Week 11: ARCH and GARCH models

Volatility

 conditional variance (of e.g. underlying asset return) → not directly observable

Last week: General time series model

Let $\mathcal{F}_{t-1} = \sigma\{Y_s, s \leq t-1\}$ be information known up to time t-1

$$Y_t = \mu(\mathcal{F}_{t-1}) + \sigma(\mathcal{F}_{t-1})\varepsilon_t$$

with ε_t iid (0,1)

 $\hookrightarrow \mu(\mathcal{F}_{t-1})$ conditional mean $\mathsf{E}[Y_t|\mathcal{F}_{t-1}]$ Example of model for μ : AR(2) $\mu(\mathcal{F}_{t-1}) = \varphi_1 Y_{t-1} + \varphi_2 Y_{t-2}$

$$\hookrightarrow \sigma(\mathcal{F}_{t-1})^2$$
 volatility $\operatorname{Var}\left[Y_t|\mathcal{F}_{t-1}\right]$

Last week: General time series model

Let $\mathcal{F}_{t-1} = \sigma\{Y_s, s \leq t-1\}$ be information known up to time t-1

$$Y_t = \mu(\mathcal{F}_{t-1}) + \sigma(\mathcal{F}_{t-1})\varepsilon_t$$

with ε_t iid (0,1)

$$\hookrightarrow \mu(\mathcal{F}_{t-1})$$
 conditional mean $\mathsf{E}[Y_t|\mathcal{F}_{t-1}]$
Example of model for μ : AR(2) $\mu(\mathcal{F}_{t-1}) = \varphi_1 \, Y_{t-1} + \varphi_2 \, Y_{t-2}$

$$\hookrightarrow \sigma(\mathcal{F}_{t-1})^2$$
 volatility $\operatorname{Var}\left[Y_t|\mathcal{F}_{t-1}\right]$

Now focus on modelling
$$\sigma(\mathcal{F}_{t-1})^2$$
, so we consider $e_t = Y_t - \mu(\mathcal{F}_{t-1})$ \hookrightarrow then $E[e_t|\mathcal{F}_{t-1}] = 0$

and for s < t

$$\mathsf{Cov}\left(\textit{e}_{\textit{t}},\textit{e}_{\textit{s}}\right) = \mathsf{E}[\textit{e}_{\textit{t}}\textit{e}_{\textit{s}}] = \mathsf{E}[\mathsf{E}[\textit{e}_{\textit{t}}\textit{e}_{\textit{s}}|\mathcal{F}_{\textit{t}-1}] = \mathsf{E}[\textit{e}_{\textit{s}}\mathsf{E}[\textit{e}_{\textit{t}}|\mathcal{F}_{\textit{t}-1}] = 0$$

so $\{e_t\}$ uncorrelated, but with possibly non-constant conditional variance

$$\operatorname{Var}\left[e_{t}|\mathcal{F}_{t-1}\right] = \operatorname{Var}\left[Y_{t}|\mathcal{F}_{t-1}\right] = \sigma^{2}(\mathcal{F}_{t-1})$$

ARCH model by Engle (1982)

ARCH (autoregressive conditional heteroscedasticity)

ARCH(r) model:

$$\mathbf{e}_t = \sigma_t \varepsilon_t,$$

 $\sigma_t^2 = \alpha_0 + \alpha_1 \mathbf{e}_{t-1}^2 + \dots + \alpha_r \mathbf{e}_{t-r}^2$

where ε_t are iid

$$\mathsf{E}\varepsilon_t = \mathsf{0}, \quad \mathsf{Var}\,\varepsilon_t = \mathsf{1}$$

and

$$\alpha_0 > 0, \quad \alpha_1, \dots, \alpha_r \in [0, 1), \quad \sum_{i=1}^r \alpha_i < 1$$
 (A)

ARCH model by Engle (1982)

ARCH (autoregressive conditional heteroscedasticity)

ARCH(r) model:

$$\mathbf{e}_t = \sigma_t \varepsilon_t,$$

 $\sigma_t^2 = \alpha_0 + \alpha_1 \mathbf{e}_{t-1}^2 + \dots + \alpha_r \mathbf{e}_{t-r}^2$

where ε_t are iid

$$\mathsf{E}\varepsilon_t = \mathsf{0}, \quad \mathsf{Var}\,\varepsilon_t = \mathsf{1}$$

and

$$\alpha_0 > 0, \quad \alpha_1, \dots, \alpha_r \in [0, 1), \quad \sum_{i=1}^r \alpha_i < 1$$
 (A)

Example: ARCH(1):

$$e_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 e_{t-1}^2$$

large $e_{t-1}^2 \rightsquigarrow$ large conditional volatility of $e_t \rightsquigarrow$ larger uncertainty

Let $\mathcal{F}_t = \sigma\{e_s, s \leq t\}$

▶ If (A) holds, then $\{e_t\}$ is weakly stationary

Let $\mathcal{F}_t = \sigma\{e_s, s \leq t\}$

- ▶ If (A) holds, then {e_t} is weakly stationary
- Mean:

$$\mathsf{E}[e_t|\mathcal{F}_{t-1}] = \mathsf{E}[\sigma_t \varepsilon_t | \mathcal{F}_{t-1}] = \sigma_t \mathsf{E}\varepsilon_t = 0$$

and so also

$$\mathsf{E} e_t = \mathsf{E} \mathsf{E} [e_t | \mathcal{F}_{t-1}] = 0$$

Let $\mathcal{F}_t = \sigma\{e_s, s \leq t\}$

- ▶ If (A) holds, then {e_t} is weakly stationary
- Mean:

$$\mathsf{E}[e_t|\mathcal{F}_{t-1}] = \mathsf{E}[\sigma_t \varepsilon_t | \mathcal{F}_{t-1}] = \sigma_t \mathsf{E}\varepsilon_t = 0$$

and so also

$$\mathsf{E} e_t = \mathsf{E} \mathsf{E} [e_t | \mathcal{F}_{t-1}] = 0$$

Conditional variance

$$\operatorname{Var}\left[e_{t}|\mathcal{F}_{t-1}\right] = \operatorname{Var}\left[\sigma_{t}\varepsilon_{t}|\mathcal{F}_{t-1}\right] = \sigma_{t}^{2}$$

and unconditional variance

$$\operatorname{Var} e_t = \mathsf{E}(\sigma_t^2) o \operatorname{Var} e_t = \frac{\alpha_0}{1 - \alpha_1 - \ldots - \alpha_r}$$

Let
$$\mathcal{F}_t = \sigma\{e_s, s \leq t\}$$

- ▶ If (A) holds, then $\{e_t\}$ is weakly stationary
- Mean:

$$\mathsf{E}[e_t|\mathcal{F}_{t-1}] = \mathsf{E}[\sigma_t \varepsilon_t | \mathcal{F}_{t-1}] = \sigma_t \mathsf{E}\varepsilon_t = 0$$

and so also

$$\mathsf{E} e_t = \mathsf{E} \mathsf{E} [e_t | \mathcal{F}_{t-1}] = 0$$

Conditional variance

$$\operatorname{Var}\left[e_{t}|\mathcal{F}_{t-1}\right] = \operatorname{Var}\left[\sigma_{t}\varepsilon_{t}|\mathcal{F}_{t-1}\right] = \sigma_{t}^{2}$$

and unconditional variance

$$\operatorname{Var} e_t = \mathsf{E}(\sigma_t^2) o \operatorname{Var} e_t = rac{lpha_0}{1 - lpha_1 - \ldots - lpha_r}$$

▶ Covariance for s < t</p>

$$\mathsf{Cov}\left(\textit{e}_{\textit{t}},\textit{e}_{\textit{s}}\right) = \mathsf{E}\textit{e}_{\textit{t}}\textit{e}_{\textit{s}} = \mathsf{E}[\mathsf{E}[\textit{e}_{\textit{t}}\textit{e}_{\textit{s}}|\mathcal{F}_{\textit{t}-1}]] = \mathsf{E}[\textit{e}_{\textit{s}}\mathsf{E}[\textit{e}_{\textit{t}}|\mathcal{F}_{\textit{t}-1}]] = \mathsf{0}$$

Let $\mathcal{F}_t = \sigma\{e_s, s \leq t\}$

- ▶ If (A) holds, then {e_t} is weakly stationary
- Mean:

$$\mathsf{E}[e_t|\mathcal{F}_{t-1}] = \mathsf{E}[\sigma_t \varepsilon_t | \mathcal{F}_{t-1}] = \sigma_t \mathsf{E}\varepsilon_t = 0$$

and so also

$$\mathsf{E} e_t = \mathsf{E} \mathsf{E} [e_t | \mathcal{F}_{t-1}] = 0$$

Conditional variance

$$\operatorname{Var}\left[e_{t}|\mathcal{F}_{t-1}\right] = \operatorname{Var}\left[\sigma_{t}\varepsilon_{t}|\mathcal{F}_{t-1}\right] = \sigma_{t}^{2}$$

and unconditional variance

$$\operatorname{Var} e_t = \mathsf{E}(\sigma_t^2) \to \operatorname{Var} e_t = \frac{\alpha_0}{1 - \alpha_1 - \ldots - \alpha_r}$$

Covariance for s < t</p>

$$\mathsf{Cov}\left(e_{t},e_{s}\right) = \mathsf{E}e_{t}e_{s} = \mathsf{E}[\mathsf{E}[e_{t}e_{s}|\mathcal{F}_{t-1}]] = \mathsf{E}[e_{s}\mathsf{E}[e_{t}|\mathcal{F}_{t-1}]] = 0$$

 $\{e_t\}$ is a white noise process of dependent variables with volatility σ_t^2

AR representation

See that

$$e_t^2 = \sigma_t^2 \varepsilon_t^2 = \sigma_t^2 + \underbrace{\sigma_t^2 (\varepsilon_t^2 - 1)}_{u_t} = \alpha_0 + \alpha_1 e_{t-1}^2 + \dots + \alpha_r e_{t-r}^2 + u_t$$

where

$$\mathsf{E} u_t = \mathsf{E} \sigma_t^2 (\varepsilon_t^2 - 1) = 0$$

and they are uncorrelated

 $\rightsquigarrow \{e_t^2\}$ follows an AR(r) model

AR representation

See that

$$e_t^2 = \sigma_t^2 \varepsilon_t^2 = \sigma_t^2 + \underbrace{\sigma_t^2 (\varepsilon_t^2 - 1)}_{u_t} = \alpha_0 + \alpha_1 e_{t-1}^2 + \dots + \alpha_r e_{t-r}^2 + u_t$$

where

$$\mathsf{E} u_t = \mathsf{E} \sigma_t^2 (\varepsilon_t^2 - 1) = 0$$

and they are uncorrelated

 $\rightsquigarrow \{e_t^2\}$ follows an AR(r) model

Practical consequence: Look at ACF and PACF of $\{e_t^2\}$ if ARCH(r) model suitable.

Distribution of ε_t

- \hookrightarrow recall that $\mathsf{E}\varepsilon_t = \mathsf{0}$, $\mathsf{Var}\,\varepsilon_t = \mathsf{1}$
- - ▶ normal N(0, 1)
 - **standardized** t_{ν} with $\nu > 2$:

if
$$Z \sim t_{\nu} \leadsto \mathsf{E} Z = 0$$
, $\operatorname{Var} Z = \frac{\nu}{\nu-2} \leadsto \varepsilon = \sqrt{\frac{(\nu-2)}{\nu}} \cdot Z$ satisfies $\mathsf{E} \varepsilon = 0$ and $\operatorname{Var} \varepsilon = 1$

Distribution of ε_t

- \hookrightarrow recall that $\mathsf{E}\varepsilon_t=0$, $\mathsf{Var}\,\varepsilon_t=1$
- \hookrightarrow distribution typically assumed to be
 - ▶ normal N(0, 1)
 - standardized t_{ν} with $\nu > 2$:

if
$$Z \sim t_{\nu} \rightarrow EZ = 0$$
, $\operatorname{Var} Z = \frac{\nu}{\nu - 2} \rightsquigarrow \varepsilon = \sqrt{\frac{(\nu - 2)}{\nu}} \cdot Z$ satisfies $\mathsf{E} \varepsilon = 0$ and $\operatorname{Var} \varepsilon = 1$

 \hookrightarrow even if $\varepsilon_t \sim N(0,1) \rightsquigarrow e_t$ NOT normal kurtosis for ARCH(1)

$$\frac{\mathsf{E}e_t^4}{(\mathsf{Var}\,e_t)^2} = \frac{3(1-\alpha_1^2)}{1-3\alpha_1^2} > 3$$

and it is finite only if $\alpha_1^2 < 1/3 \rightarrow$ leptokurtic (heavy-tailed) distribution \rightarrow more "outliers"

Example: Simulated data

ARCH(1): $e_t = \sigma_t \varepsilon_t$, $\sigma_t^2 = 0.1 + 0.3 e_{t-1}^2$, n = 1000, $\varepsilon_t \sim N(0, 1)$

Illustration: heavy tails

Example: Simulated data II.

ARCH(1): $e_t = \sigma_t \varepsilon_t$, $\sigma_t^2 = 0.1 + 0.3e_{t-1}^2$, n = 1000, ε_t standardized t_5

Illustration: heavy tails for *t* innovations

ARCH model is suitable for series which

- → are uncorrelated
- \hookrightarrow their squares e_t^2 exhibit correlation as an AR series

Setting: Consider data e_1, \ldots, e_n from a series $\{e_t\}$

Check that {e_t} is uncorrelated: ACF and PACF
 If not → fit an ARMA model first and then continue with residuals

ARCH model is suitable for series which

- → are uncorrelated
- \hookrightarrow their squares e_t^2 exhibit correlation as an AR series

Setting: Consider data e_1, \ldots, e_n from a series $\{e_t\}$

- Check that {e_t} is uncorrelated: ACF and PACF
 If not → fit an ARMA model first and then continue with residuals
- 1. Choose the model order: correlogram for e_t^2 (it follows AR(r))

ARCH model is suitable for series which

- → are uncorrelated
- \rightarrow their squares e_t^2 exhibit correlation as an AR series

Setting: Consider data e_1, \ldots, e_n from a series $\{e_t\}$

- Check that {e_t} is uncorrelated: ACF and PACF
 If not → fit an ARMA model first and then continue with residuals
- 1. Choose the model order: correlogram for e_t^2 (it follows AR(r))
- 2. Estimate the model parameters
 - \hookrightarrow maximum likelihood requires assumption on distribution of ε_t
 - → Gaussian quasi-maximum likelihood method

ARCH model is suitable for series which

- → are uncorrelated
- \hookrightarrow their squares e_t^2 exhibit correlation as an AR series

Setting: Consider data e_1, \ldots, e_n from a series $\{e_t\}$

- Check that {e_t} is uncorrelated: ACF and PACF
 If not → fit an ARMA model first and then continue with residuals
- 1. Choose the model order: correlogram for e_t^2 (it follows AR(r))
- 2. Estimate the model parameters
 - \hookrightarrow maximum likelihood requires assumption on distribution of ε_t
 - → Gaussian quasi-maximum likelihood method
- Model verification.

Gaussian (normal) MLE

Let e_1, \ldots, e_n be observed data and assume $\varepsilon_t \sim N(0, 1)$

Then for $t \ge r + 1$

$$e_t | \mathcal{F}_{t-1} \sim \mathsf{N}(0, \sigma_t^2)$$

and the joint density of e_{r+1}, \ldots, e_n given e_1, \ldots, e_r is

$$\prod_{t=r+1}^{n} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{e_t^2}{2\sigma_t^2}\right\}$$

(use the same derivation as for an ARMA)

Gaussian (normal) MLE

Let e_1, \ldots, e_n be observed data and assume $\varepsilon_t \sim N(0, 1)$

Then for $t \ge r + 1$

$$e_t | \mathcal{F}_{t-1} \sim \mathsf{N}(0, \sigma_t^2)$$

and the joint density of e_{r+1}, \ldots, e_n given e_1, \ldots, e_r is

$$\prod_{t=r+1}^{n} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{e_t^2}{2\sigma_t^2}\right\}$$

(use the same derivation as for an ARMA)

The log-likelihood is

$$\ell(\alpha) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{t=r+1}^{n} \left[\log(\sigma_t^2) + \frac{e_t^2}{\sigma_t^2}\right]$$

where

$$\sigma_t^2 = \sigma_t^2(\alpha) = \alpha_0 + \alpha_1 e_{t-1}^2 + \dots + \alpha_r e_{t-r}^2.$$

Gaussian (normal) MLE

Let e_1, \ldots, e_n be observed data and assume $\varepsilon_t \sim N(0, 1)$

Then for t > r + 1

$$e_t | \mathcal{F}_{t-1} \sim \mathsf{N}(0, \sigma_t^2)$$

and the joint density of e_{r+1}, \ldots, e_n given e_1, \ldots, e_r is

$$\prod_{t=r+1}^{n} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{e_t^2}{2\sigma_t^2}\right\}$$

(use the same derivation as for an ARMA)

The log-likelihood is

$$\ell(\alpha) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{t=r+1}^{n} \left[\log(\sigma_t^2) + \frac{\boldsymbol{e}_t^2}{\sigma_t^2}\right]$$

where

$$\sigma_t^2 = \sigma_t^2(\alpha) = \alpha_0 + \alpha_1 e_{t-1}^2 + \dots + \alpha_r e_{t-r}^2.$$

Then

$$\widehat{\alpha}_n = \operatorname{argmax}_{\alpha} \, \ell(\alpha) = \operatorname{argmin}_{\alpha} \sum_{t=t+1}^n \left[\log(\sigma_t^2) + \frac{e_t^2}{\sigma_t^2} \right]$$

Other estimations

- ▶ MLE with different distributional assumption for ε_t
 - $ightharpoonup \varepsilon_t \sim \text{standardized } t_{\nu},$
 - **>** possibility to estimate ν together with α
- Gaussian quasilikelihood estimation (QML):
 - take

$$\widehat{\alpha}_n = \operatorname{argmin}_{\alpha} \sum_{t=r+1}^n \left[\log(\sigma_t^2) + \frac{e_t^2}{\sigma_t^2} \right]$$

- even though we know that the normality assumption might not hold
- ▶ such QML estimator is consistent and asymptotically normal under very general conditions ($\text{E}\varepsilon_t^4 < \infty$)
- valid standard errors and possibility for testing

Model verification and predictions

For ARCH(r) fitted to e_1, \ldots, e_n

- 1. compute $\hat{\sigma}_t^2$ sequentially using the estimated parameters
- 2. compute

$$\widetilde{\mathbf{e}}_t = \frac{\mathbf{e}_t}{\widehat{\sigma}_t}$$

- 3. check ACF and PACF for $\{\widetilde{e}_t^2\}$, possibly apply Q-test (portmanteau test of Ljung-Box) for ACF of \widetilde{e}_t^2
- distributional assumptions can be checked by histograms, QQ-plots

Example

Continue with the simulated data $\{e_t\}$

→ fitted ARCH(1) model

$$\sigma_t^2 = 0.092 + 0.294e_{t-1}^2$$

Example: Verification

GARCH model

GARCH(r, s)

$$e_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^r \alpha_i e_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

where ε_t are iid with $\mathsf{E}\varepsilon_t=0$ and $\mathsf{Var}\,\varepsilon_t=1$ and

$$\alpha_0 > 0, \quad \alpha_i \ge 0, \quad \beta_j \ge 0, \quad \sum_{i=1}^r \alpha_i + \sum_{j=1}^s \beta_j < 1$$
 (G)

- ▶ if (G) holds then $\{e_t\}$ is weakly stationary
- model GARCH(1,1)

$$e_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 e_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

the most popular: only 3 parameters, but capable of modelling general volatility

Properties of GARCH(r,s)

► Mean:

$$\mathsf{E}(\boldsymbol{e}_t|\mathcal{F}_{t-1}) = \sigma_t \mathsf{E}(\varepsilon_t|\mathcal{F}_{t-1}) = 0$$

and

$$\mathsf{E}(\boldsymbol{e}_t) = \mathsf{E}[\mathsf{E}(\boldsymbol{e}_t|\mathcal{F}_{t-1})] = \mathsf{E}[\sigma_t \mathsf{E}(\varepsilon_t|\mathcal{F}_{t-1})] = 0$$

Properties of GARCH(r,s)

► Mean:

$$\mathsf{E}(\boldsymbol{e}_t|\mathcal{F}_{t-1}) = \sigma_t \mathsf{E}(\varepsilon_t|\mathcal{F}_{t-1}) = 0$$

and

$$\mathsf{E}(e_t) = \mathsf{E}[\mathsf{E}(e_t|\mathcal{F}_{t-1})] = \mathsf{E}[\sigma_t \mathsf{E}(\varepsilon_t|\mathcal{F}_{t-1})] = 0$$

Variance:

$$\operatorname{Var}\left[\boldsymbol{e}_{t}|\mathcal{F}_{t-1}\right] = \sigma_{t}^{2}$$

stationarity ~>

$$\operatorname{Var} \boldsymbol{e}_t = \operatorname{E} \sigma_t^2 = \operatorname{E} \left(\alpha_0 + \sum_{i=1}^r \alpha_i \boldsymbol{e}_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2 \right)$$

and so

$$\operatorname{Var} e_t = \frac{\alpha_0}{1 - \sum_{i=1}^r \alpha_i - \sum_{j=1}^s \beta_j}.$$

Properties of GARCH(r,s)

Mean:

$$\mathsf{E}(e_t|\mathcal{F}_{t-1}) = \sigma_t \mathsf{E}(\varepsilon_t|\mathcal{F}_{t-1}) = 0$$

and

$$\mathsf{E}(e_t) = \mathsf{E}[\mathsf{E}(e_t|\mathcal{F}_{t-1})] = \mathsf{E}[\sigma_t \mathsf{E}(\varepsilon_t|\mathcal{F}_{t-1})] = 0$$

Variance:

$$\operatorname{Var}\left[\boldsymbol{e}_{t}|\mathcal{F}_{t-1}\right] = \sigma_{t}^{2}$$

stationarity <>>

$$\operatorname{Var} \boldsymbol{e}_t = \operatorname{E} \sigma_t^2 = \operatorname{E} \left(\alpha_0 + \sum_{i=1}^r \alpha_i \boldsymbol{e}_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2 \right)$$

and so

$$\operatorname{Var} e_t = \frac{\alpha_0}{1 - \sum_{i=1}^{r} \alpha_i - \sum_{i=1}^{s} \beta_i}.$$

covariance

$$\mathsf{E}\varepsilon_{t}\varepsilon_{s}=\mathsf{0}$$

 $\rightsquigarrow \{e_t\}$ is a white noise

ARMA representation for $\{e_t^2\}$

$$e_t^2 = \sigma_t^2 \varepsilon_t^2 = \sigma_t^2 + \underbrace{\sigma_t^2 (\varepsilon_t^2 - 1)}_{t}$$

and so $\sigma_{t-i}^2 = e_{t-i}^2 - u_{t-j}$ and

$$\begin{aligned} \mathbf{e}_{t}^{2} &= \alpha_{0} + \sum_{i=1}^{r} \alpha_{i} \mathbf{e}_{t-i}^{2} + \sum_{j=1}^{s} \beta_{j} \sigma_{t-j}^{2} + u_{t} \\ &= \alpha_{0} + \sum_{i=1}^{r} \alpha_{i} \mathbf{e}_{t-i}^{2} + \sum_{j=1}^{s} \beta_{j} (\mathbf{e}_{t-j}^{2} - u_{t-j}) + u_{t} \\ &= \alpha_{0} + \sum_{i=1}^{\max\{r,s\}} (\alpha_{i} + \beta_{i}) \mathbf{e}_{t-i}^{2} - \sum_{i=1}^{s} \beta_{j} u_{t-j} + u_{t} \end{aligned}$$

 \rightsquigarrow ARMA(max{r, s}, s) with noise { u_t }

Construction

- Choose model orders typically try/use GARCH(1,1)
- 2. Estimate parameters as

$$(\widehat{\alpha}_n, \widehat{\beta}_n) = \operatorname{argmin}_{\alpha, \beta} \sum_{t=t+1}^n \left[\log(\sigma_t^2) + \frac{e_t^2}{\sigma_t^2} \right],$$

where $\sigma_t^2 = \sigma_t^2(\alpha, \beta)$ are computed recursively with some initial setting (e.g. $\sigma_1 = \cdots = \sigma_s = 0$)

3. Model verification = same as for ARCH

Consider data e_1, \ldots, e_n from GARCH(1,1)

$$e_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 e_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

1. estimate the model parameters $\widehat{\alpha}_0,\widehat{\alpha}_1,\widehat{\beta}_1$ and computed sequentially

$$\widehat{\sigma}_t^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 e_{t-1}^2 + \widehat{\beta}_1 \widehat{\sigma}_{t-1}^2$$

for t = 2, ..., n and some initial $\hat{\sigma}_1^2$

Consider data e_1, \ldots, e_n from GARCH(1,1)

$$e_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 e_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

1. estimate the model parameters $\widehat{\alpha}_0,\widehat{\alpha}_1,\widehat{\beta}_1$ and computed sequentially

$$\widehat{\sigma}_t^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 e_{t-1}^2 + \widehat{\beta}_1 \widehat{\sigma}_{t-1}^2$$

for t = 2, ..., n and some initial $\hat{\sigma}_1^2$

1 step ahead volatility prediction

$$\widehat{\sigma}_{n+1}^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 e_n^2 + \widehat{\beta}_1 \widehat{\sigma}_n^2$$

Consider data e_1, \ldots, e_n from GARCH(1,1)

$$e_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 e_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

1. estimate the model parameters $\widehat{\alpha}_0,\widehat{\alpha}_1,\widehat{\beta}_1$ and computed sequentially

$$\widehat{\sigma}_t^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 e_{t-1}^2 + \widehat{\beta}_1 \widehat{\sigma}_{t-1}^2$$

for t = 2, ..., n and some initial $\hat{\sigma}_1^2$

2. 1 step ahead volatility prediction

$$\widehat{\sigma}_{n+1}^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 \textbf{\textit{e}}_n^2 + \widehat{\beta}_1 \widehat{\sigma}_n^2$$

3. for k > 1: $\sigma_{n+k}^2 = \alpha_0 + \alpha_1 e_{n+k-1}^2 + \beta_1 \sigma_{n+k-1}^2$ and

$$e_{n+k-1}^2 = \sigma_{n+k-1}^2 \varepsilon_{n+k-1}^2 = \sigma_{n+k-1}^2 + \sigma_{n+k-1}^2 (\varepsilon_{n+k-1}^2 - 1)$$

Consider data e_1, \ldots, e_n from GARCH(1,1)

$$e_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 e_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

1. estimate the model parameters $\widehat{\alpha}_0,\widehat{\alpha}_1,\widehat{\beta}_1$ and computed sequentially

$$\widehat{\sigma}_t^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 \mathbf{e}_{t-1}^2 + \widehat{\beta}_1 \widehat{\sigma}_{t-1}^2$$

for t = 2, ..., n and some initial $\hat{\sigma}_1^2$

2. 1 step ahead volatility prediction

$$\widehat{\sigma}_{n+1}^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 \mathbf{e}_n^2 + \widehat{\beta}_1 \widehat{\sigma}_n^2$$

3. for k > 1: $\sigma_{n+k}^2 = \alpha_0 + \alpha_1 e_{n+k-1}^2 + \beta_1 \sigma_{n+k-1}^2$ and

$$e_{n+k-1}^2 = \sigma_{n+k-1}^2 \varepsilon_{n+k-1}^2 = \sigma_{n+k-1}^2 + \sigma_{n+k-1}^2 (\varepsilon_{n+k-1}^2 - 1)$$

so $E[e_{n+k-1}^2 | \mathcal{F}_n] = \sigma_{n+k-1}^2$ and

$$\widehat{\sigma}_{n+k}^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 \underbrace{\widehat{e}_{n+k-1}^2}_{\widehat{\sigma}_{n+k-1}^2} + \widehat{\beta}_1 \widehat{\sigma}_{n+k-1}^2 = \widehat{\alpha}_0 + (\widehat{\alpha}_1 + \widehat{\beta}_1) \widehat{\sigma}_{n+k-1}^2$$

Consider data $Y_1, ..., Y_n$ from a stationary series $\{Y_t\}$ 1. Fit an ARMA(p, q) model to $Y_1, ..., Y_n$.

- 1. Fit an ARMA(p, q) model to Y_1, \ldots, Y_n .
- 2. Compute residuals $\{e_t\}$ and verify white noise assumptions.

- 1. Fit an ARMA(p, q) model to Y_1, \ldots, Y_n .
- 2. Compute residuals $\{e_t\}$ and verify white noise assumptions.
- 3. Check ACF and PACF of $\{e_t^2\}$. If some important correlations \leadsto model volatility

- 1. Fit an ARMA(p, q) model to Y_1, \ldots, Y_n .
- 2. Compute residuals $\{e_t\}$ and verify white noise assumptions.
- 3. Check ACF and PACF of $\{e_t^2\}$. If some important correlations \leadsto model volatility
- 4. Fit a suitable ARCH or GARCH model to $\{e_t\}$.

- 1. Fit an ARMA(p, q) model to Y_1, \ldots, Y_n .
- 2. Compute residuals $\{e_t\}$ and verify white noise assumptions.
- 3. Check ACF and PACF of $\{e_t^2\}$. If some important correlations \leadsto model volatility
- **4**. Fit a suitable ARCH or GARCH model to $\{e_t\}$.
- Predictions:
 - ▶ Use the fitted ARMA model for mean predictions of Y_{n+k} .
 - ▶ Use the fitted GARCH model for volatility predictions of Y_{n+k} .

Consider data Y_1, \ldots, Y_n from a stationary series $\{Y_t\}$

- 1. Fit an ARMA(p, q) model to Y_1, \ldots, Y_n .
- 2. Compute residuals $\{e_t\}$ and verify white noise assumptions.
- 3. Check ACF and PACF of $\{e_t^2\}$. If some important correlations \leadsto model volatility
- 4. Fit a suitable ARCH or GARCH model to $\{e_t\}$.
- Predictions:
 - ▶ Use the fitted ARMA model for mean predictions of Y_{n+k} .
 - ▶ Use the fitted GARCH model for volatility predictions of Y_{n+k} .

Note: ARMA and GARCH part can be estimated also simultaneously

Further reading

Book:

- ▶ 8.3.6 Various Modifications of GARCH Models
- ▶ 8.3.1 Historical Volatility and EWMA Models