WORDS WITH MORE PERIODS

Let w[i], 0 < i < |w|, be the (i — 1)th letter of the word w, so that w =
w[0Jw[1] - - - w[n—1] with n = |w|. We say that p > 1is a period of w if w[i] = w[i+p]
holds for all 0 < ¢ < n — p. The least period of w is called the period of w.

By the definition, any word has infinitely many periods. Namely, each p > |w|
is a period of w. Also, each multiple of a period is again a period. This are
trivial examples of multiple periods. However, there are also nontrivial cases. For
example, the word abaababaaba of length 11 has periods 5 and 8. When this can
happen explains the Theorem of Fine and Wilf, also called the Periodicity lemma.

Theorem. If a word of length at least p + ¢ — ged(p, ¢) has periods p and ¢, then
they have also a period ged(p, q).

On the other hand, for each p < ¢ such that p t g, there is a word of length
p+ q — ged(p, g) — 1 having periods p and ¢, and not a period ged(p, q).

We give several proofs of this fundamental result. The first one is by induction.

Proof. Let WLOG p < q. To proof the first claim, proceed by induction on p + q.
The first part of the claim holds if p = ¢q. Let p < ¢, and set d := ged(p, q). Let
w have periods p and ¢ with |w| > p+ ¢ — d. Consider the prefix v of w of length
|w| —p. The word v has a period p. We show that it also has a period g — p. If
i < |v| = (¢ —p), then i + ¢ < |w|, and we have
vfi+q—pl=wli+q—p]=wli+q] =wli =v[].
Since d = ged(p, ) = ged(p, ¢ — p), we have |[v| > p+ (¢ — p) — ged(p, ¢ — p), and v
has a period d by the induction assumption. Note that |v| > ¢ — d > p. Thus
wli] = wli mod p] = v[i mod p] = v[(i + d) mod p] = w[(i + d) mod p)] = w[i + d]
holds for each i < |w| — d since p is a period of w. The equality
v[i mod p] = v[(i + d) mod p]

above holds for any i, since d | p which implies that the difference between i mod p
and ¢ + dmod p is divisible by d.

In order to show optimality, assume p < ¢ and p { ¢ with d = ged(p, ¢). Consider
first the word

(ad—1b)k—lad—lc(ad—lb)k—lad—l
which has periods kd and (k+ 1)d, but not the period d. This shows the optimality
if d = ¢ — p. Assume that d < ¢ — p. Then, by induction, there is a word v of
length ¢ — d — 1 having periods p and ¢ — p but not having the period d. Extend
v to the word w of length p + ¢ — d — 1 so that it has a period p. Certainly, the
number d is not a period of w, and it remains to show that w has a period q. Let
i<(p+q—d—1)—qg=p—d—1. Then
wli] = v[i] = vli + ¢ —p] = wi+ g — p] = wi +q].

Crucial fact hereis that i + ¢ —p<qg—d—1=|v|. O

The following proof makes the modular computation more explicit.

Proof. First, suppose that p and g are coprime. We =~ be the smallest equivalence

on the set I = {0,1,...,p+ g — 2} (that is, on letter indeces of w) satisfying ¢ ~ (i

mod p) and ¢ =~ (imod ¢). The definition implies that w[i] = w[j] if i = j. We
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want to show that all elements of I are equivalent. Obviously, it is enough to show
that for {0,1,...,p— 1}.

Set iy, := (kgmod p). Because p and ¢ are coprime, the number ¢ is a generator
of the cyclic group Z,, that is, {io,41,...,9p—1} ={0,1,...,p—1}. If i <p—1,
then 75, +¢ < p — 1 4 ¢, which implies ix, = ix + ¢ = tx+1mod p- We deduce that all
elements of {0,1,...,p — 1} are equivalent.

Let now ged(p,q) = d. For r € {0,1,...,d — 1} dlet

wy = wlrlwlr + djwlr +2d] - - wlr + (p' + ¢ — 2)d],
with p’ = p/d a ¢/ = q/d. Tt is easy to see that w has periods p a ¢ if and only if
w, has periods p’ a ¢’ for each r = 0,1,...,d — 1. Since the words w, are of length
p’ + ¢ — 1, they are by the first part of the proof powers of the same letter. Thus
w has a period d.

Let us show optimality. Let w be of length p + ¢ — ged(p,q) — 1 with p < ¢
and p t gq. Again, we first suppose that p a ¢ are coprime. If the equivalence =
has at least two classes, then we can identify each wli] with the equivalence class
[i]~, in order to obtain a word with required properties. Consider again only words
{0,1,...,p — 1} and view that as vertices of a directed graph G, in which i — j
holds if and only if i +¢ < p4+q¢—2ai+qg =j mod p. It is easy to see that
classes of ~ restricted to {0,1,...,p— 1} are (weakly connected) components of G.
Each vertex has obviously outgoing and incoming degree at most one. Also, p—1 a
p — 2 have the outcoming degree zero. Similarly ¢ —1 mod p a ¢ —2 mod p have
indegree zero. This implies that G has more than one component and the word w
is nontrivial. Let now ged(p, q) = d. The word wgy—; defined as above has length
p+¢ —2, since (d—1)+ (p' — ¢ —2)d =p+ q— d— 1. Therefore, it can contain
two different letters and w does not have a period d. [

The following proof uses the Fourier transform. For this proof, it is convenient
to reformulate the claim in terms of sequences.

Theorem. Let f = (fn), ey and g = (gn),cy be sequences with periods p and ¢
respectively. If f,, = g, for 0 < n < p+ q — ged(p, q), then f = g, and it has a
period ged(p, q).

On the other hand, for each p and ¢, there are two distinct f and g, with periods
p and ¢ respectively, such that f,, = g, for 0 <n < p -+ q— ged(p,q) — 1.

Proof. Let the alphabet be from C. Let d = ged(p, q). Let ¢y, », denote the sequence
with jth coefficient

27 L

‘pm,n(j) =€ m.

Since f has a period p, it is generated by the set

O, ={ppr | k=0,1,...,p—1}
of p sequences with the period p. In the same way, since g has a period g, it is
generated by the set

‘I)q:{QOqJC ‘ k‘ZO,l,...,q—l}.
The set ® = @, U P, contains exactly p + ¢ — ged(p, ¢) (distinct) elements.

Consider now the common p + ¢ — d first values of f and ¢ as the element

h € CPti=4 and let ® < CPT9~? be the initial parts of elements of ®. The

key observation is that ®’ is linearly independent. That follows from the fact
that ®' forms a Vandermonde matrix, or in other terms, the vectors are values
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of p+ q — ged(p, g) distinet polynomials of degree less than p + ¢ — ged(p, ¢) in
p + g — ged(p, q) distinet points. This implies that h is given uniquely as linear
combination of elements of ®’, hence also the two expressions in terms of ®, and
of ®;, must be the same. Therefore, f = g and it is generated by elements of the
set @, NP, =Dy ={pgr|k=0,...,d— 1} of sequences with period d.

On the other hand, ® generates the vector e,i1q—q—1 = (0,0,...,0,1) which
can be therefore written as the difference of two sequences generated by ®, and
o\ &, C P, respectively. Such sequences have periods p and ¢ respectively, they
agree on first p + ¢ — d — 1 positions but differ on the next position. (I

The last proof uses formal series.

Proof. Let the sequences be represented by formal series f = > fn2z™ and g =
> nen 9nx™. Due to their periods, the sequences can be written as
P Q
f = 1 o\ g = T o\

(1—aP) (1—=9)
where P and @ are polynomials with degree less that p and q respectively.Note that
ged (1 — 2P, 1 — 29) = 1 — 2 with d = ged(p, q). We have

P Q (1—z%) (1—29) (1 —aP)

_ - P -Q
1—2p 1—29 (1—2P)(1—29) (1—2z9) (1—2z)
(1—a7)

A=) —a)
which is a product of a formal series with the absolute coefficient 1, and a polynomial
R of degree less than p + ¢ — d. This implies that if R is not zero, then the least
non-zero coefficient of f — g has index less than p + ¢ — d. In other words, if f and
g agree on first p + ¢ — d positions, then R = 0, and f = g. Then also

(1—29) B (1 —2P)
Pl =90

f—g=

Since (1 — 29)/(1 — 2¢) and (1 — 2P)/(1 — 2¢) are coprime, polynomials P and Q
are divisible by (1 — z?)/(1 — x%) and (1 — 2%)/(1 — 2%) respectively. Therefore
D
f=9= m7
where

L _Pl-ah _Qu-a
1—aP 1— a4
is a polynomial of degree less than d, and f = g has a period d.
On the other hand, if we put R = PT99=1 then there are polynomials P and

Q of degree less than p and ¢ respectively satisfying
P(l1—29) Q1 —aP) = (1—a?)gPra—d-?

The corresponding f and g then agree on first p + ¢ — d — 1 positions but disagree
on the next position. O

Remark: The polynomials P and @) from the last proof are obtained as follows.
The extended Euclidean algorithm yields P’ and @’ such that

P(l-—29)—-Q (1-2P)=ged(l—aP,1—2%)=1-2z%



We now set
P =P gPT=0=1 mod (1 — aP), Q=Q 2P mod (1 — ).
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