Week 11: ARCH and GARCH
models



Volatility

= conditional variance (of e.g. underlying asset return) ~» not
directly observable
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Last week: General time series model
Let Fi_1 = o{Ys,s < t — 1} be information known up to time ¢ — 1

Y: = u(Fr_1) + o(Fr_1)etr
with e iid (0, 1)
— p(Fr—1) conditional mean E[Y;|Fi_1]
Example of model for u: AR(2) p(Fi—1) = 01 Yi—1 + 2 Yi2
— o(Fr_1)? volatility Var[Y¢|Fi_1]
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Now focus on modelling o(F;_1)?, so we consider e; = Y; — u(Ft_1)

— then
E[et|]-}_1] =0

andfors <t

Cov (e, es) = E[eres] = E[E[eres| Fr1] = E[esE[e|F; 1] =0

so {e;} uncorrelated, but with possibly non-constant conditional
variance

Var [e/| Fi_1] = Var[Yy| Fi_1] = 0?(Fi_1)



ARCH model by Engle (1982)

ARCH (autoregressive conditional heteroscedasticity)
ARCH(r) model:

€r = oty

atz = agp + o ef_1 + -+ a,etz_,

where ¢; are iid
Ee; =0, Vareg =1

and .
ap >0, a1,...,a,€][0,1), Za,-<1
i=1



ARCH model by Engle (1982)
ARCH (autoregressive conditional heteroscedasticity)
ARCH(r) model:

et = orey,

2 2 2
O't == Ozo +a1e[_1 + e +aret_r

where ¢; are iid
Ee; =0, Vareg =1

and ,
ap >0, ai,...,ar€]0,1), Za,-<1 (A)
i=1

Example: ARCH(1):
et = otet, O'? :()Zo+051e?_1

large €2_, ~ large conditional volatility of e; ~ larger uncertainty
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Properties
Let F; = o{es,s < t}
> If (A) holds, then {e;} is weakly stationary

> Mean:
E[e,|]-",_1] = E[Gt€t|f1_1] = O'tEEt =0

and so also
Eef = EE[e,|}',,1] =0

» Conditional variance
Var [et\}‘H] = Var [Ut€f|]:t,1] = 02‘2

and unconditional variance

Var e, = E(0? = il
ar e; (o7) — Vare; R ——
» Covariance for s < t
Cov (e, es) = Eeres = E[E[eres| Fi—1]] = E[esE[et| Fi—1]] =0

{e} is a white noise process of dependent variables with volatility o2



AR representation

See that
€ =022 =024 0%(c? —1)=ap+ €+ +,€ ,+ U
N———
ut
where

Eu =Eo?(2-1)=0

and they are uncorrelated

~~ {€?} follows an AR(r) model



AR representation

See that
e? :0,25-:% :0,2+012(6?7 1) :ao+a1e?_1 +~~~+a,e,2_,+ut
——

Ut

where
Eu =Eo?(2-1)=0
and they are uncorrelated

~~ {€?} follows an AR(r) model

Practical consequence: Look at ACF and PACF of {€?} if ARCH(r)
model suitable.



Distribution of &

— recall that Ee; = 0, Vare; = 1
— distribution typically assumed to be
» normal N(0, 1)
» standardized £, with v > 2:
if Z~t,~EZ=0,VarZ = -2 ~ e = /8 . Z satisfies Ee = 0
and Vare =1



Distribution of &

— recall that Ee; = 0, Vare; = 1
— distribution typically assumed to be
» normal N(0, 1)
> standardized t, with v > 2:
if Z~t,~EZ=0,VarZ = %, ~ ¢ = /2 . Z satisfies Ec = 0
and Vare =1
— even ife; ~ N(0,1) ~ e; NOT normal
kurtosis for ARCH(1)
Eef 3(1—a?)

= >3
(Var e;)? 1—3a2

and it is finite only if o5 < 1/3 ~ leptokurtic (heavy-tailed)
distribution ~~ more "outliers”



Example: Simulated data
ARCH(1): & = oer, 02 = 0.1 + 0.36% 4, n= 1000, & ~ N(0, 1)
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lllustration: heavy tails
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Example: Simulated data Il
ARCH(1): &1 = oyetr, 02 = 0.1 4+ 0.3€%_;, n = 1000, ¢, standardized #
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lllustration: heavy tails for t innovations

Sample Quantiles

Sample Quantiles

a;=0.2

o, =04

Sample Quantiles

Theoretical Quantiles

a,=0.6

Theoretical Quantiles

a;=0.8

Sample Quantiles

Theoretical Quantiles

Theoretical Quantiles



Building an ARCH model

ARCH model is suitable for series which
— are uncorrelated
— their squares €? exhibit correlation as an AR series

Setting: Consider data ey, ..., e, from a series {¢e;}

0. Check that {e;} is uncorrelated: ACF and PACF
If not ~~ fit an ARMA model first and then continue with residuals
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Building an ARCH model

ARCH model is suitable for series which
— are uncorrelated
— their squares €? exhibit correlation as an AR series

Setting: Consider data ey, ..., e, from a series {¢e;}

0. Check that {e;} is uncorrelated: ACF and PACF

If not ~ fit an ARMA model first and then continue with residuals
1. Choose the model order: correlogram for e? (it follows AR(r))
2. Estimate the model parameters

— maximum likelihood

requires assumption on distribution of &;

— Gaussian quasi-maximum likelihood method

3. Model verification.



Gaussian (normal) MLE
Let eq,..., e, be observed data and assume ¢; ~ N(0, 1)

Thenfort>r+1
et|Fi—1 ~ N(0,0?)

and the joint density of e,,1,..., e, given ey, ..., e/ is

- exp{ e?}
T o 2
t=r+1 y/2m0? 207

(use the same derivation as for an ARMA)
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n 1 e?
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Gaussian (normal) MLE
Let eq,..., e, be observed data and assume ¢; ~ N(0, 1)

Thenfort>r+1
et|Fi—1 ~ N(0,0?)

and the joint density of e,,1,..., e, given ey, ..., e/ is

n 1 e?
1 eo{ 57}
t=r+1 2770,2 207
(use the same derivation as for an ARMA)
The log-likelihood is

Ua) = _n log(2m) — 1 i {Iog(az) + eﬂ
2 2,4, g2
where
o2 =c(a)=ap+ 1€ ;4 ---+a,€,.
Then

n 2

~ 1 e
ap = argmax,, {(a) = argmin,, g {'03;(0:2) + tz]

o)

t=r+1 t



Other estimations

» MLE with different distributional assumption for ¢;
> ¢; ~ standardized t,,
> possibility to estimate v together with «
» Gaussian quasilikelihood estimation (QML):
> take
. 4 2 62
&, = argmin,, » |:|og(at )+ 0—'2}
t=r+1 t
even though we know that the normality assumption might not hold
> such QML estimator is consistent and asymptotically normal under
very general conditions (Ecf < o)
> valid standard errors and possibility for testing



Model verification and predictions

For ARCH(r) fitted to ey, ..., €y
1. compute 52 sequentially using the estimated parameters
2. compute
~ (5
e = —
Ot
3. check ACF and PACF for {€?}, possibly apply Q-test
(portmanteau test of Ljung-Box) for ACF of €?

4. distributional assumptions can be checked by histograms,
QQ-plots



Example

Continue with the simulated data {e;}

-1.0 0.0 1.0
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Time

~ fitted ARCH(1) model

02 =0.092 4 0.294¢€7 |



Example: Verification
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GARCH model

GARCH(r, s)
r S
e = ote, O'tz :OZO'FZOHG?_,"FZﬁjJ?_j
i—1 =

where ¢; are iid with Es; = 0 and Vare; = 1 and

r S
ag>0, >0, B>0, Y aj+» <1 (G)
i— =

> if (G) holds then {e;} is weakly stationary
» model GARCH(1,1)

2 2 2
et = o, 0f =ap+ 1651+ P1of_q

the most popular: only 3 parameters, but capable of modelling
general volatility



Properties of GARCH(r,s)

> Mean:
E(et“/—‘}_1) = UtE(€t|.Ft_1) =0

and
E(er) = E[E(et|Fi-1)] = E[o:E(et|Ft-1)] = 0



Properties of GARCH(r,s)

» Mean:
E(et‘f1_1) = UtE(€t|.Ft_1) =0
and
E(e:) = E[E(et|Ft-1)] = E[otE(e¢| Ft-1)] = 0
» Variance:

Var [e,|]—",_1] = 0'[2

stationarity ~~

i=1 j=1

r s
Vare; = Ecrt2 =E (Ozo + Za,-e,z_,- + Zﬁjatz—j)

and so
%)

1= ai— 27:1 B

Vare; =



Properties of GARCH(r,s)

> Mean:
E(et|Fi—1) = otE(et| Ft—1) =0
and
E(er) = E[E(&t|Ft-1)] = E[otE(ee| Fi-1)] = 0
» Variance:

Var [e,|]—",_1] = 0'[2

stationarity ~~

r s
Vare; = Ecrt2 =E (Ozo + Za,-e,z_,- + Zﬁjatz—j)

i=1 j=1

and so ao
Var e = .
r S
1T=2iai— Ej:‘I Bj
» covariance
Ecies =0

~ {et} is a white noise



ARMA representation for {€?}

e = ote; = o7 +07(ef — 1)
%,_/
ut

and so o7 ; = €7 ; — u_j and

e? :ao+2a,e, ,+Zﬂ,at j+ U
j=1
=g + Z Oz,'etz,,- + Z ,Bj(e,z,j — Ut,/') + Ut
i=1 j=1
max{r,s}

—O(O"‘ Z OZ/"‘ﬂ/ et, Zﬂ/“f}"‘“[

~ ARMA(max{r, s}, s) with noise {u;}



Construction

1. Choose model orders
typically try/use GARCH(1,1)

2. Estimate parameters as

n >
~ 5 . e
(@n.Bn) = argmin, 5 3 [iog(o?)+ .

t=r+1 t
where o2 = 0?(av, 3) are computed recursively with some initial
setting (e.g. 01 =--- =05 =0)
3. Model verification = same as for ARCH



Predictions of volatility
Consider data ey, ..., e, from GARCH(1,1)

2 2 2
€t = o€, Op :Oéo—|—011et_1+['310't_1

1. estimate the model parameters ay, a1, 1 and computed
sequentially
62 =do + a1 €74 + P17

for t = 2,..., nand some initial 52
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Consider data ey, ..., e, from GARCH(1,1)
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Predictions of volatility
Consider data ey, ..., e, from GARCH(1,1)

2 2 2
€t = o€, Op :Ozo—|—011et_1+['310't_1

1. estimate the model parameters ay, ax, 31 and computed
sequentially
62 =do + a1 €74 + P17
for t = 2,..., nand some initial 52
2. 1 step ahead volatility prediction
62,1 = 0o +a1€3+ B105
3. fork>1:02,, =ao+a162,,_; + B102,,_, and

2 _ 2 2 _ 2 2 2
en+k—1 = Ontk—1€n+k—1 = Opntk—1 + Jn+k—1(€n+k—1 - 1)

s0 E[€3,«_|Fn] = 05,4 and

~2 oA ~ =2 o ~2 oA ~ A2
Oprk = Q0 + aq €nik—1 +510n+k71 =aQo + (041 + /81 )0n+k71

=2
Tntk—1
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ARMA GARCH model: Summary

Consider data Yi,..., Y, from a stationary series { Y;}
1. Fitan ARMA(p, q) model to Yi,..., Y.
2. Compute residuals {e;} and verify white noise assumptions.
3. Check ACF and PACF of {€?}. If some important correlations ~
model volatility
4. Fit a suitable ARCH or GARCH model to {e;}.
5. Predictions:

> Use the fitted ARMA model for mean predictions of Y.
> Use the fitted GARCH model for volatility predictions of Yy k.

Note: ARMA and GARCH part can be estimated also simultaneously



Further reading

Book:
» 8.3.6 Various Modifications of GARCH Models
» 8.3.1 Historical Volatility and EWMA Models



