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Definitions

Let L be a complete lattice and a € L.

@ ais compact if, for any X C L with a </ X, there exists a
finite subset X’ C X such that a <\/ X".

o L is algebraic if every its element is the join of some compact
elements.
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Representation of algebraic lattices

o G. Gratzer, E.T. Schmidt (1963) Every algebraic lattice is
represented as the congruence lattice of an algebra.
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Representation of algebraic lattices

o G. Gratzer, E.T. Schmidt (1963) Every algebraic lattice is
represented as the congruence lattice of an algebra.

e R. Freese, W.A. Lampe, W. Taylor (1979) There exists a
modular algebraic lattice which is not represented as the
congruence lattice of an algebra of finite similarity type.
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Representation of algebraic lattices

o G. Gratzer, E.T. Schmidt (1963) Every algebraic lattice is
represented as the congruence lattice of an algebra.

e R. Freese, W.A. Lampe, W. Taylor (1979) There exists a
modular algebraic lattice which is not represented as the
congruence lattice of an algebra of finite similarity type.

e W.A. Lampe (1982) If the unit of an algenraic lattice L is
compact, then L is represented as the congruence lattice of
some groupoid.
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Representation of distributive algebraic lattices

@ Open problem. Is every distributive algebraic lattice
isomorphic to the congruence lattice of a groupoid and,
specifically, of a semigroup?

A.L. Popovich, V.B. Repnitskii

On congruence lattices of nilsemigroups



Representation of distributive algebraic lattices

@ o Open problem. Is every distributive algebraic lattice
isomorphic to the congruence lattice of a groupoid and,
specifically, of a semigroup?

E.T. Schmidt (1981) Every distributive algebraic lattice whose
compact elements form a lattice is isomorphic to the
congruence lattice of some lattice.
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Representation of distributive algebraic lattices

@ o Open problem. Is every distributive algebraic lattice
isomorphic to the congruence lattice of a groupoid and,
specifically, of a semigroup?

E.T. Schmidt (1981) Every distributive algebraic lattice whose
compact elements form a lattice is isomorphic to the
congruence lattice of some lattice.

F. Wehrung (2007) There exists a distributive algebraic lattice
which is not isomorphic to the congruence lattice of any
semilattice.
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Representation of distributive algebraic lattices

e o P. RuZitka, J. Tama, F. Wehrung (2005) Every distributive
algebraic lattice with cardinality of the set of compact
elements not greater than Ry is isomorphic to the lattice of
normal subgroups of some group.
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Representation of distributive algebraic lattices

e P. Ruzitka, J. Tama, F. Wehrung (2005) Every distributive
algebraic lattice with cardinality of the set of compact
elements not greater than Ry is isomorphic to the lattice of
normal subgroups of some group.

e A.P., V.Repnitskii (2009) Every distributive algebraic lattice
with the set of compact elements being a sublattice with unit
is isomorphic to the congruence lattice of a suitable semigroup.
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2-nilsemigroups

@ Definition
n-nilsemigroup is a semigroup with zero satisfying the identity
x"=0.
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2-nilsemigroups

@ Definition

n-nilsemigroup is a semigroup with zero satisfying the identity
x"=0.

@ Theorem 1 (A.P., V.Repnitskii (2010)).
Every distributive algebraic lattice whose compact elements
form a lattice with unit is isomorphic to the congruence lattice
of a suitable 2-nilsemigroup.
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2-nilsemigroups

@ Definition

n-nilsemigroup is a semigroup with zero satisfying the identity
x"=0.

@ Theorem 1 (A.P., V.Repnitskii (2010)).
Every distributive algebraic lattice whose compact elements
form a lattice with unit is isomorphic to the congruence lattice
of a suitable 2-nilsemigroup.

@ Theorem 2 (A.P., V.Repnitskii (2010)).
Every distributive algebraic lattice with cardinality of the set of
compact elements not greater than X is isomorphic to the
congruence lattice of some 2-nilsemigroup.
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Distance function

@ S is a semigroup. P is a (V, 0)-semilattice.
A mapping 6 : S X S — P is called a semigroup distance
function if
1) 6(x,x) =0 for all x € S,
2) 0(x,y) =0(y,x) for all x,y € S,
3) 0(x,z) < (x,y) Vi(y,z) for all x,y,z € S,
4) 0(xs,yt) < 0(x,y) Vo(s,t) forall x,y,s, t €S.
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Distance function

@ S is a semigroup. P is a (V, 0)-semilattice.
A mapping 6 : S X S — P is called a semigroup distance
function if
1) 6(x,x) =0 for all x € S,
2) 0(x,y) =0(y,x) for all x,y € S,
3) 0(x,z) < (x,y) Vi(y,z) for all x,y,z € S,
4) 0(xs,yt) < 0(x,y) Vo(s,t) forall x,y,s, t €S.
@ /is an ideal in P.
Os(1) ={(x,y) € SxS§:(x,y) € l}.
O(;(a) = 05(< a >).
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Proposition 1.

Let 0 : S x S — P be a semigroup distance function and the
following conditions hold:

1) foralla,b e Pand x,y € S, if §(x,y) < aV b, then

(x,y) € 05(3) V Og(b),

2) 0 is surjective,

3) for all (a, b), (¢, d) € S, if §(a, b) < 6(c, d), then

(a, b) € 05(0) vV O(c, d).

Then the mapping Os : J(P) — ConS is an isomorphism J(P) onto
[05(0),S x S] = Con S/05(0).
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Proposition 2.

Let P be a lattice with unit. Let S be a 2-nilsemigroup and
0:S5 xS — P asemigroup distance function.

Let d(a, b) < d(c,d) for a,b,c,d € S.

Then there exist a 2-nilsemigroup S and a semigroup distance
function 4 : § x § — P such that

S is a subsemigroup in S, d|sxs = d and

(a,b) € 03(0) vV O(c,d) in S.

A.L. Popovich, V.B. Repnitskii

On congruence lattices of nilsemigroups



Technique

© S=SxF(uv,w,i,v,w)
I = {x € S|x = smzmt or x = s0t, )
where m € {u,v,w,0,v,w} and s,z,t € S}.
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Technique

© S=SxF(uv,w,i,v,w)
I = {x € S|x = smzmt or x = s0t,
where m € {u,v,w,0,v,w} and s,z,t € S}.

0 5= S/1'is a 2-nilsemigroup.
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G=G(S,E)
p<S>gq if and only if
@ 0)p=gande=0;
@ 1) p=sxt, g = syt and e = §(x, y) for some s, t € S and
x,y €85;
@ 2) p = suxut, g = sat and e = d(x, ¢) for some s, t € S!and
x € S (or symmetrically);
e 3) p=swxwt, g = sbt and e = §(x, d) for some s, t € 5!
and x € S (or symmetrically);
@ 4) p = suxut, q = svyvt or
p = svxvt, g = swywt, B
and e = 6(x,d) V §(y, c) for some s,t € S and
(x,y) € S x S (or symmetrically).
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€2 e3 €n

Let P be a path p = po <—> p1 P2 Pn=q.
Define e(P) =\ ¢; .

5(p, q) = N{e(P)|P is a path from p to q}.

We have

6(a, uct) = &(udi, vev) = §(vdv, wew) = §(wdw, b) = 0;
(uct, udr), (vev, vdv), (wew, wdw) € ©(c, d);

so (a,b) € 05V O(c,d).
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Ju. Ershov (1977) and P. Pudldk (1985) Every distributive

(V, 0)-semilattice is the directed union of its finite distributive
(Vv,0)-subsemilattices.

This is equivalent to the following:

Any finite subset of a distributive (\V/,0)-semilattice P is included
into a finite distributive (V,0)-subsemilattice of P.
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