Week 5:

Transformation of time series,
Tests of randomness



Transformations of Time Series
Aim: achieve normality and constant variance
» most of the methods assume that
Yy=Th+Si+E, EE =0, VarE =o°=const

and optimality for normal E;
» prediction intervals: normality
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~ find transformation g such that g(Y;) satisfies the conditions
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g}\(y — A K # )
log(y +¢), A=0.
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Box—Cox

(y+o)*—1 N£0
)= A #9
log(y +¢), A=0.
and use
Y =g\(Y)
for a suitable \ and a suitable ¢
> g, continuous in A

» if you intend to fit a regression model ~ it suffices to take
(Yi+c)rfora>0

Parameters:
» ¢ >0suchthat Y;+¢ >0

» How to find \?

» profile maximum likelihood
> approximate methods



Box—Cox profile likelihood
Assume that there exists A such that g,(Y;:) are independent for
t=1,...,Tand N

1

YA —
gA(¥i) =~ ~ N(ur,0?)

where either yi; = Tr; or iy = Try + S; modelled by a regression model.
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Box—Cox profile likelihood
Assume that there exists A such that g,(Y;:) are independent for

t=1,...,Tand
A1

Y,
oA (Ye) = ~5— ~ N(ur,0%)

where either yi; = Tr; or iy = Try + S; modelled by a regression model.
— derive the density of Y; (use the transformation theorem)

1 1
log fy,(y) = — 5 log(2m0?) — 5 (az(¥) — )® + (A — 1) log y
2 20
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Box—Cox profile likelihood
Assume that there exists A such that g,(Y;:) are independent for

t=1,...,Tand
A1

Y,
oA (Ye) = ~5— ~ N(ur,0%)

where either yi; = Tr; or iy = Try + S; modelled by a regression model.
— derive the density of Y; (use the transformation theorem)

1 1
log fy,(y) = —3 log(2702) — 5 5(gr(y) — u)? + (A — 1) logy
— independence ~- log-likelihood
I\, B,0%) = consz‘—éloga 2 55 Z (ga(Ye)— )24+ (A—1 Zlog Y:
— profile likelihood

I(\) = gix I(\, B,0°%) = const — > Iog SSe(A -1) Z log Y:



Box—Cox profile likelihood

Residuals

> minY;=—-093~c=1,MLE ~ A=02~ g(¥;) = (Y; +1)"/°

> analyze {g(Y:)} ~ prediction interval for g( Y1) ~~ prediction
interval for Y, 4



Approximate methods for A

Let Y be a random variable. Taylor expansion of g:
a(Y)~9(EY) +g'(EY)(Y - EY)

SO
Varg(Y) ~ [¢'(EY)]2Var Y = k2 = const



Approximate methods for A

Let Y be a random variable. Taylor expansion of g:

a(Y) = g(EY)+g'(EY)(Y —EY)

SO
Varg(Y) ~ [¢'(EY)]2Var Y = k2 = const
For g:
AW =y
SO

(EY)2A=DVar Y ~ k2
VVarY ~ k(EY)'—*

And similar relationship should be observed for the sample
counterparts (SD and MEAN)



Approximate methods for A (cont.)
1. divide data into J segments of the same length
2. compute sy(j), Y(j)forj=1,...,Jfrom Y; + ¢
3. plot (Y(j), sy(j)) and try to determine approximate \ from

sy(j) ~ k- (Y()' ™

for some k > 0
4. typically one takes A € {0,1,1/2,—-1/2}

MEAN
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Approximate methods for A (cont.)

sy(j) = k- (Y(j)'
log[sy (j)] ~ log k + (1 — ) log[ Y (j)]
~ plot points
(1o (). loglsv ()]

and 1 — )\ is the regression slope



Approximate methods for A (cont.)

sy(j) = k- (Y(j)'
log[sy (j)] ~ log k + (1 — ) log[ Y (j)]
~ plot points
(10g[Y ()], loglsv (1))

and 1 — )\ is the regression slope

log(SD)
15 2.0 25 3.0 35 4.0

log(MEAN)

A=1-0.77=0.23



Pros and cons of Box-Cox

Pros + Cons —
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Pros +

» prediction intervals with exact
coverage

> exact statistical tests (if other
assumptions satisfied)

» some procedures optimal
under normality

Cons —
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Pros and cons of Box-Cox

Pros + Cons —

» prediction intervals with exact » point prediction typically
coverage biased

> exact statistical tests (if other > except special cases A =0, 1
assumptions satisfied) no interpretation for the

parameters (slope etc) in

» some procedures optimal
terms of Y;

under normality

Most popular transformations
< A = 1: no transformation
— X = 0: log transformation



Tests of randomness



Tests of randomness

Hy : Y; ~iid

against
H; : either Y; not independent, or Y; not id

Why?
» plot: no presence of any systematic component
> apply this on E, =Y — 7A'rt — §, — 6,

H, very broad ~ various tests
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Example Il

Air Passengers data: Y; = 1t + ;% ; - I(month; = j) + E;

Log of monthly number of passangers Residuals for AirPassengers data
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Example lll: Is my pseudo random generator good?
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Setting

Data Yi,..., Y,
For simplicity: Y; # Yi—4 for all t (no ties allowed)
(Is it restrictive?)



Setting

Data Yi,..., Y,
For simplicity: Y; # Yi—4 for all t (no ties allowed)
(Is it restrictive?)

Discussed tests:

1. based on signs of differences
based on turning points
based on runs (median test)
based on Kendall’s tau
based on Spearman’s rho
tools based on ACF

o0k wn

Discussion: Usefulness of such tests?



1. Test Based on Signs of Differences

1 Y < Vi
Vi =
0 Yi> Y

Then
n—1
Kn=> Vi
t=1
is the number of points of growth.

Idea of the test: Reject if K, differs "too much” from its expectation
under Hy (i.e. K, "too extreme”)
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1. Test Based on Signs of Differences

1 Y < Vi
Vi =
0 Yi> Y

Then
n—1
Kn=> Vi
t=1
is the number of points of growth.

Idea of the test: Reject if K, differs "too much” from its expectation
under Hy (i.e. K, "too extreme”)

— either exact or asymptotic distribution of K,

— K is a sum of (dependent) variables ~~ CLT might give us
asymptotics
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Moments of K,

n—1 n—1 n_1
EK,,:E;V,:;EV,: 5

because )
Vi = [ < Yioq] 209 Alt(1/2).



Moments of K,

n—1 n—1 n—1
EK,,:E;V,:;EV,: 5

because
Ho:lid

Vt = |[Y[ < Yt_1] Alt(1/2)

n—1 n—1
Var K, = Var (Z v,) => VarV;+2) > Cov(Vs, V)
t=1

t=1 s<t



Moments of K,

n—1 n—1
EK=ES V=S EV ="
t=1 t=1

because

Vi = [ < Yioq] 209 Alt(1/2).

n—1
Var K, = Var (Z v,) ZVar Vi+2) ) Cov(Vs, Vi)

t=1 s<t

If s+ 1 < t, then Vs and V; independent ~ Cov (Vg, V;) = 0.
If s+1=1t,then

Cov (V, V) = EI[Ys < Vo1 < Yool — ;0 1=

S0 1 2 +1
n-— n-— n
Var K, = 7] -2 THEEETI




Asymptotic distribution

It holds that
Ko —EK, K, — ”T“

VVarK, il

12

2 N(0,1).

— Justification: CLT for m-dependent processes.
— Equivalent versions of the test statistic

Test:

> Ui_q2 = reject Hy



2. Test Based on Turning Points

Vi — 1 Y <YL Ye> Y or Y > Y Y < Yo,
‘ 0 Yiei <Yi< Y 0rYig>VYe> Yy

and
n—1
Ro=>Y_Vi
t=2

the total number of upper and lower turning points

Idea of the test: Reject if R, differs "too much” from its expectation
under Hy (i.e. R, "too extreme”)

— tables for exact distribution exist
— R, asymptotically normal (again use CLT for m-dependent)
— we need to computed ER,, Var R,



Moments of R,

Now

Vi = [Yiq < Y5, Y > Yipr OF Yioq > Y3, Y < Yieq] 787 AlR(2/3),
SO |
e
_ _2(n-2)
ER, =) EVi= T

t=2

Similar computations as for K, give

16n— 29

VarR, = 90

Test:
|R, — ERy|

v/Var R,

> Ui_q2 = reject Ho



3. Test Based on Runs (Median Test)

» M medianof Yq,..., Y,
» U, is number of runs

Time

Idea of the test: Reject if U, "too extreme”



lllustration




Asymptotic distribution

It is possible to show

m(m—1)

EUn:m+1’ Va.rUn:m7

where m= ", 1[Y; > M] (m = n/2if n even), and

Reject if



Simulations

IID: Y; ~iid N(0O, 1),
AR: Y;=06" Y4 +¢; eiid N(O, 1),

LT: Y, = %t+5,, e, iid N(0, 1),

t
RW: Y= &, eiid N(0,0.57),
i=1

N = 1000 replications ~~ percentage of rejection



Simulations

ID: Y; ~ iid N(0, 1),

AR: Y;=06"Y;_ {1 + ¢y,

LT: Y, = %Hs,, eciid N0, 1),

t
RW: Y= &, eiid N(0,0.57),

i=1

N = 1000 replications ~» percentage of rejection

e iid N0, 1),

Kn Ry Un
n| 50 100 200 | 50 100 200 50 100 200
IID 5 4 5 6 5 6 6 5 6
AR 6 5 6 | 43 67 91 79 96 100
LT 7 6 6 6 6 5 58 85 99
RW |24 25 27|78 95 100 | 100 100 100

~+ back to the critics of the tests....



x3

1D

x2

Time

Linear Trend

x4

Time

20 40 60 80 100
Time
Random Walk
T T T T T
20 40 60 80 100
Time




Kendall's 7 and Spearman’s p

Consider iid random vectors
Us Uy
Vi) \ Wy
> Pearson’s correlation p = cor(U;, V;) estimated by

Z?ﬂ (Ui - Un)( Vi — Vn)
VI U= U2 S (V- Vo2

» Kendall’'s T=P(U < V) -P(U > V)

5=

estimated by
Fo_ 2 1)ngn (Ui — Ujsgn(V; — V)

n(n—1) 45

» Spearman’s p
ps = cor (Fy(U;), Fy(V))
estimated by

R —R,)(S - S, 6 1
ZI 1( )( ) —1— 1)2(,?]*3/)27

¢z, (R~ Ro)2 /S04 (S~ Bn)2

where R; and S; are ranks of U; and V; respectively.
» U;and V;independent ~» p=7=pg=0




4. and 5. Tests Based on 7 and pg

Idea of the test: Compute correlation between U; = Y;and V; =i

\1)

1)ngnY Y)) ZI(Y Y)),

5321_76 )Z(H’,_i)2

2(n _
n?(n—1 —
where Ry,...,Ryareranks of Yq,..., Y,

Asymptotic tests: Compare

‘A| R

v vn—1

2(2n+5) or n |PS|
9n(n—1)

with uy_, /2, and reject for large values



Simulations

N = 1000 replications ~~ percentage of rejection of Hy

T ps

n| 50 100 200 | 50 100 200
11D 5 5 6 5 5 6
AR| 3 29 33| 34 30 33
LT | 100 100 100 | 100 100 100
RW| 81 85 90| 8 85 91




Graphical tools

> plot
> suitable graphical tools from regression
> tools based on sample ACF of {Y;}



Graphical tools

> plot
> suitable graphical tools from regression
> tools based on sample ACF of {Y;}

Course Stoch. processes Il: {Y;} random proces

» ACF
pk = cor( Yy, Yeik)

If {Y¢}iid ~ px =0 for k #0

» sample ACF

P (Ve = Vi) (Yesk = Vi)
>t (Yo = Yn)?

If {Y;} iid ~ /e 2 N(0,1), i.e. re ~ N(0,1/n) for large n




Sample ACF

ACF
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Sample ACF

ACF
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Portmanteau tests
Box-Pierce, Ljung- Box, Q-test

Idea of the test:

— fix K

— If { Yy} iid, then /nry, ..., \/nrx asymptotically N(0, 1) and
independent
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and it should be asymptotically x%
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Test: Reject if Q > qx.1-, for gi—. quantile of x%



Portmanteau tests
Box-Pierce, Ljung- Box, Q-test

Idea of the test:
— fix K

— If { Yy} iid, then /nry, ..., \/nrx asymptotically N(0, 1) and
independent
— Take

K
Q=n> rg
k=1
and it should be asymptotically x%

Test: Reject if Q > qx.1-, for gi—. quantile of x%

Small sample improvement:

K 2

,

Q =n(n+2)> —*k
k=1 n—k

If {Y:} are residuals from an ARMA model ~~ modify the degrees of
freedom




Box-Jenkins methodology



Box-Jenkins methodology

» AutoRegressive Integrated Moving Average (ARIMA) models
» 1970s, popularized by Box and Jenkins
> rely on autocorrelation patterns in the data

Gwilym M. Jenkins
1932 — 1982

George E. P. Box
1919 - 2013



Time series

—
| |
Stationary Non-stationary
T Non-seasonal
medets ARIMA models
MA models Seasonal

SARIMA models

ARMA models




Notions and definitions

Time series { Y;}

> strict stationarity
> (weak) stationarity
» white noise WN
> autocovariance function {~x}
» autocorrelation function (ACF) {px}
» partial autocorrelation function (PACF) {pk«}
Sample counterparts
> sample mean
» sample autocovariance function {cx}
» sample ACF {r}
» sample PACF {ri}

Practical recommendation: n > 50, k < n/4



