Week 5:

Transformation of time series,
Tests of randomness

Transformations of Time Series

Aim: achieve normality and constant variance

most of the methods assume that

$$Y_t = Tr_t + S_t + E_t$$
, $EE_t = 0$, $Var E_t = \sigma^2 = const$

and optimality for normal E_t

prediction intervals: normality

Transformations of Time Series

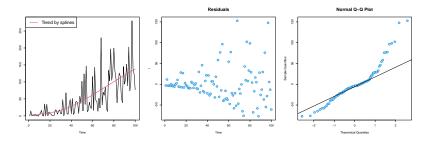
Aim: achieve normality and constant variance

most of the methods assume that

$$Y_t = Tr_t + S_t + E_t$$
, $EE_t = 0$, $Var E_t = \sigma^2 = const$

and optimality for normal E_t

prediction intervals: normality



 \rightsquigarrow find transformation g such that $g(Y_t)$ satisfies the conditions

$$g_{\lambda}(y) = egin{cases} rac{(y+c)^{\lambda}-1}{\lambda}, & \lambda
eq 0, \ \log(y+c), & \lambda = 0. \end{cases}$$

and use

$$Y_t^\lambda = g_\lambda(Y_t)$$

for a suitable λ and a suitable c

$$g_{\lambda}(y) = egin{cases} rac{(y+c)^{\lambda}-1}{\lambda}, & \lambda
eq 0, \\ \log(y+c), & \lambda = 0. \end{cases}$$

and use

$$Y_t^{\lambda} = g_{\lambda}(Y_t)$$

for a suitable λ and a suitable c

• g_{λ} continuous in λ

$$g_{\lambda}(y) = \begin{cases} \frac{(y+c)^{\lambda}-1}{\lambda}, & \lambda \neq 0, \\ \log(y+c), & \lambda = 0. \end{cases}$$

and use

$$Y_t^{\lambda}=g_{\lambda}(Y_t)$$

for a suitable λ and a suitable c

- $ightharpoonup g_{\lambda}$ continuous in λ
- if you intend to fit a regression model \leadsto it suffices to take $(Y_t + c)^{\lambda}$ for $\lambda > 0$

$$g_{\lambda}(y) = egin{cases} rac{(y+c)^{\lambda}-1}{\lambda}, & \lambda
eq 0, \\ \log(y+c), & \lambda = 0. \end{cases}$$

and use

$$Y_t^{\lambda} = g_{\lambda}(Y_t)$$

for a suitable λ and a suitable c

- $ightharpoonup g_{\lambda}$ continuous in λ
- ▶ if you intend to fit a regression model \rightsquigarrow it suffices to take $(Y_t + c)^{\lambda}$ for $\lambda > 0$

Parameters:

ightharpoonup c > 0 such that $Y_t + c > 0$

$$g_{\lambda}(y) = egin{cases} rac{(y+c)^{\lambda}-1}{\lambda}, & \lambda
eq 0, \\ \log(y+c), & \lambda = 0. \end{cases}$$

and use

$$Y_t^{\lambda} = g_{\lambda}(Y_t)$$

for a suitable λ and a suitable c

- $ightharpoonup g_{\lambda}$ continuous in λ
- ▶ if you intend to fit a regression model \rightsquigarrow it suffices to take $(Y_t + c)^{\lambda}$ for $\lambda > 0$

Parameters:

- ightharpoonup c > 0 such that $Y_t + c > 0$
- ▶ How to find λ ?
 - profile maximum likelihood
 - approximate methods

Assume that there exists λ such that $g_{\lambda}(Y_t)$ are independent for

$$t = 1, \ldots, T$$
 and

$$g_{\lambda}(Y_t) = \frac{Y_t^{\lambda} - 1}{\lambda} \sim N(\mu_t, \sigma^2)$$

where either $\mu_t = Tr_t$ or $\mu_t = Tr_t + S_t$ modelled by a regression model.

Assume that there exists λ such that $g_{\lambda}(Y_t)$ are independent for t = 1, ..., T and

$$g_{\lambda}(Y_t) = \frac{Y_t^{\lambda} - 1}{\lambda} \sim \mathsf{N}(\mu_t, \sigma^2)$$

where either $\mu_t = Tr_t$ or $\mu_t = Tr_t + S_t$ modelled by a regression model.

 \hookrightarrow derive the density of Y_t (use the transformation theorem)

$$\log f_{Y_t}(y) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(g_{\lambda}(y) - \mu_t)^2 + (\lambda - 1)\log y$$

Assume that there exists λ such that $g_{\lambda}(Y_t)$ are independent for t = 1, ..., T and

$$g_{\lambda}(Y_t) = \frac{Y_t^{\lambda} - 1}{\lambda} \sim \mathsf{N}(\mu_t, \sigma^2)$$

where either $\mu_t = Tr_t$ or $\mu_t = Tr_t + S_t$ modelled by a regression model.

 \rightarrow derive the density of Y_t (use the transformation theorem)

$$\log f_{Y_t}(y) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(g_{\lambda}(y) - \mu_t)^2 + (\lambda - 1)\log y$$

 $\hookrightarrow \text{ independence} \leadsto \text{log-likelihood}$

$$I(\lambda, \beta, \sigma^2) = const - \frac{n}{2}\log \sigma^2 - \frac{1}{2\sigma^2}\sum_{t=1}^n (g_{\lambda}(Y_t) - \mu_t)^2 + (\lambda - 1)\sum_{t=1}^n \log Y_t$$

Assume that there exists λ such that $g_{\lambda}(Y_t)$ are independent for t = 1, ..., T and

$$g_{\lambda}(Y_t) = \frac{Y_t^{\lambda} - 1}{\lambda} \sim \mathsf{N}(\mu_t, \sigma^2)$$

where either $\mu_t = Tr_t$ or $\mu_t = Tr_t + S_t$ modelled by a regression model.

 \hookrightarrow derive the density of Y_t (use the transformation theorem)

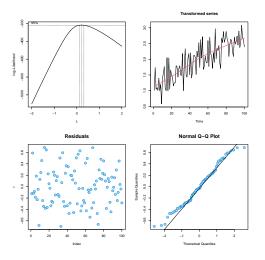
$$\log f_{Y_t}(y) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(g_{\lambda}(y) - \mu_t)^2 + (\lambda - 1)\log y$$

 \hookrightarrow independence \leadsto log-likelihood

$$I(\lambda, \beta, \sigma^{2}) = const - \frac{n}{2}\log \sigma^{2} - \frac{1}{2\sigma^{2}}\sum_{t=1}^{n}(g_{\lambda}(Y_{t}) - \mu_{t})^{2} + (\lambda - 1)\sum_{t=1}^{n}\log Y_{t}$$

 \hookrightarrow profile likelihood

$$I(\lambda) = \max_{\beta, \sigma^2} I(\lambda, \beta, \sigma^2) = const - \frac{n}{2} \log SSe(\lambda) + (\lambda - 1) \sum_{t=1}^{n} \log Y_t$$



- $ightharpoonup \min Y_t = -0.93 \leadsto c = 1$, MLE $\leadsto \widehat{\lambda} = 0.2 \leadsto g(Y_t) = (Y_t + 1)^{1/5}$
- ▶ analyze $\{g(Y_t)\}$ \leadsto prediction interval for $g(Y_{n+1})$ \leadsto prediction interval for Y_{n+1}

Approximate methods for λ

Let Y be a random variable. Taylor expansion of g:

$$g(Y) \approx g(\mathsf{E}Y) + g'(\mathsf{E}Y)(Y - \mathsf{E}Y)$$

so

$$\operatorname{Var} g(Y) \approx [g'(\mathsf{E} Y)]^2 \operatorname{Var} Y \stackrel{!}{=} k^2 = const$$

Approximate methods for λ

Let *Y* be a random variable. Taylor expansion of *g*:

$$g(Y) \approx g(\mathsf{E}Y) + g'(\mathsf{E}Y)(Y - \mathsf{E}Y)$$

so

$$\operatorname{Var} g(Y) \approx [g'(\mathsf{E} Y)]^2 \operatorname{Var} Y \stackrel{!}{=} k^2 = const$$

For g_{λ} :

$$g'_{\lambda}(y)=y^{\lambda-1},$$

so

$$(\mathsf{E} Y)^{2(\lambda-1)} \mathsf{Var} \ Y \approx k^2$$

$$\sqrt{\mathsf{Var} \ Y} \approx k(\mathsf{E} Y)^{1-\lambda}$$

And similar relationship should be observed for the sample counterparts (SD and MEAN)

Approximate methods for λ (cont.)

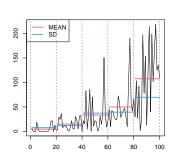
- 1. divide data into *J* segments of the same length
- 2. compute $s_Y(j)$, $\overline{Y}(j)$ for j = 1, ..., J from $Y_t + c$
- 3. plot $(\overline{Y}(j), s_Y(j))$ and try to determine approximate λ from

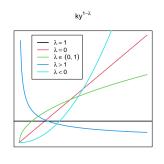
$$s_Y(j) \approx k \cdot (\overline{Y}(j))^{1-\lambda}$$

S

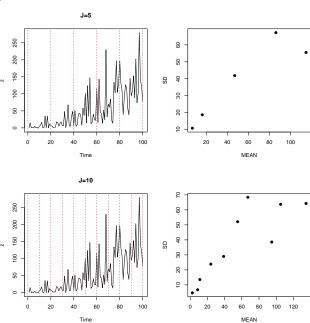
for some k > 0

4. typically one takes $\hat{\lambda} \in \{0, 1, 1/2, -1/2\}$





Example



Approximate methods for λ (cont.)

$$s_Y(j) \approx k \cdot (\overline{Y}(j))^{1-\lambda}$$

 $\log[s_Y(j)] \approx \log k + (1-\lambda) \log[\overline{Y}(j)]$

→ plot points

$$\left(\log[\overline{Y}(j)], \log[s_Y(j)]\right)$$

and 1 $-\lambda$ is the regression slope

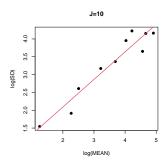
Approximate methods for λ (cont.)

$$s_{Y}(j) \approx k \cdot (\overline{Y}(j))^{1-\lambda} \log[s_{Y}(j)] \approx \log k + (1-\lambda) \log[\overline{Y}(j)]$$

→ plot points

$$\left(\log[\overline{Y}(j)], \log[s_Y(j)]\right)$$

and 1 $-\lambda$ is the regression slope



$$\hat{\lambda} = 1 - 0.77 = 0.23$$

Pros +

Cons -

Pros +

Cons —

- prediction intervals with exact coverage
- exact statistical tests (if other assumptions satisfied)
- some procedures optimal under normality

Pros +

- prediction intervals with exact coverage
- exact statistical tests (if other assumptions satisfied)
- some procedures optimal under normality

Cons —

- point prediction typically biased
- except special cases $\lambda = 0, 1$ no interpretation for the parameters (slope etc) in terms of Y_t

Pros +

- prediction intervals with exact coverage
- exact statistical tests (if other assumptions satisfied)
- some procedures optimal under normality

Most popular transformations

- $\hookrightarrow \lambda = 1$: no transformation
- $\rightarrow \lambda = 0$: log transformation

Cons —

- point prediction typically biased
- except special cases $\lambda = 0, 1$ no interpretation for the parameters (slope etc) in terms of Y_t

Tests of randomness

Tests of randomness

 $H_0: Y_t \sim iid$

against

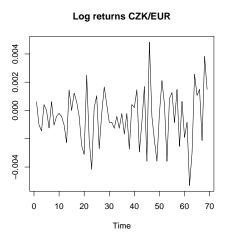
 H_1 : either Y_t not independent, or Y_t not id

Why?

- plot: no presence of any systematic component
- ▶ apply this on $\widehat{E}_t = Y_t \widehat{Tr}_t \widehat{S}_t \widehat{C}_t$

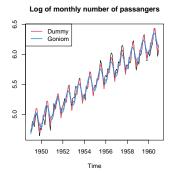
H₁ very broad → various tests

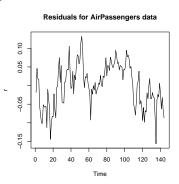
Example I



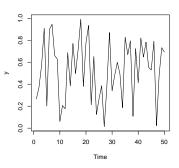
Example II

Air Passengers data:
$$Y_t = \beta_1 t + \sum_{j=1}^{12} \gamma_j \cdot I(\text{month}_t = j) + E_t$$





Example III: Is my pseudo random generator good?



Setting

```
Data Y_1, \dots, Y_n
For simplicity: Y_t \neq Y_{t=1} for all t (no ties allowed) (Is it restrictive?)
```

Setting

```
Data Y_1, ..., Y_n
For simplicity: Y_t \neq Y_{t=1} for all t (no ties allowed) (Is it restrictive?)
```

Discussed tests:

- 1. based on signs of differences
- 2. based on turning points
- 3. based on runs (median test)
- 4. based on Kendall's tau
- 5. based on Spearman's rho
- 6. tools based on ACF

Discussion: Usefulness of such tests?

1. Test Based on Signs of Differences

$$V_{t} = \begin{cases} 1 & Y_{t} < Y_{t+1} \\ 0 & Y_{t} > Y_{t+1} \end{cases}$$

Then

$$K_n = \sum_{t=1}^{n-1} V_t$$

is the number of points of growth.

Idea of the test: Reject if K_n differs "too much" from its expectation under H_0 (i.e. K_n "too extreme")

1. Test Based on Signs of Differences

$$V_t = \begin{cases} 1 & Y_t < Y_{t+1} \\ 0 & Y_t > Y_{t+1} \end{cases}$$

Then

$$K_n = \sum_{t=1}^{n-1} V_t$$

is the number of points of growth.

Idea of the test: Reject if K_n differs "too much" from its expectation under H_0 (i.e. K_n "too extreme")

 \hookrightarrow either exact or asymptotic distribution of K_n

1. Test Based on Signs of Differences

$$V_t = \begin{cases} 1 & Y_t < Y_{t+1} \\ 0 & Y_t > Y_{t+1} \end{cases}$$

Then

$$K_n = \sum_{t=1}^{n-1} V_t$$

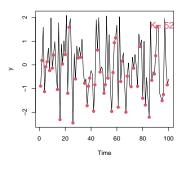
is the number of points of growth.

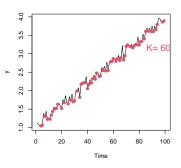
Idea of the test: Reject if K_n differs "too much" from its expectation under H_0 (i.e. K_n "too extreme")

- \hookrightarrow either exact or asymptotic distribution of K_n
- \hookrightarrow K_n is a sum of (dependent) variables \leadsto CLT might give us asymptotics

Illustration

$$V_{t} = \begin{cases} 1 & Y_{t} < Y_{t+1} \\ 0 & Y_{t} > Y_{t+1} \end{cases}$$





Moments of K_n

$$\mathsf{E} \mathcal{K}_n = \mathsf{E} \sum_{t=1}^{n-1} V_t = \sum_{t=1}^{n-1} \mathsf{E} V_t = \frac{n-1}{2}$$

because

$$V_t = I[Y_t < Y_{t-1}] \stackrel{H_0:iid}{\sim} Alt(1/2).$$

Moments of K_n

$$\mathsf{E} K_n = \mathsf{E} \sum_{t=1}^{n-1} V_t = \sum_{t=1}^{n-1} \mathsf{E} V_t = \frac{n-1}{2}$$

because

$$V_t = I[Y_t < Y_{t-1}] \stackrel{H_0:iid}{\sim} Alt(1/2).$$

$$\operatorname{Var} K_n = \operatorname{Var} \left(\sum_{t=1}^{n-1} V_t \right) = \sum_{t=1}^{n-1} \operatorname{Var} V_t + 2 \sum_{s < t} \operatorname{Cov} \left(V_s, V_t \right)$$

Moments of K_n

$$\mathsf{E} \mathcal{K}_n = \mathsf{E} \sum_{t=1}^{n-1} V_t = \sum_{t=1}^{n-1} \mathsf{E} V_t = \frac{n-1}{2}$$

because

$$V_t = I[Y_t < Y_{t-1}] \stackrel{H_0:iid}{\sim} Alt(1/2).$$

$$\operatorname{Var} K_n = \operatorname{Var} \left(\sum_{t=1}^{n-1} V_t \right) = \sum_{t=1}^{n-1} \operatorname{Var} V_t + 2 \sum_{s < t} \operatorname{Cov} (V_s, V_t)$$

If s + 1 < t, then V_s and V_t independent $\rightsquigarrow \text{Cov}(V_s, V_t) = 0$. If s + 1 = t, then

$$Cov(V_s, V_t) = EI[Y_s < Y_{s+1} < Y_{s+2}] - \frac{1}{4} \stackrel{H_0:iid}{=} \frac{1}{6} - \frac{1}{4} = -\frac{1}{12},$$

so

$$Var K_n = \frac{n-1}{4} - 2\frac{n-2}{12} = \frac{n+1}{12}.$$

Asymptotic distribution

It holds that

$$\frac{K_n - \mathsf{E} K_n}{\sqrt{\mathsf{Var}\, K_n}} = \frac{K_n - \frac{n-1}{2}}{\sqrt{\frac{n+1}{12}}} \overset{D}{\to} \mathsf{N}(0,1).$$

- → Justification: CLT for *m*-dependent processes.
- \hookrightarrow Equivalent versions of the test statistic

Test:

If
$$\frac{\left|K_n - \frac{n-1}{2}\right|}{\sqrt{\frac{n+1}{12}}} > u_{1-\alpha/2} \Rightarrow \text{reject } H_0$$

2. Test Based on Turning Points

$$V_t = \begin{cases} 1 & Y_{t-1} < Y_t, Y_t > Y_{t+1} \text{ or } Y_{t-1} > Y_t, Y_t < Y_{t+1}, \\ 0 & Y_{t-1} < Y_t < Y_{t+1} \text{ or } Y_{t-1} > Y_t > Y_{t+1} \end{cases}$$

and

$$R_n = \sum_{t=2}^{n-1} V_t$$

the total number of upper and lower turning points

Idea of the test: Reject if R_n differs "too much" from its expectation under H_0 (i.e. R_n "too extreme")

- → tables for exact distribution exist
- $\hookrightarrow R_n$ asymptotically normal (again use CLT for *m*-dependent)
- \rightarrow we need to computed ER_n , $Var R_n$

Moments of R_n

Now

$$V_t = I[Y_{t-1} < Y_t, Y_t > Y_{t+1} \text{ or } Y_{t-1} > Y_t, Y_t < Y_{t+1}] \stackrel{H_0:iid}{\sim} Alt(2/3),$$

SO

$$\mathsf{E} R_n = \sum_{t=2}^{n-1} \mathsf{E} V_t = \frac{2(n-2)}{3}.$$

Similar computations as for K_n give

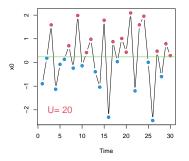
$$\operatorname{Var} R_n = \frac{16n - 29}{90}.$$

Test:

If
$$\frac{|R_n - ER_n|}{\sqrt{\operatorname{Var} R_n}} > u_{1-\alpha/2} \Rightarrow \operatorname{reject} H_0$$

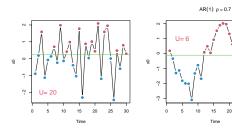
3. Test Based on Runs (Median Test)

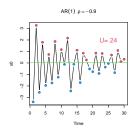
- ightharpoonup M median of Y_1, \ldots, Y_n
- \triangleright U_n is number of runs



Idea of the test: Reject if U_n "too extreme"

Illustration





25

Time

Asymptotic distribution

It is possible to show

$$\mathsf{E} U_n = m+1, \quad \mathsf{Var} \ U_n = \frac{m(m-1)}{2m-1},$$
 where $m = \sum_{t=1}^n \mathsf{I}[Y_t > M] \ (m = n/2 \ \mathsf{if} \ n \ \mathsf{even}), \ \mathsf{and}$
$$\frac{U_n - \mathsf{E} U_n}{\sqrt{\mathsf{Var} \ U_n}} \overset{D}{\to} \mathsf{N}(0,1).$$

Reject if

$$\frac{|U_n - \mathsf{E} U_n|}{\sqrt{\mathsf{Var}\,U_n}} > u_{1-\alpha/2}$$

Simulations

IID:
$$Y_t \sim \text{iid N}(0, 1)$$
,

AR: $Y_t = 0.6 \cdot Y_{t-1} + \varepsilon_t$, $\varepsilon_t \text{ iid N}(0, 1)$,

LT: $Y_t = \frac{3}{n}t + \varepsilon_t$, $\varepsilon_t \text{ iid N}(0, 1)$,

RW: $Y_t = \sum_{i=1}^t \varepsilon_i$, $\varepsilon_t \text{ iid N}(0, 0.5^2)$,

N = 1 000 replications → percentage of rejection

Simulations

IID:
$$Y_t \sim \operatorname{iid} N(0, 1)$$
,

AR: $Y_t = 0.6 \cdot Y_{t-1} + \varepsilon_t$, $\varepsilon_t \operatorname{iid} N(0, 1)$,

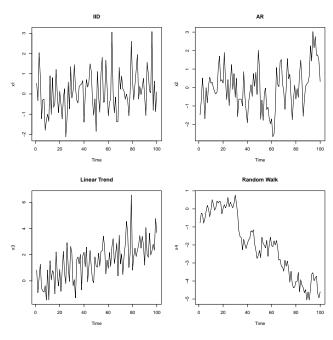
LT: $Y_t = \frac{3}{n}t + \varepsilon_t$, $\varepsilon_t \operatorname{iid} N(0, 1)$,

RW: $Y_t = \sum_{i=1}^t \varepsilon_i$, $\varepsilon_t \operatorname{iid} N(0, 0.5^2)$,

N = 1000 replications \rightarrow percentage of rejection

	Kn			R _n			Un		
n	50	100	200	50	100	200	50	100	200
IID	5	4	5	6	5	6	6	5	6
AR	6	5	6	43	67	91	79	96	100
LT	7	6	6	6	6	5	58	85	99
RW	24	25	27	78	95	100	100	100	100

→ back to the critics of the tests....



Kendall's au and Spearman's ho

Consider iid random vectors

$$\begin{pmatrix} U_1 \\ V_1 \end{pmatrix}, \dots \begin{pmatrix} U_n \\ V_n \end{pmatrix}$$

▶ Pearson's correlation $\rho = \text{cor}(U_i, V_i)$ estimated by

$$\widehat{\rho} = \frac{\sum_{i=1}^{n} (U_i - \overline{U}_n)(V_i - \overline{V}_n)}{\sqrt{\sum_{i=1}^{n} (U_i - \overline{U}_n)^2} \sqrt{\sum_{i=1}^{n} (V_i - \overline{V}_n)^2}}$$

 $\blacktriangleright \text{ Kendall's } \tau \qquad \qquad \tau = \mathsf{P}(U_i < V_i) - \mathsf{P}(U_i > V_i)$

$$\widehat{\tau} = \frac{2}{n(n-1)} \sum_{i=1}^{n} \operatorname{sgn}(U_i - U_j) \operatorname{sgn}(V_i - V_j)$$

Spearman's ρ

$$\rho_S = \operatorname{cor}(F_{U}(U_i), F_{V}(V_i))$$

estimated by

$$\widehat{\rho_S} = \frac{\sum_{i=1}^n (R_i - \overline{R}_n)(S_i - \overline{S}_n)}{\sqrt{\sum_{i=1}^n (R_i - \overline{R}_n)^2} \sqrt{\sum_{i=1}^n (S_i - \overline{S}_n)^2}} = 1 - \frac{6}{n^2(n-1)} \sum_{i=1}^n (R_i - S_i)^2,$$

where R_i and S_i are ranks of U_i and V_i respectively.

▶ U_i and V_i independent $\rightsquigarrow \rho = \tau = \rho_S = 0$

4. and 5. Tests Based on τ and ρ_S

Idea of the test: Compute correlation between $U_i = Y_i$ and $V_i = i$

$$\widehat{\tau} = \frac{2}{n(n-1)} \sum_{i < j} \text{sgn}(Y_i - Y_j) = \frac{4}{n(n-1)} \sum_{i < j} I(Y_i - Y_j),$$

$$\widehat{\rho}_S = 1 - \frac{6}{n^2(n-1)} \sum_{i=1}^n (R_i - i)^2$$

where R_1, \ldots, R_n are ranks of Y_1, \ldots, Y_n

Asymptotic tests: Compare

$$\frac{|\widehat{\tau}|}{\sqrt{\frac{2(2n+5)}{9n(n-1)}}} \quad \text{or} \quad \sqrt{n-1}|\widehat{\rho}_{\mathcal{S}}|$$

with $u_{1-\alpha/2}$, and reject for large values

Simulations

 $N=1\,000$ replications \rightsquigarrow percentage of rejection of H_0

		au		$ ho_{\mathcal{S}}$			
n	50	100	200	50	100	200	
IID	5	5	6	5	5	6	
AR	34	29	33	34	30	33	
LT	100	100	100	100	100	100	
RW	81	85	90	82	85	91	

Graphical tools

- plot
- suitable graphical tools from regression
- ▶ tools based on sample ACF of { *Y*_t}

Graphical tools

- plot
- suitable graphical tools from regression
- ▶ tools based on sample ACF of { Y_t}

Course Stoch. processes II: $\{Y_t\}$ random proces

ACF

$$\rho_k = \operatorname{cor}(Y_t, Y_{t+k})$$

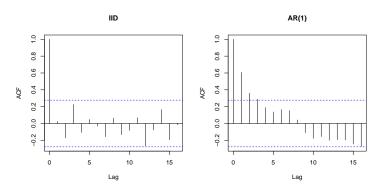
If
$$\{Y_t\}$$
 iid $\rightsquigarrow \rho_k = 0$ for $k \neq 0$

sample ACF

$$r_{k} = \frac{\sum_{t=1}^{n-k} (Y_{t} - \overline{Y}_{n})(Y_{t+k} - \overline{Y}_{n})}{\sum_{t=1}^{n} (Y_{t} - \overline{Y}_{n})^{2}}$$

If
$$\{Y_t\}$$
 iid $\rightsquigarrow \sqrt{n}r_k \stackrel{D}{\rightarrow} N(0,1)$, i.e. $r_k \stackrel{.}{\sim} N(0,1/n)$ for large n

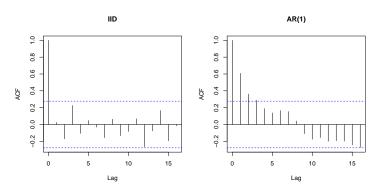
Sample ACF



Horizontal lines:

$$\pm \frac{u_{0.975}}{\sqrt{n}}$$

Sample ACF



Horizontal lines:

$$\pm \frac{u_{0.975}}{\sqrt{n}}$$

Under H_0 : r_k lies outside $\left(-\frac{u_{0.975}}{\sqrt{n}}, \frac{u_{0.975}}{\sqrt{n}}\right)$ with asymptotic probability 5% for each $k \geq 1$, independently

Box-Pierce, Ljung- Box, Q-test

Idea of the test:

- \hookrightarrow fix K
- \hookrightarrow If $\{Y_t\}$ iid, then $\sqrt{n}r_1,\ldots,\sqrt{n}r_K$ asymptotically N(0,1) and independent

Box-Pierce, Ljung- Box, Q-test

Idea of the test:

- \hookrightarrow fix K
- \hookrightarrow If $\{Y_t\}$ iid, then $\sqrt{n}r_1,\ldots,\sqrt{n}r_K$ asymptotically N(0,1) and independent
- \hookrightarrow Take

$$Q = n \sum_{k=1}^{K} r_k^2$$

and it should be asymptotically χ^2_{K}

Box-Pierce, Ljung- Box, Q-test

Idea of the test:

- \hookrightarrow fix K
- \hookrightarrow If $\{Y_t\}$ iid, then $\sqrt{n}r_1,\ldots,\sqrt{n}r_K$ asymptotically N(0,1) and independent
- \hookrightarrow Take

$$Q = n \sum_{k=1}^{K} r_k^2$$

and it should be asymptotically χ^2_K

Test: Reject if $Q>q_{K,1-\alpha}$ for $q_{1-\alpha}$ quantile of χ^2_K

Box-Pierce, Ljung- Box, Q-test

Idea of the test:

- \hookrightarrow fix K
- \hookrightarrow If $\{Y_t\}$ iid, then $\sqrt{n}r_1,\ldots,\sqrt{n}r_K$ asymptotically N(0,1) and independent
- → Take

$$Q = n \sum_{k=1}^{K} r_k^2$$

and it should be asymptotically χ^2_K

Test: Reject if $Q>q_{K,1-lpha}$ for q_{1-lpha} quantile of χ^2_K

Small sample improvement:

$$Q^* = n(n+2) \sum_{k=1}^{K} \frac{r_k^2}{n-k}$$

If $\{Y_t\}$ are residuals from an ARMA model \leadsto modify the degrees of freedom

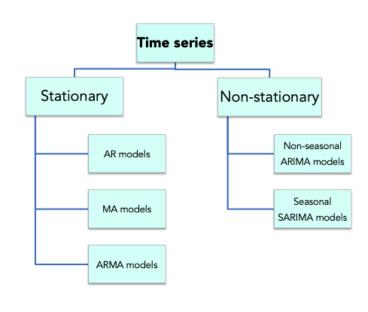
Box-Jenkins methodology

Box-Jenkins methodology

- AutoRegressive Integrated Moving Average (ARIMA) models
- ▶ 1970s, popularized by Box and Jenkins
- rely on autocorrelation patterns in the data

George E. P. Box 1919 – 2013

Gwilym M. Jenkins 1932 – 1982



Notions and definitions

Time series $\{Y_t\}$

- strict stationarity
- (weak) stationarity
- white noise WN
- ▶ autocovariance function $\{\gamma_k\}$
- ▶ autocorrelation function (ACF) $\{\rho_k\}$
- ▶ partial autocorrelation function (PACF) $\{\rho_{kk}\}$

Sample counterparts

- sample mean
- \triangleright sample autocovariance function $\{c_k\}$
- ▶ sample ACF {r_k}
- ▶ sample PACF {r_{kk}}

Practical recommendation: n > 50, k < n/4