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Abstract

In this Note, a numerical approach based on the finite volume method and a full multigrid acceleration is used, applied to the
classical Rayleigh Bénard convection problem. Fine grids corresponding to 2562 nodes are used and Benchmark solutions are
proposed for Rayleigh numbers ranging from 103 to 106. Some streamlines and isotherms are presented to analyze the natural
convection flow patterns set up by the buoyancy force. To cite this article: N. Ouertatani et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Simulation numérique bidimensionnelle d’une convection de type Rayleigh–Bénard dans une cavité carrée. La présente
investigation porte sur une étude numérique bidimensionnelle relative à un problème de convection naturelle. Il s’agit en l’occur-
rence d’une convection de type Rayleigh Bénard dans une cavité carrée. Il est à noter qu’une convection de type Rayleigh Bènard
peut être rencontrée dans de nombreuses applications physiques. On peut citer à titre d’exemple, le chauffage d’une pièce dans
un immeuble ou encore le refroidissement de composants électroniques. Afin de correctement simuler l’écoulement, nous avons
utilisé dans cette étude un maillage assez fin correspondant à 2562 nœuds de calcul. La résolution numérique est basée sur une
formulation de type volumes finis et une accélération multigrille. Des solutions Benchmark sont alors proposées relativement aux
nombres de Rayleigh 103, 104, 105 et 106. Une comparaison des résultats obtenus par la méthode classique RBSOR et la méthode
multigrille est également faite et montre qu’un facteur gain de 17 peut être atteint. Pour citer cet article : N. Ouertatani et al., C. R.
Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Natural convection heat transfer in cavities has been a topic for many experimental and numerical studies found
in the literature [1–3]. From practical and industrial point of views, the interest is justified by its many applications,
which include heating and cooling of buildings, energy drying processes, solar energy collectors, etc. Most of the pub-
lished works covering natural convection in enclosures that exist today can be classified into two groups: differentially
heated enclosures [4–6] and enclosures heated from below and cooled from above (Rayleigh Bénard problems) [7–9].
Benchmark solutions related to differentially heated enclosures (first group) can bee found in many numerical in-
vestigations [10–13]. However, numerical benchmark solutions related to the simplest case of 2D Rayleigh Bénard
convection are less encountered in the literature. The Rayleigh Bénard convection is an important mechanism of mass
and heat transfer in nature and in numerous industrial applications. One can cite geophysics, astrophysics, meteorol-
ogy, heat exchangers, multilayer walls in buildings and cooling of electronic components for example. In addition to
these applications, Rayleigh Bénard convection can also be studied to analyze fluid dynamic instability, bifurcation or
chaotic behavior in fluids.

The aim of this Note is to propose two dimensional numerical solutions related to natural convection in a square
enclosure heated from below and cooled from above. The fluid under consideration is air (Prandtl = 0.71) and the
Rayleigh number is taken in the range 103 � Ra � 106. Our numerical method is based on a finite volume formulation
and an iterative Successive-Over-Relaxation scheme [18] with multigrid acceleration. The main idea of multigrid
methods can be found in Refs. [21,22]. In this study, we have implemented our multigrid procedure in a so-called
full multigrid (FMG) fashion [13]. Indeed, before starting V-cycles, the source term is calculated on the coarsest grid
permitting the determination of an exact solution. This solution is progressively interpolated from the coarsest to the
finest grid, used there as a starting guess for the V-cycle procedure. For more details about the method one can refers
to [14]. In the present investigation, relatively fine grids corresponding to 2562 nodes were used.

2. Mathematical formulation

A schematic representation of the system under investigation is shown in Fig. 1, where H is the dimension of the
enclosure. The gravity vector is directed in the negative y coordinate direction, and the Boussinesq approximation is
assumed to be valid.

The non-dimensional governing equations for the thermal convection problem are conservation of mass, the in-
compressible Navier–Stokes equations, and the energy equation:

∂uj

∂xj

= 0 (1)
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Fig. 1. Schematic diagram of the physical model and coordinate system.

Fig. 1. Schématisation du problème physique et système de coordonnées.
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where ui = (u, v),p, and θ are the velocity, the deviation from the hydrostatic pressure, and temperature, respectively;
and δij the Krönecker symbol. These non-dimensional equations where obtained using the characteristic length H ,
velocity scale u0 = (gβH�T )1/2, time scale u0 = H/u0, and pressure scale p0 = ρu2

0. Here, ρ is the mass density,
g the gravitational acceleration, and β the coefficient of thermal expansion. The non-dimensional temperature is
defined in terms of the wall temperature difference and a reference temperature as:

θ = T − Tr

TH − TC

and Tr = 1

2
(TH + TC)

TH is the temperature of the hot wall, and TC is that of the cold wall. The Rayleigh number and Prandtl number are,
respectively:

Ra = gβ(TH − TC)H 3

αν
and Pr = ν

α

where α is the thermal diffusivity and ν the kinematic viscosity.
The enclosure boundary conditions consist of no-slip and no penetration walls, i.e., u = ν = 0 on all four walls.

The thermal boundary conditions on the bottom and top walls are:

θy=0 = θH = +1

2
and θy=1 = θC = −1

2

The left and right vertical walls are adiabatic as shown in Fig. 1.
At each instant, the heat flux averaged over the hot wall is defined by:

NuH = −
1∫

0

∂θ

∂y

∣∣∣∣
y=0

dx

3. Numerical methods

The unsteady Navier–Stokes and energy equations are discretized by a second-order time stepping of finite differ-
ence type. A projection method [15] is used to solve the Navier–Stokes equations. An intermediate velocity is first
computed and later updated for satisfaction of mass continuity. In the intermediate velocity field the old pressure is
used. A Poisson equation, with the divergence of the intermediate velocity field as the source term, is then solved to
obtain the pressure correction and the real velocity field.

A finite-volume method [16] is used to discretize the Navier–Stokes and energy equations. The advective terms are
discretized using a QUICK third-order scheme [17] in the momentum equation and a second order central differencing
one in the energy equation.

The discretized momentum and energy equations are resolved using the red and black successive over relax-
ation method RBSOR [18], while the Poisson pressure correction equation is solved using a full multigrid method
(FMG) [19]. The computational cost required to obtain the solution on different grids is reported in Table 1. The im-
provement factors in execution time, when comparing the single-grid RBSOR and multigrid algorithms, are of 3, 6.8,
and 17.3 for grids 642, 1282, and 2562, respectively. Other comparisons of the CPU performances of the numerical
method related to an 8:1 differentially heated enclosure can be found in reference [23].

The convergence of the numerical results is established at each time step according to the following criterion:√√√√
(∑

i,j

Xk
i,j −

∑
i,j

Xk−1
i,j

)2

� 10−7 (4)

where X stands for u, ν,p, or θ and k is the iteration level.
In order to ensure grid-independent solutions, a series of trial calculations for the case Ra = 105 and Pr = 0.71 were

conducted for different non-uniform grid distributions, i.e., 322, 642, 1282 and 2562. Table 2 shows the convergence
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Table 1
CPU time performances obtained on a dual-core 1.73 GHz processor

Tableau 1
Performances des temps de calcul obtenues avec un processeur double-
core à 1.73 GHz

Grid
size

Time/step
(RBSOR) [s]

Time/step
(FMG) [s]

Improvement
factor

64 × 64 0.09 0.03 3
128 × 128 0.96 0.14 6.8
256 × 256 15.39 0.89 17.3

Table 2
Convergence of umax, vmax and NuH with grid refinement

Tableau 2
Convergence de umax, vmax et NuH avec le raffinement des
grilles

Grid size umax vmax NuH

32 × 32 0.3419 0.3714 3.8971
64 × 64 0.3438 0.3748 3.9072
128 × 128 0.3442 0.3756 3.9097
256 × 256 0.3443 0.3756 3.9103

Table 3
Comparison of our results with [20]

Tableau 3
Comparaison de nos résultats avec [20]

Grid size Ref. [20] NuH NuC Grid size Prés. study NuH NuC

121 × 31 2.50326 120 × 32 2.52664
2.50347 2.52663

161 × 41 2.51604 240 × 64 2.52668
2.51517 2.52667

201 × 51 2.52234 480 × 96 2.52523
2.52243 2.52525

of the maximal values of velocity, (umax, vmax), and the averaged Nusselt number, NuH , at the hot wall with grid
refinement.

We then believe that the 2562 grid is fine enough to get sufficient accurate solutions. Consequently, that grid was
selected for all computations. Our numerical model was also checked for accuracy against the published numerical
solution of C.Y. Soong et al. [20] for natural convection of air in a cavity of aspect ratio A = 4 heated from below.
A comparison of the averaged Nusselt numbers NuH and NuC (through hot and cold walls respectively), are given in
Table 3. As seen, our results are in quite good agreement with those of C.Y. Soong. Other validations of our numerical
method were undertaken and gave excellent agreements (see Ref. [19]).

4. Results and discussion

All the results presented in this section are for Pr = 0.71. Computations are carried out for four different Rayleigh
numbers, i.e. Ra = 103, 104, 105 and 106. A non-uniform grid with 2562 nodes is selected for all computations. We
believe that this grid is fine enough to get sufficient accurate solutions for Ra � 106.

Initially the fluid is considered at rest and the dimensionless temperature is taken equal to zero. The steady solution
obtained for Ra = 103 was used as an initial one for the next Rayleigh number, and so on. Note that steady state was
considered as achieved according to the following criterion:∑

i,j

∣∣Xk+1
i,j − Xk

i,j

∣∣ � 10−5 (5)

where X represents the variable u, ν or θ , the superscript k refers to the iteration number and (i, j) refers to the space
coordinates.

The horizontal and vertical velocity distributions at the mid-width (x = 0.5) and at the mid-height (y = 0.5) are
presented in Figs. 2 and 3 respectively, for 104 � Ra � 106.

As the velocity distribution indicates, the boundary layer is more closely confined to the walls with increase in
the Rayleigh number. It is also observed that the velocity norm increases with the Rayleigh number meaning that
convection dominates at high Ra.

The coordinate positions of the maximum x-velocity at the mid-plane x = 0.5 and the minimum y-velocity at the
mid-height y = 0.5 can be depicted from Figs. 2 and 3 respectively and are reported in Table 4.
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Fig. 2. Variation of horizontal velocity u(y).

Fig. 2. Variation de la vitesse horizontale u(y).

Fig. 3. Variation of vertical velocity v(x).

Fig. 3. Variation de la vitesse verticale v(x).

Fig. 4. Streamline contours for Ra = 104, 105 and 106.

Fig. 4. Allure des lignes de courant pour Ra = 104, 105 et 106.

Streamlines and isotherms related to Ra = 104, 105 and 106 are reported in Figs. 4 and 5 respectively. For Ra = 104,
the flow is symmetrical and is dominated by a recirculating motion in the core region. By increasing Ra, two secondary
eddies are then observed at the top left and bottom right corners. The isotherms are also symmetrical and show the
beginning of a convective motion for Ra � 105. The isotherm contours are indeed more distorted for Ra � 105.

As far as the heat transfer is considered, the local Nusselt number:

Nu = ∂θ

∂y

∣∣∣∣
y=0

through the bottom hot wall as a function of the abscissa, is presented in Fig. 6. One can clearly see that the maximum
heat transfer increases with the Rayleigh number. That maximum is localized at positions x = 0.7183, x = 0.6993
and x = 0.6448 for Ra = 104, Ra = 105 and Ra = 106 respectively. The corresponding maximum Nusselt values are
then: Numax(Ra = 104) = 3.023, Numax(Ra = 105) = 6.065 and Numax(Ra = 106) = 11.69.

Finally, we report in Table 5 our benchmark solutions obtained with our finite volume multigrid code. The table
summarizes the mean Nusselt numbers NuH and NuC through the hot and the cold wall, respectively, and the maximal
values of the horizontal and vertical velocity umax and vmax for Ra = 103, Ra = 104, Ra = 105 and Ra = 106.
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Fig. 5. Isotherm contours for Ra = 104, 105 and 106.

Fig. 5. Allure des isothermes pour Ra = 104, 105 et 106.

Fig. 6. Local Nusselt number through the hot wall.

Fig. 6. Nombre de Nusselt local à travers la paroi chaude.

5. Conclusion

In this Note, a multigrid technique and a finite volume method were used to resolve the incompressible Navier–
Stokes/Boussinesq equations. The code was applied to the classical two-dimensional Rayleigh Bénard convection
problem in an enclosure with length-to-height aspect ratio A = 1 in which vertical walls were considered as insulated.
A relatively fine grid corresponding to 2562 nodes was selected to determine the problem Benchmark solutions.
These solutions may bee quite useful for validations of new numerical methods. Streamlines and isotherms were also
presented in this paper to show the flow patterns for Rayleigh numbers ranging from 104 to 106.
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Table 4
Coordinate positions of umax and vmax

Tableau 4
Coordonnées de umax et vmax

Rayleigh y(umax) x(vmax)

104 0.8023 0.8263
105 0.8636 0.8973
106 0.9036 0.9359

Table 5
Benchmark solutions for 103 � Ra � 106

Tableau 5
Solutions benchmark pour 103 � Ra � 106

Ra NuH NuC umax vmax

103 1.0004 1.0004 3.6464 × 10−6 3.9684 × 10−6

104 2.1581 2.1580 0.25228 0.26369
105 3.9103 3.9103 0.34434 0.37569
106 6.3092 6.3092 0.37088 0.40600
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