{F}_{\tau}}$$

Cornejo
Montaño and
Francisco
Raggi

Definition

If $\tau \in R$ — tors we say that a R-module M is τ -divisible if it is injective for all the short exact sequences

$${A \rightarrowtail B \twoheadrightarrow C \mid C \in \mathcal{F}_{\tau}}$$

Definition

If $\tau \in R$ — tors we say that a R-module M is τ -codivisible if it is projective for all the short exact sequences

$${A \rightarrowtail B \twoheadrightarrow C \mid A \in \mathcal{F}_{\tau}}$$

Fernando Cornejo Montaño and Francisco Raggi

Theorem

(Walker) Let τ be a torsion theory and \mathcal{D} the family of short exact sequences $A \mapsto B \twoheadrightarrow C$ such that the induced sequence $A/T(A) \mapsto B/T(B) \twoheadrightarrow C/T(C)$ is exact and splits, then $\mathcal{D} = \iota^{-1}(\mathcal{F}_{\tau})$

Fernando Cornejo Montaño and Francisco Raggi

Theorem

(Walker) Let τ be a torsion theory and \mathcal{D} the family of short exact sequences $A \mapsto B \twoheadrightarrow C$ such that the induced sequence $A/T(A) \mapsto B/T(B) \twoheadrightarrow C/T(C)$ is exact and splits, then $\mathcal{D} = \iota^{-1}(\mathcal{F}_{\tau})$

Fernando Cornejo Montaño and Francisco Raggi

Theorem

The left R-module M is projective relative to the proper class $\iota^{-1}(\mathcal{F}_{\tau})$ if and only if $\operatorname{Ext}^1(M,L)=0$ for all L in \mathcal{T}_{τ}

Fernando Cornejo Montaño ano Francisco Raggi

Theorem

$$\iota \mathsf{K}_p^{-1}(\mathcal{T}_{\tau}) = \tau - \mathit{injectives}$$

Fernando Cornejo Montaño ano Francisco Raggi

Theorem

$$K_i \pi^{-1}(\mathcal{T}_{\tau}) = \tau - injectives$$

Fernando Cornejo Montaño and Francisco Raggi

Theorem

$$\pi K_i^{-1}(\mathcal{F}_{\tau}) = \tau - codivisibles$$

Fernando Cornejo Montaño ano Francisco Raggi

Theorem

$$K_p \iota^{-1}(\mathcal{F}_{\tau}) = \tau - codivisbles$$

Fernando Cornejo Montaño and Francisco Raggi

Theorem

$$K_p\iota^{-1}(T$$
-injectives $)\supseteq \mathcal{T}_{\tau}$

Fernando Cornejo Montaño ano Francisco Raggi

Theorem

$$K_i\pi^{-1}(\mathcal{T}\text{-codivisibles})\supseteq \mathcal{F}_{\tau}$$

Fernando Cornejo Montaño and Francisco Raggi

Example 2

Consider the category of abelian groups and let D the class of the divisible groups R the class of the reduced groups. the Pair $(\mathcal{D},\mathcal{R})$ is an hereditary torsion theory and we have the following:

Fernando Cornejo Montaño and Francisco Raggi

Example 3

Definition

Let $E:A \rightarrow B \rightarrow C$ a short exact sequence and $h_n:C \rightarrow C$ such that $h_n(x)=nx$ $n\in\mathbb{Z}$. We say that E is quasi-pure if Eh_n is pure for some $n\in\mathbb{Z}$

All the short exact sequences quasi-pure form a proper class.

Cornejo Montaño and Francisco Raggi Now, if we consider the proper classes

$$K_i^{-1} \subseteq \pi^{-1}(\tau - \text{codivisibles})$$

we observe that

$$\pi K_i^{-1} = \pi \pi^{-1} (\tau - \text{codivisibles}) = \tau - \text{codivisibles}$$

We also consider the concept of cover τ -projective

Fernando Cornejo Montaño and Francisco Raggi

Some Examples

Fernando Cornejo Montaño and Francisco Raggi

Theorem

- M is $\iota^{-1}(\mathcal{F}_{\tau})$ -projective if and only if M is a direct summand of a direct sum of projective and torsion modules.
- M es $\iota^{-1}(\mathcal{F}_{\tau})$ -coprojective if and only if M es τ -codivisible.

Fernando Cornejo Montaño and Francisco Raggi Anderson, Frank W. and Fuller, Kent R., *Rings and Categories of Modules*. Springer- Verlag, New York, 1973.

Maclane, Saunders (1963). Homology.

Berlin-Göttingen-Heidelberg: Springer-Verlag.

Pancar, Ali, Generation of proper classes of short exact sequences, International Journal of Mathematics and Mathematical Sciences, vol. 20, no.3, p. 465-473, 1997.

Raggi Cárdenas, Francisco. Ríos Montes, José. *Proper classes associated to torsion theories*. Communications in Algebra, Vol. 15, Issue 3 1987, p 575 - 587.

Raggi Cárdenas, Francisco. Ríos Montes, José. Sublattices of R-tors Associated to proper clases. Communications in Algebra, 1532-4125, Volume 15, Issue 3, 1987, p 555 –573. Sklyarenko, E.G. Relative homological algebra in categories of modules. Russian Mathematical Surveys, 33 No. 3, 97-137

Fernando Cornejo Montaño and Francisco Raggi (1978).

Stenstroem, Bo T. *Pure submodules*. Arkiv. for Mat. Bd 7 nr 10. (1967), 159-171.

Stenstroem Bo. T. Rings of quotients (Springer-Verlag, 1975). Percy Walker, C. L., Relative homological algebra and Abelian groups, Illinois J. Math., 10, 186-209 (1966)