
Words with more periods

Let w[i], 0 ≤ i < |w|, be the (i − 1)th letter of the word w, so that w =
w[0]w[1] · · ·w[n−1] with n = |w|. We say that p ≥ 1 is a period of w if w[i] = w[i+p]
holds for all 0 ≤ i < n− p. The least period of w is called the period of w.

By the definition, any word has infinitely many periods. Namely, each p ≥ |w|
is a period of w. Also, each multiple of a period is again a period. This are
trivial examples of multiple periods. However, there are also nontrivial cases. For
example, the word abaababaaba of length 11 has periods 5 and 8. When this can
happen explains the Theorem of Fine and Wilf, also called the Periodicity lemma.

Theorem. If a word of length at least p + q − gcd(p, q) has periods p and q, then
they have also a period gcd(p, q).

On the other hand, for each p < q such that p - q, there is a word of length
p + q − gcd(p, q)− 1 having periods p and q, and not a period gcd(p, q).

We give several proofs of this fundamental result. The first one is by induction.

Proof. Let WLOG p ≤ q. To proof the first claim, proceed by induction on p + q.
The first part of the claim holds if p = q. Let p < q, and set d := gcd(p, q). Let
w have periods p and q with |w| ≥ p + q − d. Consider the prefix v of w of length
|w| − p. The word v has a period p. We show that it also has a period q − p. If
i < |v| − (q − p), then i + q < |w|, and we have

v[i + q − p] = w[i + q − p] = w[i + q] = w[i] = v[i] .

Since d = gcd(p, q) = gcd(p, q − p), we have |v| ≥ p + (q − p)− gcd(p, q − p), and v
has a period d by the induction assumption. Note that |v| ≥ q − d ≥ p. Thus

w[i] = w[i mod p] = v[i mod p] = v[(i + d) mod p] = w[(i + d) mod p)] = w[i + d]

holds for each i < |w| − d since p is a period of w. The equality

v[i mod p] = v[(i + d) mod p]

above holds for any i, since d | p which implies that the difference between imod p
and i + dmod p is divisible by d.

In order to show optimality, assume p < q and p - q with d = gcd(p, q). Consider
first the word

(ad−1b)k−1ad−1c(ad−1b)k−1ad−1

which has periods kd and (k+1)d, but not the period d. This shows the optimality
if d = q − p. Assume that d < q − p. Then, by induction, there is a word v of
length q − d − 1 having periods p and q − p but not having the period d. Extend
v to the word w of length p + q − d − 1 so that it has a period p. Certainly, the
number d is not a period of w, and it remains to show that w has a period q. Let
i < (p + q − d− 1)− q = p− d− 1. Then

w[i] = v[i] = v[i + q − p] = w[i + q − p] = w[i + q].

Crucial fact here is that i + q − p < q − d− 1 = |v|. �

The following proof makes the modular computation more explicit.

Proof. First, suppose that p and q are coprime. We ≈ be the smallest equivalence
on the set I = {0, 1, . . . , p + q − 2} (that is, on letter indeces of w) satisfying i ≈ (i
mod p) and i ≈ (imod q). The definition implies that w[i] = w[j] if i ≈ j. We
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want to show that all elements of I are equivalent. Obviously, it is enough to show
that for {0, 1, . . . , p− 1}.

Set ik := (kq mod p). Because p and q are coprime, the number q is a generator
of the cyclic group Zp, that is, {i0, i1, . . . , ip−1} = {0, 1, . . . , p − 1}. If ik < p − 1,
then ik + q < p− 1 + q, which implies ik ≈ ik + q ≈ ik+1mod p. We deduce that all
elements of {0, 1, . . . , p− 1} are equivalent.

Let now gcd(p, q) = d. For r ∈ {0, 1, . . . , d− 1} dlet

wr := w[r]w[r + d]w[r + 2d] · · ·w[r + (p′ + q′ − 2)d],

with p′ = p/d a q′ = q/d. It is easy to see that w has periods p a q if and only if
wr has periods p′ a q′ for each r = 0, 1, . . . , d− 1. Since the words wr are of length
p′ + q′ − 1, they are by the first part of the proof powers of the same letter. Thus
w has a period d.

Let us show optimality. Let w be of length p + q − gcd(p, q) − 1 with p < q
and p - q. Again, we first suppose that p a q are coprime. If the equivalence ≈
has at least two classes, then we can identify each w[i] with the equivalence class
[i]≈, in order to obtain a word with required properties. Consider again only words
{0, 1, . . . , p − 1} and view that as vertices of a directed graph G, in which i −→ j
holds if and only if i + q < p + q − 2 a i + q ≡ j mod p. It is easy to see that
classes of ≈ restricted to {0, 1, . . . , p− 1} are (weakly connected) components of G.
Each vertex has obviously outgoing and incoming degree at most one. Also, p−1 a
p− 2 have the outcoming degree zero. Similarly q − 1 mod p a q − 2 mod p have
indegree zero. This implies that G has more than one component and the word w
is nontrivial. Let now gcd(p, q) = d. The word wd−1 defined as above has length
p′ + q′ − 2, since (d− 1) + (p′ − q′ − 2)d = p + q − d− 1. Therefore, it can contain
two different letters and w does not have a period d. �

The following proof uses the Fourier transform. For this proof, it is convenient
to reformulate the claim in terms of sequences.

Theorem. Let f = (fn)n∈N and g = (gn)n∈N be sequences with periods p and q
respectively. If fn = gn for 0 ≤ n < p + q − gcd(p, q), then f = g, and it has a
period gcd(p, q).

On the other hand, for each p and q, there are two distinct f and g, with periods
p and q respectively, such that fn = gn for 0 ≤ n < p + q − gcd(p, q)− 1.

Proof. Let the alphabet be from C. Let d = gcd(p, q). Let ϕm,n denote the sequence
with jth coefficient

ϕm,n(j) = e2πi
nj
m .

Since f has a period p, it is generated by the set

Φp = {ϕp,k | k = 0, 1, . . . , p− 1}
of p sequences with the period p. In the same way, since g has a period q, it is
generated by the set

Φq = {ϕq,k | k = 0, 1, . . . , q − 1} .
The set Φ = Φp ∪ Φq contains exactly p + q − gcd(p, q) (distinct) elements.

Consider now the common p + q − d first values of f and g as the element
h ∈ Cp+q−d, and let Φ′ ⊂ Cp+q−d be the initial parts of elements of Φ. The
key observation is that Φ′ is linearly independent. That follows from the fact
that Φ′ forms a Vandermonde matrix, or in other terms, the vectors are values
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of p + q − gcd(p, q) distinct polynomials of degree less than p + q − gcd(p, q) in
p + q − gcd(p, q) distinct points. This implies that h is given uniquely as linear
combination of elements of Φ′, hence also the two expressions in terms of Φp and
of Φq must be the same. Therefore, f = g and it is generated by elements of the
set Φp ∩ Φq = Φd = {ϕd,k | k = 0, . . . , d− 1} of sequences with period d.

On the other hand, Φ′ generates the vector ep+q−d−1 = (0, 0, . . . , 0, 1) which
can be therefore written as the difference of two sequences generated by Φp and
Φ \ Φp ⊂ Φq respectively. Such sequences have periods p and q respectively, they
agree on first p + q − d− 1 positions but differ on the next position. �

The last proof uses formal series.

Proof. Let the sequences be represented by formal series f =
∑
n∈N fnx

n and g =∑
n∈N gnx

n. Due to their periods, the sequences can be written as

f =
P

(1− xp)
, g =

Q

(1− xq)
,

where P and Q are polynomials with degree less that p and q respectively.Note that
gcd (1− xp, 1− xq) = 1− xd with d = gcd(p, q). We have

f − g =
P

1− xp
− Q

1− xq
=

(1− xd)

(1− xp)(1− xq)

(
P

(1− xq)

(1− xd)
−Q

(1− xp)

(1− xd)

)
=

(1− xd)

(1− xp)(1− xq)
R,

which is a product of a formal series with the absolute coefficient 1, and a polynomial
R of degree less than p + q − d. This implies that if R is not zero, then the least
non-zero coefficient of f − g has index less than p + q− d. In other words, if f and
g agree on first p + q − d positions, then R = 0, and f = g. Then also

P
(1− xq)

(1− xd)
= Q

(1− xp)

(1− xd)
.

Since (1 − xq)/(1 − xd) and (1− xp)/(1− xd) are coprime, polynomials P and Q
are divisible by (1− xp)/(1− xd) and (1− xq)/(1− xd) respectively. Therefore

f = g =
D

(1− xd)
,

where

D =
P (1− xd)

1− xp
=

Q(1− xd)

1− xq

is a polynomial of degree less than d, and f = g has a period d.
On the other hand, if we put R = xp+q−d−1, then there are polynomials P and

Q of degree less than p and q respectively satisfying

P (1− xq)−Q (1− xp) = (1− xd)xp+q−d−1.

The corresponding f and g then agree on first p + q − d− 1 positions but disagree
on the next position. �

Remark: The polynomials P and Q from the last proof are obtained as follows.
The extended Euclidean algorithm yields P ′ and Q′ such that

P ′ (1− xq)−Q′ (1− xp) = gcd (1− xp, 1− xq) = 1− xd.
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We now set

P = P ′ xp+q−d−1 mod (1− xp), Q = Q′ xp+q−d−1 mod (1− xq).
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