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Solving Polynomial Equations

Finding the roots of polynomials is a problem with a long history in mathematics, and one
that has led to a tremendous volume of mathematical knowledge. In elementary mathe-
matics we first encounter quadratic polynomials, and learn to find roots using factoring or
the quadratic formula. The outcome depends on what types of numbers you are willing to
accept as answers. If you accept complex numbers, then the quadratic formula gives a com-
plete solution. Every quadratic has two roots (sometimes equal), and complete factorization
is always possible. In contrast, if you are only interested in real solutions, some quadratic
equations are unsolvable. Here again the quadratic formula gives us a complete answer. It
tells us whether roots exist, and finds them when they do.

It is natural to turn next to cubic equations. We can find solutions for quadratic equations,
like x2 —3x 4+ 5 = 0. The cubic equation x> + 7x2 —2x 4+ 3 = 0 doesn’t look much more
complicated. Can we solve it? Is there some way to find the solutions as combinations of
cube roots and square roots, perhaps, extending what works for quadratics? And beyond
cubics, what about quartics, quintics, and higher degree polynomials?

The attempt to solve cubics dates back at least to the tenth century efforts of Arab mathe-
maticians. The earliest work had a strong geometric component, both in how the equations
were understood and in methods of solution. Omar Khayyam discovered how to find roots
of cubics as intersections of parabolas [3]. An algebraic solution for one form of cubic was
developed in the beginning of the sixteenth century by Cardano, among others. Complete
solutions for general cubic and quartic equations followed soon after. The cubic and quartic
solutions have a similar flavor. To solve a cubic, you must first solve a related quadratic,
and the solutions of the cubic involve square and cube roots. Similarly, the solution of a
quartic depends on solving a related cubic.

We will see these solutions in this chapter. By today’s standards, the algebra they involve
does not seem very forbidding. The solution to cubic equations can be followed by stu-
dents at the level of precalculus. Of course, following the logic of an algebraic argument is
far easier than inventing the argument in the first place. And the first discovered solutions
to cubics and quartics involve clever algebraic tricks. Moreover, they came before the de-
velopment of modern algebraic notation, which makes the solutions easier to follow. Still,
it is tempting to wonder why the solutions took so long to be found, and to imagine that
similarly simple methods for solving higher equations might yet await discovery.
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66 Part I: The Province of Polynomia

Interestingly, the pattern of results for polynomials up to the quartic do not extend to
higher degrees. More subtle patterns lurk behind the scenes that account for both the so-
lutions of the low degree cases and the obstructions to finding similar solutions for higher
degree. A key to understanding this deeper structure involves the interchangeability of the
roots of a given polynomial. As we will see, this idea arises quite naturally at a very ele-
mentary level. We have already seen it emerge in the previous chapter’s study of the rela-
tionships between roots and coefficients. The significance of the idea of interchangeability
goes far beyond these simple beginnings, however. It ultimately unlocks the deep myster-
ies of polynomial equations in a mathematically breathtaking development. The end of the
chapter will offer a glimpse of this subject.

The quest to solve polynomial equations has played a central role in the evolution of
modern mathematics. Along the way, mathematicians have encountered important method-
ological and philosophical questions. What does it mean to find a root? If we can approx-
imate a root to any specified accuracy, can we then claim to have found it? Can we even
claim to know that the root exists? These questions go beyond solving equations to the very
nature of numbers themselves, and historically led to ever richer number systems, including
negatives, irrationals, and imaginary numbers.

In broad outlines, here is what we know today. Permitting complex numbers to be used,
both for coefficients and roots, every polynomial can be expressed as a product of linear
factors. Thus, for any polynomial of degree n, there exist # complex roots. When n is
4 or less, exact solutions can be found using known methods, which are analogous to the
quadratic formula and can be applied to any cubic or any quartic. For polynomials of degree
5 or higher, it is known that the roots do not always exist in an exact form, or at least, not
as an algebraic expression involving arithmetic operations and radicals (i.e., square roots,
cube roots, fourth roots, and so on). This shows that a general method for solving quintic
and higher degree equations cannot exist.

These conclusions are valid when working with the complex numbers. But polynomials
often arise where coefficients are known to be real, or rational, or integers, or where we are
interested only in real, rational, or integer roots. This leads to quite a few different possible
problems and conclusions. For example, if we have integer coefficients and desire only
rational roots, an exact solution method for arbitrary degree is known.

In this chapter we will look at a variety of ideas connected with solving polynomial
equations, including:

o Existence questions for rational, real, and complex solutions,
o Algebraic solutions of cubic and quartic equations,
o Lagrange’s analysis and permutations of roots,

o Insolubility of the general quintic.

4.1 Existence Questions

Before talking about how to solve a polynomial equation, we should clarify what it means
for a solution to exist. If it is possible to display an integer or rational number that satis-
fies a given equation, then the question of existence of course evaporates. But what about
equations with irrational or complex solutions?
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Today, with the complex numbers a familiar and well understood part of mathematics,
we have an advantage over mathematicians of earlier eras. Our current ideas about num-
ber systems, indeed about what numbers are, evolved slowly over centuries. At the time
of Cardano, negative numbers were sometimes used, but were not universally accepted
as legitimate numbers. Complex numbers were contemplated only by the most advanced
thinkers, and even they did not know what to make of the idea. Little wonder if there was
some ambiguity about what it means for an equation to have a solution.

To make this more concrete, let us consider a few examples. According to the modern
viewpoint, the equation x> = 1 has two solutions. A mathematician who denies the exis-
tence of negative numbers would say it has a single solution. Cardano would have identi-
fied two solutions, calling one false, meaning not really a legitimate number. The equation
x2 + 1 = 0 would be considered to have no solutions whatever.

Similar issues arise with irrational numbers. As an example, consider the equation 3x°—
15x + 5 = 0. It has no rational roots (which can be verified by methods to follow), but by
trial and error (as well as more sophisticated methods), we can find approximate solutions.
To illustrate one approach, let p(x) = 3x> — 15x + 5, s0 p(0) = 5 and p(1) = —7. This
suggests that a root should occur somewhere between 0 and 1. We might guess that it falls
at x = .5. This guess is incorrect, but with a true solution somewhere between 0 and 1,
x = .5 differs from a correct answer by at most .5.

Next compute p(.1), p(.2), p(.3), and so on, finding p(.3) = .50729 and p(.4) =
—.96928. This tells us the root is between .3 and .4, and if we adopt .35 as an estimate, we
know we will be off by at most .05. Continuing in this way, we can get as close to the root
as we wish.

But does this establish the existence of an exact solution? If there is no specific number
we can identify that is a solution, if we can only point to better and better approximations,
how do we know that there is a solution?

The modern viewpoint rests on a sophisticated understanding of both the algebraic and
geometric properties of our number systems. We have a concept of continuity, according to
which the real numbers form a continuum with no holes or gaps. This idea can be formu-
lated rigorously and, as long as you are willing to accept the assumptions inherent in the
formulation, results such as the intermediate value theorem give precise conditions for the
existence of solutions to equations.

Historically, solving polynomial equations meant finding exact algebraic expressions for
the roots. In the next section the original methods for solving cubic and quartic equations
in this sense will be presented. Generalizing them to higher degrees involves the concept
of solvability by radicals. That means solutions that are expressible in terms of radicals
(square roots, cube roots, etc.) and arithmetic operations. The methods for cubics and quar-
tics show they are all solvable by radicals. For higher degree polynomials, some equations
are solvable by radicals, and some are not.

Is a solution by radicals preferable to one by successive approximation? Aesthetically,
an exact algebraic representation of the solution is highly appealing. But the more aesthetic
approach is not always the more practical. Working on a computer or calculator with limited
precision, successive approximation is typically more efficient and accurate than direct
implementation of solutions by radicals, at least for degree 3 or 4. Even if there is an exact
algebraic expression for a root, it most likely will involve radicals that are themselves only
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approximately computable. And on the aesthetic side solution by radicals is not the only
option, for we saw exact solutions to cubic equations elegantly expressed in terms of curly
roots (page 26).

As these considerations show, solvability of polynomial equations is a many-faceted
subject. We can approach it in a variety of ways, conceptually, procedurally, and philo-
sophically. With that in mind, let us look at some important solvability results.

Rational roots. Suppose that a polynomial has coefficients that are rational numbers.
What can we deduce about the roots? First, any such equation can be transformed into one
with integer coefficients. Expressing each of the original coefficients as a fraction, we can
find a common multiple 4 of all the denominators. Multiplying the entire equation by 4
then eliminates all the denominators, leaving a polynomial with integer coefficients.

Fair enough — let us restrict our attention to polynomials with integer coefficients. Solu-
tions may be rational or irrational. But if they are rational, they have to take a special form,
as specified in the following result.

The Rational Roots Theorem. Let p(x) = apx™ + an—1x"~ ' + --- + ao have integer
coefficients, and for integers r and s let r /s be a rational root in lowest terms. Then r is a
divisor of ag and s is a divisor of ay,.

Proof. Since r/sis aroot, p(r/s) = 0, hence s” p(r/s) = 0. This gives us the equation
Anr™ + anyr" s+ an_or" 22 -+ ayrs" ! 4 aps™ =0,

which can be written in the form

anr" + anr" s+ anar" 2% 4+t ayrs" = —aps”.
Because r is a divisor of the left side of this equation, it is a divisor of ags”. But r/s is
in lowest terms means that r and s have no common divisors. Thus r is a divisor of ag. A
similar argument shows that s is a divisor of a,,. B

Ideally, we would like our equations to have rational solutions. The preceding theorem
provides a tool for investigating whether or not they do. Rational roots, if they exist, have
to lie among the finitely many fractions whose numerators divide into a¢ and whose de-
nominators divide into a, . If we compute p(x) for each of these fractions, we will find all
the rational roots, or demonstrate that there are none.

As an example, consider x> + 6x — 20 = 0. The divisors of a3 are just 1 and —1.
The divisors of ag are 1,2, 4, 5, 10, 20, and their negatives. Therefore, if the equation has
rational roots, they must lie among the numbers +1, +2, +£4, +5, +10, and +20. Direct
calculation reveals that 2 is a rational root, and it is the only rational root.

This can be verified from another direction. Knowing that x = 2 is a root implies that
x — 2 is a factor of the polynomial, and it is a short step to x3 + 6x — 20 = (x —2)(x% +
2x + 10). The quadratic formula shows that the roots of the quadratic factor are —1 =+ 3i.
This both verifies that 2 is the only rational root and illustrates the important idea of using
a known root to reduce the degree of an equation.

The example also illustrates a corollary of the Rational Roots Theorem: if a monic poly-
nomial has integer coefficients, any rational roots are actually integers. As the example
shows, when the leading coefficient of a polynomial is 1, the denominator of any rational
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root must be £1. In more advanced treatments of polynomials, roots of monic polynomi-
als are referred to as algebraic integers, and play a special role in the development of the
theory.

Real roots. As many polynomials with integer coefficients have irrational roots, it is nat-
ural next to extend our focus to real numbers. Whereas the rational case is characterized
by discrete methods (integer factorization, enumerating a finite set of possible solutions),
the real case has a decidedly continuous flavor. For example, using the continuity of the
real line and of polynomial functions, we can invoke the intermediate value theorem to
show that if p(x) has opposite signs at a and at b then it has a root somewhere in be-
tween. This is an existential result. It does not tell us how to find a root, only that one
must exist. But that is an important consideration in locating roots through successive
approximation.

It is also customary to use methods from calculus in the real case. A function that is
increasing in an interval, for example, can have at most one root in that interval. Here,
an increasing function f(x) obeys the maxim the larger the x, the larger the f(x). If
f(x) = 0 for a specific x, then it must be greater than 0 for all larger values of x, so there
can be at most one root.

A familiar result from calculus tells us that a function is increasing if it has a positive
derivative. Let us apply this idea to the earlier example, with f(x) = x3 + 6x — 20. The
derivative, f'(x) = 3x2 + 6, is positive for all real x. Therefore, f(x) is increasing over
the entire real line, and can have at most one real root. This shows that x = 2 is not just the
only rational root, but also the only real root.

Similar analyses lead to a number of conclusions for polynomials with real coefficients:

e An odd degree polynomial always has at least one real root.

e An even degree polynomial has an even number of real roots (where a double root is
counted twice).

e For odd n, the equation x” — ag = 0 always has exactly one real root.

e For even n, the equation x” — ap = 0 has two real roots if ag is positive, the unique
root x = 0 if ap = 0, and no real roots if a¢ is negative.

The last two of these give us familiar properties about nth roots.

Complex roots. The complex numbers are the ultimate setting for polynomial equations
in a particular sense. Observe the progression of number systems. Simple (linear) equations
with natural number coefficients can have solutions that are negative, or noninteger ratio-
nals. So we extend the number system to include negatives and fractions, arriving at the
rational numbers. Polynomial equations with rational coefficients can have irrational solu-
tions, so we extend the number system again, this time to the reals. But there are equations
with real coefficients that do not have real solutions. This leads us to the complex numbers.
Now the process stops, because every polynomial with complex coefficients has roots that
are complex numbers. At least in terms of formulating and solving polynomial equations,
the complex numbers form a closed system. Technically, the complex numbers are said to
be algebraically closed.

This result is known as the Fundamental Theorem of Algebra. Here is a formal statement.
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The Fundamental Theorem of Algebra. A non-constant polynomial with complex co-
efficients has a root in the complex numbers.

The existence of a root also implies a factorization. If a polynomial p(x) has a complex
root ry, then we can factor it in the form p(x) = (x — ry)q(x). Since g(x) will also
have complex coefficients, it too must have a root (unless it is a constant), and it will have
degree one less than p. By applying the Fundamental Theorem in a chain of factorizations,
we will eventually reduce p(x) to a factored form A(x — ry)(x — rp) -+ (x — ry). Thus,
the Fundamental Theorem shows that every polynomial equation with complex coefficients
can be completely factored, and so has all of its roots among the complex numbers.

As in the real case, this is an existence result. And like the real case, it reflects not only the
algebraic properties of the complex numbers, but also the important idea of continuity. This
is a topological or analytic aspect of the complex numbers. Many proofs of the Fundamental
Theorem are known, and they all involve analysis or topology in some way.

Earlier we described the complex numbers as the ultimate number system for polyno-
mial equations. It really would be more accurate to say an ultimate system. In other con-
texts polynomial equations arise with coefficients that are outside the integer-rational-real-
complex progression. For example, polynomial equations with matrix coefficients arise nat-
urally in some areas of mathematics. Another example is provided by modular arithmetic.
It makes perfect sense to discuss the solvability of polynomial equations whose coefficients
are integers modulo five, and that leads to a completely different ultimate number system.

Even so, it remains a valid observation that in familiar number systems, namely those
encompassing the integers, the complex number system is the one that has all the answers.
It provides the proper perspective for understanding polynomials, even in cases that seem
to involve only real numbers. For example, the algebraic solution of cubic equations re-
quires complex numbers, even when all the coefficients and roots are real. Indeed, it has
been argued that solving cubic equations provided a primary motivation for the historical
development of complex numbers [99].

We close this section with an illustration of complex numbers intruding on a real issue.
It is a theorem about real factorizations of real polynomials, but the proof uses complex
numbers.

The Fundamental Theorem of Algebra, Real Case. Every polynomial with real coeffi-
cients can be expressed as a product of linear and quadratic factors with real coefficients.

This is a corollary of the Fundamental Theorem of Algebra, and has a simple proof using
complex conjugation. (See Appendix A at the website for this book [87] for an explanation
of conjugation and other aspects of complex numbers.) In particular, if p(x) has real coef-
ficients, then for any complex number z, p(z) = (). This implies that r is a root of p if
and only if 7 is also a root, because

p(F)=p(r)=0=0.

Over the complex numbers, a polynomial with real coefficients factors as A(x —ry) -
(x—rz) -+ (x —rp) with roots r; that are complex numbers. Some of these may be real. For
those that are not, each factor (x —r) combines with a corresponding factor (x —7) to form
a quadratic factor with real coefficients. This establishes the real case of the Fundamental
Theorem of Algebra.
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4.2 Historic Solution of Cubics and Quartics

In mathematics, the first solution of a problem is often far from the best solution. Later
developments can lead to solutions that are shorter and more transparent than the one first
discovered. However, this is not the case for solving cubic equations (in terms of radicals).
The algebraic solution first published by Cardano in 1545 is as simple as any of the many
variations and alternatives that have appeared since. An example will illustrate how this
solution works. We will consider an example that Cardano used.

In x3 = 20 — 6., substitute ¥ + v for x to obtain

(u + v)® =20—-6(u +v). (1)

The cube on the left is 3 + 3u?v + 3uv? + v3. When we group the > and v3 terms
together and factor 3uv from the remaining terms, we have

u + 03 + 3uvu + v) = 20 — 6(u + v).
Now we separate this one equation into two:

ud +0v3=20

3uv = —6.

Clearly, if we can find numbers u and v that satisfy these two equations, then u + v will
satisfy (1), and hence the original equation.

At first glance, this appears similar to our earlier attempts to solve a cubic using elemen-
tary symmetric functions (see page 50). But this time the system can be solved. In fact,
a solution follows from our understanding of the elementary symmetric functions for a
quadratic. To make this clearer, divide the second equation by 3, and then cube both sides.
The system then takes the form

u? +v3=20
uv® = 8.
Thinking of u3 and v as the unknowns, the system specifies their sum and product —

exactly the requirements for solving a quadratic equation as discussed on page 50. So u>
and v3 must be the solutions of the quadratic equation

12-201—-8=0.

Solving, we find that u> and v must be 10 + 6+/3. Extracting cube roots gives us values
for u and v, and leads to

x=f/10+6¢§+§/10-6«/§ )

as a solution to the original cubic.

In principle, once a root r is known, the factor x — r can be divided out of the origi-
nal cubic. The remaining roots can then be found using the quadratic formula. This is not
a very practical way to proceed in general, and is quite unwieldy in the example at hand.
An alternative is to recognize that extracting a cube root is itself the solving of a polynomial
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The History of the Cubic

The solution of the cubic equation is accompanied by an intriguing human interest
story, centered on a dispute between Cardano and Tartaglia. Scipione del Ferro made
the first progress toward a general algebraic method for cubics sometime between
1500 and 1515. His method applied to equations of the form x> + cx = d, with
both ¢ and d assumed to be positive. Today we consider a single standard cubic
x3 4+ ¢x 4+ d = 0, but in del Ferro’s time negative numbers were not accepted and
the terms of the equation had to be positioned so as to avoid negative coefficients.
To del Ferro, x> + 3x = 5 and x3 + 5 = 3x were distinct problems, and called for
distinct methods of solution.

Although del Ferro’s discovery was a major breakthrough, he did not make it
known within the mathematical community. Rather, he kept his method secret so that
he would be able to solve equations that stumped mathematical rivals. But before his
death in 1526 he passed his method on to two colleagues, Antonio Maria Fiore and
Annibale della Nave. In 1535, Fiore challenged Tartaglia to a problem solving con-
test. Inspired by the problems in the contest, Tartaglia discovered his own method for
solving cubic equations. Following del Ferro’s example, he kept his method secret.

Now Cardano enters the picture. He was working on a book at the time,
and wanted to include Tartaglia’s method. Tartaglia eventually agreed to reveal his
method to Cardano, but wishing to publish the method himself, Tartaglia made Car-
dano promise not to reveal it. This was in 1539. True to his word, Cardano left
Tartaglia’s method out of his book.

But over the next several years, he worked on the cubic himself, working out
methods for all the various cases (what we would regard as possible combinations of
signs of coefficients). He also learned of del Ferro’s original method and obtained the

Sidebar 4.1

equation, and so leads potentially to three solutions. So once we know a value for u> we
should be able to obtain three values for u, corresponding to three roots of the original
cubic equation. We will follow up on this idea below.

Curiously, the solution (2) is a complicated way of writing x = 2, though there is no
simple algebraic method to verify that fact. The simplest verification is to show directly that
2 is a root of the original equation, and, in fact, the only real root. Here we are observing the
tip of an iceberg. There is much more to say about identities involving radical expressions
and how they relate to roots of polynomials, but it would be too great a digression to explore
this topic now. Suffice it to say that it is sometimes difficult to recognize when an algebraic
expression involving radicals has a simpler equivalent form.

Does this single example convince you that Cardano’s method will solve any cubic equa-
tion? One issue is the special form of the example, with no x? term. But we saw in Chapter 3
that any cubic can be brought to this reduced form by making a substitution for the variable
(see page 51). Another objection could arise from the fact that »> and v are supposed to be
obtained as roots of a quadratic. What if the quadratic does not have any real roots? Then
we can express u> and v3 as complex numbers, but how do we find u and v?
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The History of the Cubic (cont.)

Cardano Tartaglia

details from della Nave. Since del Ferro’s discovery preceded Tartaglia’s, and since
Cardano had extended the method to many new cases, Cardano considered himself
no longer bound by his vow to keep Tartaglia’s method secret. In 1545 he published
the Ars Magna (or The Great Art), which included a comprehensive account of meth-
ods for all the possible cubics, as well as a method for the quartic discovered by his
student, Lodovico Ferrari.

Tartaglia was outraged, and thought Cardano had betrayed his trust. To add
insult to injury, in a later mathematical contest he fell to defeat at the hands of Ferrari,
Cardano’s protege. Intrigue, betrayal, triumph, defeat — did you ever imagine that
the history of algebra could be as dramatic as a soap opera?

('1U0D) |t 48G3PIS

Algebra has developed far beyond what was known to Cardano and his contemporaries.
Today we have better notation and symbolic methods, and can draw on the full power of
the complex number system. And in large measure, these tools were developed for the
investigation of polynomial equations.

Our modern vantage point augments the algebraic derivation of Cardano’s solution with
a complete understanding of the solution of the general cubic equation. We now know that
a single valid choice for u and v can be used to completely factor the original cubic; that
this will involve cube roots of complex numbers exactly when the cubic has only real roots;
and how to construct those complex cube roots. These points will be considered in detail
before we proceed to quartic equations.

As a first step of the analysis of the cubic, let us retrace Cardano’s method for the general
equation

x> =bx +ec.

We introduce the substitution x = u + v and derive the equations
w4+vd=c
uv = b/3. A3)



74 Part I: The Province of Polynomia

Cubing the second equation produces

w+vd=c
w3 = p3/27,

a system of equations in u> and v3.
If welet s = u> and ¢ = v3, then the system becomes

s+t=c
st = b3/27.

Now it is apparent that s and ¢ are roots of a quadratic. We extract cube roots of s and ¢
to determine u and v, and hence a solution # + v to the cubic. However, there are actually
three complex cube roots of s. Let ug be a particular cube root of s. Then the other cube
roots can be expressed in terms of ug and w = (-1 + i~/3)/2,a primitive cube root of
unity. There are exactly three complex numbers with cube equal to s, namely ug, wug, and
w?uy.

We do not have equal freedom to choose v among the cube roots of . Referring to (3),
once u has been selected, we must take v = b/(3u), so the system of equations leads
us to exactly three choices for the pair (¥, v). That is, Cardano’s method gives us three
expressions for a root of the cubic equation: ug + b/ (3uo), wug + b/ (3wiug), and w?ug +
b/Bw?up). If we let u = ug and v = b/(3uy), then since w> = 1, our three expressions
for roots of the cubic become u + v, wu + w?v, and wW?u + wv.

There is no reason to assume that the three expressions are distinct, and in fact they need
not be. But we can show that they give a complete factorization for the original cubic. The

elementary symmetric functions again are useful. We consider the product
q(x) = (x —u — v)(x — wu — W?*V)(x — W?*u — wv). 4)

This can be put in descending form with coefficients given by the elementary symmetric
functions of the three roots:

ap = —(u + v)(wu + 0?v)(W*u + wv)
a; = (U + v)(@u + ©*v) + (U + v)(W*u + wv) + (WU + V*V) (WU + W)
ay = —(u + v) — (0u + 0?v) — (V°u + wv).

To simplify these algebraically, it helps to observe that 1 + w + w? = 0, which follows
from 0 = (w3 — 1) = (w — 1)(w? + o + 1). The alternative form w + w? = —1 is also
handy. Using these identities, the system simplifies to

ap = —u® - 03
ay = —3(uv)
aj) = 0.
Since we know that u3 + v3 = ¢ and 3uv = b, it follows that ag = —c,a; = —b, and

the descending form of g(x) is thus x3 — bx — c. This demonstrates that the three roots of
q(x) are all the roots of the original equation x> = bx + c.
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It is important to stress here the dependence of the factorization just derived on an arbi-
trary choice of three possible values of u. For each choice of ug, we get three roots (and
a factorization) of x> — bx — c. This might seem to suggest a total of nine possible roots,
but we know that there must be exactly three. Therefore, each choice of u leads to the
same three roots, appearing in different orders. Earlier, we saw that the coefficients of a
polynomial depend symmetrically on the roots, since permuting the roots has no effect on
the coefficients. But now we see how the idea of permuting the roots arises naturally from
an ambiguity in defining a complex cube root. This same phenomenon occurs any time a
root of a polynomial is expressed in terms of radicals. Each radical can be interpreted as
one of n different complex nth roots, any choice of which leads to a permutation of the
roots produced by any other choice.

Expressing the three roots as in (4) is of interest for another reason. From it we can
deduce that all three roots of the cubic are real precisely when s and ¢ are complex (that is,
are not real). Because s and ¢ arise as roots of the quadratic equation

x2—cex+b3/271=0,

the discriminant D = ¢2 — 4b3/27 tells us whether or not they are real.

If D < 0, then s and ¢ are complex conjugates (and possibly real and equal). In this case,
u and v are also complex conjugates. To see this, note that V=t=5=ud=u. Thus,
v and % are both complex cube roots of ¢, so are equal or differ by a factor of @ or w?. That
is, v = worv = wi or v = w?u. But we also know that uv is real. Thus, v = %, showing
that one of the roots, u + v, is real. Next, observe that » and w? are complex conjugates.
Thus each of the remaining roots, wu + w?v and w?u + wv, is again the sum of a complex
number and its conjugate, and so real. Therefore, when D < 0 all three roots are real.

On the other hand, suppose D > 0. Then s and ¢ are real and unequal. Choosing a real
value for u, and thus ensuring that v is also real, we obtain one real root, ry = u + v. A
second root, r» = w?u + wv, can be rewritten

©*u + ou — ou + wv = —u + oV — u).

If thisisreal, thenv = usos = u? =v3 =1, contrary to assumption. Thus r, is not real,

and by a similar argument, neither is the final root, r3 = wu + w?v.

Putting all this together, we see that a cubic has three real solutions if and only if D < 0,
and three distinct real solutions when D < 0. This latter case occurs precisely when s and
t fail to be real, and then we can reach the real solutions only by operating with complex
numbers.

Itis natural to ask whether this is an artifact of Cardano’s method, or an intrinsic property
of cubic equations. Could there be an alternative method for solving cubics that avoids
complex numbers, at least when the roots are all real? Motivated partly by this question,
we will look at alternate solutions of the cubic in the next section.

Now let us turn to the quartic. As mentioned in Sidebar 4.1, Cardano’s student Ferrari
is credited with first discovering a method for solving quartic equations. In modern form,
Ferrari’s method proceeds as follows.

Begin with a reduced equation (no x> term) written in the form

x*=ax?+bx+ec.
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Now introduce a new variable y and add 2x2y + y? to both sides of the equation, producing
x* +2x%y + 2 =ax? + bx + ¢ +2x%y + y2.

On the left we have a perfect square (x2 + y)2. Call the expression on the right ¢(x), and
arrange the terms in decreasing powers of x to get

qg(x) =(a+ 2y)x2 +bx + (c + y2).

Ferrari’s key insight was that this might also be a perfect square. If so, with a perfect square
on each side, our quartic equation will be solvable. Can we make this happen? That is, can
we find a number y for which g(x) is a perfect square? That will occur if the discriminant
b2 — 4(a + 2y)(c + y?) equals 0.

An example will clarify this. Let a = 7, b = 10, and ¢ = 16. Then g(x) = (7 +
2y)x2 + 10x + (16 + y2), which we want to be a perfect square. Try y = 1, so g(x) =
9x2 4 10x + 17. Is that a perfect square? If so, then it has just one root. But the quadratic
formula gives (—10 =+ i+/512)/18 so there are two roots. This shows that g(x) is not a
perfect square for y = 1. But it also tells us what must be done. We need to change y so
that the quadratic formula involves +/0 instead of /512.

For any choice of y, what appears inside the squareroot is the discriminant of g, given
in our example by 102 — 4(7 + 2y)(16 + y?). We want this to be zero. And it will be
zero if y = —3. (This can be verified by substitution. Never mind, for now, how it was
discovered.) And with y = —3, g(x) becomes x2 + 10x + 25, which is evidently a perfect
square.

The example reveals the pattern for the general case: g(x) = (a+2y)x? +bx+(c+y?)
will be a perfect square when its discriminant is zero. Thus, we want y to satisfy

b2 — 4(a +2y)(c + y») =0,
or in descending form,
8y3 + 4ay? + 8cy — b? + 4ac = 0.

This is a cubic equation in y, so Cardano’s method will give us at least one real solution.
Using it, the equation

x* +2x%y + 9% = (@ 4+ 2y)x% + bx + (c + y?)

has a perfect square on each side, and thus has the form w? = z2. That means we can

simplify to the equation w = =z. This gives us two equations, each of which is quadratic
in x, and so leads us to four roots.
Let us apply this method to one of Cardano’s examples: x* = 12x — 3, in whicha = 0,
b = 12,and ¢ = —3. Introducing y, add 2x2y + y? to both sides of the original equation,
producing
xt 4+ 2x%y + 92 = 12x =3 + 2x%y 4+ )2

Rearranging both sides then gives us

(x2 4+ y)? =2yx% + 12x + (y2 = 3). (5)
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with a perfect square on the left. We make the right-hand side a perfect square as well by
requiring that
144 —8y(y?2 —3) = 0.

In standard form, this becomes
y3 -3y —18=0,

and y = 3 is a solution. (Here, we were fortunate to find a cubic with so simple a root, no
doubt the result of careful planning by Cardano. However, even if that were not the case, at
least one y would be produced by Cardano’s method for cubic equations.)

Substituting in (5), we find

(x2 +3)2 = 6x% + 12x + 6.
As anticipated the right-hand side is a perfect square, so the equation becomes
(2 +3)2 = 6(x + 1)2,

and that leads to
x2 43 =+(x + 1)V6.

Thus we arrive at two quadratic equations

x24+Véx+3+/6=0
x2—~/€x+3—«/6=0.

Solving them gives us the four roots of the original quartic, namely

V6 + Va6 —6 ond —V6+ivVav6+6
— ,

2

Ferrari’s method leads to four solutions for any quartic. The cubic equation in y will
always have a real solution, which leads directly to a pair of quadratic equations in x.
Looked at another way, once we have a value of y, we get a factorization of the original
quartic into two quadratic factors. In the example we can go from

(2 +3)2 = 6(x + 1)?

to
x2+3)2—-6(x + 1)? =0,

and hence to
[(x2 +3) + V6(x + D][(x% + 3) — V6(x + 1)] = 0.

By revealing all the roots in this way, Ferrari’s solution for the quartic is more direct
than Cardano’s solution of the cubic. This runs contrary to the expectation that the algebra
should get progressively more complicated as the degree increases. Of course, you have
to solve a cubic as part of the solution of a quartic, so the latter is not really simpler than
the former. But that point aside, the direct factorization of the quartic does seem simpler
than the factorization based on complex cube roots for the cubic. Similarly, the analysis
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of root permutations works out more simply for four roots than for three, confirming the
impression that the quartic is somehow simpler than the cubic.

On first studying the methods of Cardano and Ferrari, one is struck by the lack of any
unifying strategy. Both methods depend on clever algebraic tricks, but the tricks are com-
pletely unrelated. This suggests that other solutions might exist, based on different alge-
braic tricks, which has proven to be the case. Since the time of Cardano and Ferrari, many
alternative approaches for solving cubic and quartic equations have been discovered. In the
next section we will consider some, and observe that there does appear to be something
inescapable in these solutions. In all of the cubic solutions, a common feature appears, and
the same is true for the quartic. Why does this happen? Why do algebraic tricks that work
so effectively for cubic and quartic equations fail for higher order equations? These are
precisely the questions that inspired Lagrange to focus on symmetric functions of roots,
and so to lay the foundations for key ideas in modern algebra, including group theory and
Galois theory. At the end of this chapter, we will review some of Lagrange’s ideas. For
now, we proceed to alternate solutions of cubic and quartic equations.

4.3 Alternate Solutions for Cubics

For future reference, each solution in this section will be labeled with a descriptive phrase
or with the name of its discoverer and the approximate date of discovery.

Viete, 1591. Begin with the equation x3 + ax + b = 0. Introduce the substitution x =
y —a/(3y). After expanding and simplifying, the original equation becomes y® + by> —
a3/27 = 0. This is a quadratic in y3, and so tells us that

5 —b+ /b¥+4a3/2]
y = 5 :

Given these values for y3, extracting a complex cube root provides a possible value of y.
For each choice of y, we obtain a root for the original cubic from x = y —a/(3y).

Although the algebra follows a different path for this solution than for Cardano’s, the
equation for y is the same as the equation in Cardano’s solution for u, and both approaches
lead to equivalent equations for x.

Euler, 1770. Euler’s solution is essentially identical to Cardano’s except that he starts
with the substitution x = /s + /¢ rather than Cardano’s x = u + v. The algebra is the
same. However, Euler’s notation is worth mentioning here because it so similar to what he
used in the case of the quartic.

Cayley, 1877. Cayley proposed a modified version of Cardano’s solution for the equation
x3 = ax + b, substituting u?v + uv? for x, rather than u + v. Cayley’s substitution leads
to two equations in u and v, but this time only 1> and v* appear. The system is

u? + 03 =3b/a
uvd =a/3.

The right-hand side of the second equation is a bit simpler than in Cardano’s approach,
where in place of a/3 we would find (a/3)>. There is another difference between the two
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methods. In Cardano’s approach, once we define u as one of the possible cube roots of u>,
we are left with a single choice of v. But in Cayley’s solution, we can choose v as any cube
root of v3, independent of the choice of u. Nevertheless, Cayley’s solution to x> = ax + b
is the same as making a change of variables x = y /a/3 and then applying Cardano’s
method.

Equality of Two Cubes. The idea for this method is to recast the equation x> = ax + b
in the form A(x + m)3 = B(x + n)3. Then we can find a solution by taking a cube root of
each side, leading to

B3n — AY3m
Y= T B BB

Thus, one root of the original cubic will be obtained as soon as we know A, B, m, and n.
To find them, express A(x +m)3 — B(x +n)? in descending form and equate coefficients
with x3 — ax — b. That gives the system

A-B=1
3Am —3Bn =0
3Am? —3Bn? = —a

Am3 — Bn® = —b.

Using the first two equations, 4 and B can be found in terms of m and n. Substituting in
the third and fourth equations leads eventually to

m+n =

mn =

wiRg|L

Once again we are led to equations for the sum and product of two unknowns, and hence
to two solutions of a quadratic equation. This system is identical to the one that appears
in Cayley’s approach if we set m = u> and n = v3. Further investigation proves that
the algebraic expressions for the roots revealed by this approach are equivalent to those
obtained in Cardano’s approach.

An interesting story accompanies this solution of the cubic, as retold in the autobiogra-
phy of mathematician Mark Kac. See Sidebar 4.2.

Two Cube Completions. Here is another approach using the idea of a perfect cube, due
to Frink [55]. Rewrite the equation x3 4+ ax = b as

x3

_+3L3+ax—b
8 8 2 2
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Mark Kac and the Cubic

Mark Kac (1914-1984) was a leading mathematician who made pioneering contri-
butions to the modern development of mathematical probability, and in particular its
applications to statistical physics. His work in the latter is commemorated, in part, by
the Feynman-Kac path integral, named after Kac and Richard Feynman. With Paul
Erd6s he introduced probabilistic methods in number theory. He was the author of
several books, including popular and philosophical works in collaboration with fig-
ures such as Stanislaw Ulam and Gian-Carlo Rota. Kac won many awards, among
them the Birkhoff prize (awarded jointly by the AMS and SIAM) and on two sepa-
rate occasions the MAA’s Chauvenet prize. One of the Chauvenet prizes was for the
paper Can One Hear the Shape of a Drum? [73]. Among mathematicians, he may
be best remembered in connection with that paper. Kac also was invited to deliver
quite a few prestigious lectures, including SIAM’s John von Neumann Lecture, the
MAA’s Hedrick Lectures, and the AMS’s Gibbs Lecture.

Kac grew up in Poland. In his autobiography [74], he describes how an early
fascination with cubic equations led him to become a mathematician. When he was
15, he recalls,

Sidebar 4.2

...I became obsessed with the problem of solving cubic equations. Now, I knew
the answer, which Cardan had published in 1545, but what I could not find was
a derivation that satisfied my need for understanding. When I announced that I
was going to write my own derivation, my father offered me a reward of five
Polish zlotys (a large sum and no doubt the measure of his scepticism). I spent
the days, and some of the nights, of that summer feverishly filling reams of pa-
per with formulas. Never have I worked harder. Well, one morning, there it was
— Cardan’s formula on the page. My father paid up without a word, and that fall

In preparation for completing the cube, set 3x3/8 + ax/2 equal to 3xy?/2, which means
that y2 = x2/4 + a/3. Then we obtain
x> 3xy?
— 4 y —
8 2

b
3 6)

We will complete the cube on the left side of this equation in two ways. Let R = 3x2y/4+
y3. Then adding R to both sides produces

(%+y)3=—+R,

while subtracting R from both sides gives

oy
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Mark Kac and the Cubic (cont.)

4!
Q.
D
o
Q
-
B
N
my mathematics teacher submitted the manuscript to “Mlody Matematyk” (The a
Young Mathematician). ... When my gymnasium principal, Mr Rusiecki, heard g
that I was to study engineering, he said, “No, you must study mathematics; you ~+
have clearly a gift for it”. ~
The solution Kac discovered was the one presented here under the heading, Equality
of Two cubes.
As Kac continues his story, he followed the advice of his principal, and as a
result escaped sure destruction in World War II. Had it not been for the opportunities
he found for study abroad in mathematics, and in particular, the fortuitous timing of
his travels, he would undoubtedly have perished alongside his parents and brother at
the hands of the Nazis.
Now we take cube roots to obtain the equations
§+y=,3/§+R %
X 3 b
2 V=V kR ®

whose sum gives x in terms of R:

_ 5[ {/b
x—\/2+R+ 5 R. )

To complete the solution, we need to express R in terms of the coefficients a and b. So
multiply (7) and (8) to obtain
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and observe from the definition of y that the left side is —a /3. Therefore

@’ _ b
27 4
and
b2 a3
R=4y/—+ —.
4+27

Substitution in (9) thus gives the solution

_i/b+ b2+a3+§/b G
*TN2TVT T V2 VT Tar

This derivation seems to avoid the quadratic equation that arose in every other solution.
However, when we obtain the value of R by taking a square root, that is equivalent to
solving a quadratic equation, though a simple one. Moreover, it is essentially what we
would encounter if we solved the quadratics in the earlier approaches by completing the
square. And the solutions found here are in exactly the same form as those obtained using
Cardano’s solution.

Factorization Identities. The quadratic formula can be understood as a consequence of
the identity r?> — s> = (r — 5)(r + s). Any monic quadratic can be put into the form
(x — h)? — 52 by completing the square, and then the identity provides a decomposition
into linear factors. This idea can be extended to cubic equations.

On the right-hand side of the quadratic identity, we can think of the + and — as repre-
senting square roots of unity, that is, £ 1. For cubics, there is a similar identity that involves
the three cube roots of unity, 1, , and w?, where @ = (—1 + i +/3)/2. It can be expressed
in various forms, including

P42+ =3rst = + s+ 1) + s + %) (r + 0’s + o)

and
w(r® + 53 +13) —30%rst = (wr + s +1)(r + ws +1)(r + 5 + wt).

These are equivalent, and it is a matter of taste which form is more memorable, or more
closely resembles the identity for the quadratic case. While either can be used to solve a
cubic equation, we will look at the first version.

First replace r, s, and ¢ with x, —u, and —v:

3

x3—ud =03 = 3xuv = (x —u —v)(x — wu — W?V)(x — w?

U — wv).

This can be used to factor any cubic in the form x> 4+ ax + b by making —(u> + v3) = b
and —3uv = a. Then the roots are u + v, wu + w?v, and w*u + wv. Though different in
concept, this method is algebraically identical to Cardano’s approach.

Change of Variables in Symmetric Equations. In Chapter 3, we considered the idea of
solving a cubic by direct inversion of the equations expressing the coefficients in terms of
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the roots. If the cubic is x3 + ax? + bx + ¢ = 0 and the roots are r, 5, and t, the equations
are

r+s+t=-a
rs+rt+st=5»> (10)
rst = —c,

and all we have to do is find r, s, and ¢ given a, b, and c.
This can be carried out if we make a change of variables using

r=u4+v+w
sS=u+owv+ w’w (11)

I =u+ 0+ ow,

with @ a primitive cube root of unity as before. This will transform (10) into a system in
u, v, and w. If we can determine values for u, v, and w, we will then be able to find r, s,
and z.

So substitute the expressions on the right-hand side of (11) for r, s, and ¢ in (10). The
resulting system can be simplified, using the identities w® = 1, 1 + @ + w? = 0, and their
variants, to obtain

3u = —a
3u? —3vw==b (12)
ud + 03 4+ w? - 3uvw = —c.

Use the first equation to eliminate u from the other two. What remains are equations involv-
ing vw and v3 + w3, essentially the same as we have seen in many of the other approaches.
They can be put into a form that specifies values for the sum and product of v3 and w3,
thus giving v and w as cube roots of the solutions of a quadratic equation. With u, v, and
w thus determined, the roots r, s, and ¢ are given by system (11).

How does this method compare to Cardano’s? In Cardano’s approach, we must take
the preliminary step of eliminating the quadratic term of the cubic. Imposing the same
assumption here amounts to making ¥ = 0. But then system (12) reduces to

vw = —b/3

v34+wd=—c,
the very equations that arise in Cardano’s method.

Matrix Algebra. The preceding solution is intriguing. With a simple change of variables
it permits direct inversion of the elementary symmetric functions. This approach has the
advantage that it is conceptually transparent. Anyone might think of it. But the change of
variables used seems to be unmotivated and mysterious. Even if you recognize the close
links between the algebraic combinations we saw earlier and the definitions of u, v, and
w, it is still not obvious that the change of variables will make system (10) solvable. It is
legitimate to ask how anyone would find this change of variables.
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One answer is provided by matrix algebra. The idea uses the fact that roots of polyno-
mials can be realized as eigenvalues of matrices. Thus, a given matrix leads to both a set of
roots (or eigenvalues) and the corresponding polynomial. This provides another alternate
method for solving cubics and quartics. At its heart, this method corresponds to making a
linear change of variables in the equations for the elementary symmetric functions. But in
this setting the change of variables arises very naturally. These ideas are developed in detail
in [92].

There are still other solutions for cubics. In Chapter 2 we considered an approach using
not radicals, but the similarly defined curly root function. There are also geometric con-
structions (including the one mentioned earlier, attributed to Omar Khayyam), an approach
using differential equations, and even a solution based on origami, or paper folding. But
solutions that can be reduced to algebraic manipulation with radicals inevitably turn out to
be equivalent to Cardano’s method.

This is not just a trivial consequence of the fact that all of the methods have to produce
the same roots, because those roots might conceivably appear in different forms. This is
dramatically illustrated by Cardano’s example x> + 6x — 20 = 0, where the real root 2
appears as :/ 10 + 6+4/3 + 3/ 10 — 64/3. Every other method we have seen for solving a
cubic produces this root in exactly the same outlandish form. Apparently, there is only one
way to skin a cubic, at least as far as algebraic manipulation is concerned. We turn next to
solutions of the quartic, where we will observe a similar phenomenon.

4.4 Alternate Solutions for Quartics

Quartics can be solved by a variety of methods, several of which are analogs of cubic
methods. As before, each method will be identified with a discoverer or a short descriptive
phrase. Unless noted otherwise, we always assume that the equation to be solved is p(x) =
x*+ax?+bx+c=0.

Descartes, 1637. Factor the quartic into a product of two quadratics. The fact that p(x)
has no cubic term implies that the linear coefficients of the quadratic factors must be
equal in magnitude and opposite in sign. Therefore, the factorization we seek has the form
(x% 4 ux 4 v)(x% —ux + w). Expand this into descending form and equate the coefficients
with those of p. That produces the equations
v+w—u’=a
wu—vu =b
W =c.
The first two equations can be rewritten as
v+ w=a+u?
v—w = —b/u,
leading to expressions for v and w in terms of u. When they are substituted into the re-
maining equation, we obtain the equation in u alone
ub 4+ 2au* + (@®> —4c)u®> - b?> =0. (13)

This is a cubic equation in u2, and so is solvable.
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Although this looks different from Ferrari’s solution of the quartic, the cubic equations
that arise in each method are closely related. Substituting 2y —a for u2 in (13) (and adjust-
ing for the opposite signs of the coefficients in the two approaches) reproduces Ferrari’s
cubic equation in y exactly. Though Descartes’ method uses a different approach, it leads
to an equivalent cubic equation, and factors the quartic into the same product of quadratic
factors.

Euler, 1770. Euler’s solution to the quartic is an extension of his solution of the cubic.
He begins by assuming x = /7 + /s + +/1. He squares this, simplifies, squares a second
time, and eventually obtains

x* =20r+s+0)x2—8Vrstx + (r +s +1)> —4(rs+rt +s1) = 0.

Now his idea is to make this match the original quartic by choosing r, s, and t appropriately.
That way, we will know that x = /7 + /5 + /¢ is one root of the original quartic. Equate
the coefficients of the two equations to derive

—2(r+s+t)=a
—8rst =b
(r+s+1)?—4@rs+rt+st)=c.

In these equations Euler recognized the elementary symmetric functions for three vari-
ables. Withr + s+t = 01, rs + rt + st = 03, and rst = o3, the system can be rewritten

a

O'|=—§
b2
3=

o,2 — 40, = c.

To simplify further, use the first equation to eliminate o; from the last equation, yielding

_ a
0']——5
b2
U3=6—4
_a?—4c
2= "6

These equations specify the elementary symmetric functions of r, s, and ¢ in terms of the
known coefficients a, b, and c. This is exactly analogous to the situation where we specify
the sum and product of two variables. And just as the two-variable case tells us that the
unknown variables are roots of a particular quadratic, so we can conclude here that r, s,
and ¢ are the roots of the cubic polynomial having —oy, 02, and —o3 as coefficients. That
is, they are the roots of

2 2
— 34 (%) ,2 a’—4c\ _b*
glx) = x +(2)x +( = )x =
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Using known methods, we can solve this cubic to find r, s, and ¢, and thus derive a root of
the quartic we began with.

Here we have a third algebraic approach, different in form from the other two. Once
again, the analysis depends on solving a cubic. And once again, it is essentially the same
cubic. In fact, with the substitution x = u? /4 Euler’s cubic becomes Descartes’ cubic.

Change of Variables in Symmetric Equations. As for the cubic, a quartic equation can
be solved by direct inversion of the symmetric functions, after making a suitable change of
variables. If we label the roots of x* + ax3 + bx2 4+ cx + d as g, r, s, and ¢, then the
original system is

g+r+s+t=-a
qr+qs+qt+rs+rt+st=>b
qrs +qrt +gst +rst = —

grst =d.

Substituteq = u+v+w+z,r =u+v—w—z,s =u—v+w-—z,andt =u—v—w+z.
The first equation then shows that u = —a/4, and we can use that to eliminate u from the
remaining equations. After simplification, they become

3a% —8b
V+witz?= -2 T
3-16
Svwz 4+ a(v? + w? 4 z%) = %
2 4
W*+w*+z% 202w+ v2 2%+ w?z?) — %—(v2+w2+22) —2a(vwz) =d — 5615—6

This system can be simplified by using symmetric functions of v2, w2, and z%: oy =
v2+w?+22, 05 = v2w?+v2z2+w?z%, and 03 = (vwz)?. Also, v+ w*+z* = 62-20,.
Using these identities, the system becomes

o — 3a? - 8b
T 16
3-16
8\/(_)'-;4'00'1 = g——ﬁ‘-‘c'
2 a4
—40'2 — ?0'1 20«/0'3 =d - ﬁ

Although this appears to be complicated, it is a triangular system. The first equation tells
us the value of o;. Substituting it into the second equation determines the value of o3.
Then, substituting both o} and o3 into the third equation establishes the value of ¢,. Thus,
we get each o in terms of a, b, ¢, and d. From this point the solution proceeds as in Euler’s
analysis. With known expressions for each o, it follows that v2, w2, and z?2 are roots of a
cubic. The solutions of that cubic lead to v, w, and z, and we already know that u = —a/4.
At last, the values of u, v, w, and z lead to corresponding values for the roots, g, r, s, and
t of the original quartic.
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To relate this approach to the ones already considered, we impose the assumptiona = 0.
Then the system of equations is readily solved, revealing

_—b
o1 —7
0y = b?—4d
16
C2
o3 = a

Thus, v2, w2, and z2 are roots of

e b 24 b? —4d x_cz
2 16 64"

This is the same as the polynomial g(x) that appeared in Euler’s solution, except that here
the coefficients b, ¢, and d, respectively, play the roles of the coefficients a, b, and ¢ from
the earlier analysis.

Matrix Algebra. The remarks following the change of variables solution for the cubic
also apply to the quartic. It is intriguing that a simple change of variables permits the
solution of a quartic by directly inverting the elementary symmetric functions. But the lack
of a rationale for defining the new variables detracts from the appeal of this approach. As
mentioned before, matrix algebra provides an alternative viewpoint for solving cubics, and
leads in a natural way to an appropriate change of variables. This matrix algebra viewpoint
works in the same way for the quartic as well.

Looking back over all of the solutions to both cubics and quartics, several patterns stand
out. For all of the cubic solutions it is necessary to solve an auxiliary quadratic equation.
Likewise, each solution of the quartic depends on finding the roots of an auxiliary cubic
equation. Moreover, all of the cubic solutions depend on the roots of the same or closely
related quadratics. Likewise, all of the quartic solutions involve variations of the same cu-
bic. These observations suggest that beneath the surface appearance of fortuitous algebraic
gimmicks, there is an underlying structure dictating the form of the solution. Such an idea
occurred to Lagrange, who analyzed this structure. Lagrange wanted to understand the suc-
cesses in solving cubics and quartics, as well as the failure of all efforts to solve quintics.
Although he did not settle the question of the quintic, he laid the foundation that permitted
others to do so. In the next section we will see how Lagrange’s ideas of symmetry and root
permutation can be used to solve quartic equations.

4.5 Solving Quartics with Symmetry

As detailed in Sidebar 4.3, Lagrange and Vandermonde analyzed the significance of sym-
metry in solutions of cubic and quartic equations, working independently and essentially
simultaneously around 1770. Reportedly, although they started with the same approach,
Lagrange went further and his work had the greater impact on later developments. The
following discussion is based loosely on his approach.

We have seen many methods for solving cubic and quartic equations. They all have in
common the solution of an extra equation. We set out to find the roots of one polynomial
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p(x) (let’s call it the original polynomial), but along the way we discover we have to find
the roots of an auxiliary' polynomial A(x). When p is a cubic, 4 is a quadratic; when p
is a quartic, A is a cubic. And in both cases, the coefficients of the auxiliary polynomial are
polynomial combinations of the coefficients of the original polynomial.

Lagrange set out to understand how and why an auxiliary polynomial arises. He used
ideas related to the elementary symmetric functions that we considered in Chapter 3. For
each polynomial the coefficients are symmetric functions of its roots. In addition, the co-
efficients of A depend on the coefficients of p, while the roots of p depend on the roots of
A.

To illuminate the power of Lagrange’s ideas, we will depart from his path. Where he
analyzed a known solution of the quartic, we will pretend to know no solution. Then, using
Lagrange’s insights, we will see how to manufacture an auxiliary polynomial, based not on
an algebraic trick, but on the understanding of symmetry.

To begin, we introduce notation for the coefficients and the roots of the original and
auxiliary polynomials. Let p(x) = x* +ax3 + bx2 + cx + d withroots g, r, s, and 1. We
will assume that 4 is a cubic, writing A(x) = x3 4+ Ux? + Vx + W, and denote the roots
u, v, and w.

Now, what properties must an auxiliary polynomial have? First, it must be possible to
obtain the roots of p from the roots of A. After all, that is the entire point of having an
auxiliary polynomial. Second, its coefficients must be expressible as functions of the coef-
ficients of p, and for simplicity, we will require that they be polynomial functions. At the
same time, for both polynomials, the coefficients are known functions of the roots. All of
these relationships are shown in Fig. 4.1.

Ist requirement

Roots of p(x) < Roots of A(x)
q,r, 8t | memmm——————— > u, v, w
symmetric symmetric
functions functions
o O
Coefficients 2nd requirement Coefficients
of p(x) e of A(x)
a,b,c,d uv,w

Figure 4.1. Related roots and coefficients for p(x) and A(x).

Inspired by these ideas, let us focus on how u, v, and w depend on g, r, s, and ¢, repre-
sented in the figure by the dashed arrow. Given equations

u= f(q,rs,t)
v=2g(g.rs,t) (14)
w = h(q,r,s,t)

we can satisfy the first requirement for an auxiliary polynomial by solving for g, r, s,
and ¢ in terms of u, v, and w. For the second requirement we make a key observation. The

I'This is sometimes also referred to as a resolvent polynomial.
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Lagrange and Vandermonde

Joseph-Louis Lagrange (1736-1813) and Alexandre-Théophile Vandermonde
(1735-1796) made independent discoveries in the analysis of polynomial equations.
A sketch of their contributions is given by Edwards [47, §15]. Edwards explains
that although Vandermonde’s early work in this area included promising insights, he
(Vandermonde) went no further with it. The analyses of Vandermonde and Lagrange
had much in common, but later developments primarily credited the contributions of
Lagrange. Edwards’ says

€ ¥ 1eqoapls

Although Vandermonde had insightful ideas in other areas of mathematics as
well, he does not seem to have followed these up either, and he is remembered
today only because the name “Vandermonde determinant™ was given to a deter-
minant which, ironically, does not occur in his work at all.

Unlike Vandermonde, who was French but did not have a French name, La-
grange had a French name but was not French. He was Italian (he was born with
the name Lagrangia and his native city was Turin) and at the time of the publica-
tion of his [Réflexions sur la Résolution Algébrique des Equations, 1770-1771]
he was a member of Frederick the Great’s Academy in Berlin. When he left
Berlin in 1787 he went to Paris, where he spent the rest of his life and where, of
course, he was a leading member of the scientific community; this has tended
to reinforce the impression that he was French. He was certainly the greatest
mathematician of the generation between Euler and Gauss, and, indeed, has a
secure place among the greatest mathematicians of all time.

coefficients of A will be expressible in terms of the coefficients of p if permutations of the
roots of p leave the set {u, v. w} unchanged.

To see why, note that (14) makes U, V, and W functions of g, r. s. and ¢, as suggested by
the figure. Now consider what happens in (14) when we permute g, r, s, and ¢. We have not
assumed that f, g, and h are symmetric functions, so the individual values of u, v, and w
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may be altered. But this must amount to a permutation of u, v, and w if we assume the set
{u, v, w} remains unchanged. Then, U, V, and W will not change at all, since they depend
symmetrically on u, v, and w. Thus U, V, and W are symmetric functions of g, r, s, and ¢,
and so expressible in terms of the elementary symmetric functions o by the fundamental
theorem on symmetric polynomials (page 64). This shows that U, V, and W are expressible
in terms of the coefficients of p, which differ from the o3 by at most a change of sign.

To complete the construction of an auxiliary polynomial, we must specify the functions
f, g, and h in (14). Here we follow Lagrange and define

u=(@+r)(s+1)
v=1(q+s)(r+1) (15)
w=(q+1)(r+s).

With these equations it is easy to check that every permution of g, r, s, and ¢ leaves the set
{u, v, w} unchanged. Therefore, the coefficients of A will be expressible in terms of the the
coefficients of p. And this is not just a theoretical result. Knowing neither the roots of p
nor those of 4, we can find the coefficients of 4 explicitly as functions of the coefficients
of p. This echoes our earlier work with symmetric combinations of roots, for example the
sum of the squares, which we expressed in terms of the coefficients. In essence, when we
are dealing with explicit symmetric functions of the roots, the fundamental theorem on ele-
mentary symmetric polynomials allows us to invert the mapping from roots to coefficients
of a polynomial. Thus, in the figure, we can add an arrow from the coefficients to the roots
of p. This provides a path from the coefficients of p to the coefficients of 4, and so satisfies
the second requirement for an auxiliary polynomial.

However, before carrying out this step, we should verify that it will lead to a solution
of the original quartic p. Since A is a cubic, once we know its coefficients we can find its
roots, u, v, and w. But will we then be able to solve (15) forg, r, s, and t?

From u,v,w to q,r,s,t. Alone, the three equations of (15) are not enough to find the
four roots of p. But we also know all of the coefficients of p. From our knowledge of the
elementary symmetric functions,

q+r+s+1t=-a. (16)

With this additional equation, (15) can be solved for g, r, s, and ¢, as we shall now see.
Using (16), we eliminate ¢ from (15) to obtain a solvable system of three equations in

three unknowns. The algebra is simplified if the original quartic has no cubic term. That

can always be arranged, we know, by making a change of variables. So without loss of

generality, we assume thata = 0. Then t = —g — r — s, and 15 becomes
~g+r)’=u
—(g + s)2 =v

—(r+5)?=w.
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This leads to
q+r=«u«
g+s=4
r+s=y

where ¢ = +/—u, 8 = £/—v, and y = £+ ,/—w. Thus we obtain a linear system in ¢,
r, and s, with solution

1
5(014‘!3—)/)

<
I

‘
I

1
=50 -B+a)

s = %(y+ﬂ—a).

Andsince t = —(q + r + 5), we also get
t=—(a+pB+vy)/2.

This verifies that we can find the roots of p once we know the roots of A.

Where does that leave us? We have seen that, with an understanding of symmetry, it is
possible to formulate proposed roots of an auxiliary polynomial in terms of the unknown
roots of a quartic. Without actually computing either the auxiliary polynomial or its roots,
we have deduced that the auxiliary coefficients will be computable in terms of the known
original coefficients, and that the roots of the original polynomial will be obtainable from
the auxiliary roots. In this way, it is possible to engineer a method for solving quartics,
without actually working out the steps of the method in detail.

To complete this analysis we should carry out the construction of A(x). As usual, we
may assume that the original quartic has no cubic term, so that ¢ + r + s + ¢t = 0.
However, even with this simplifying assumption, the algebra required to find A(x) remains
forbidding. First, we know how the coefficients U, V', and W depend on the roots u, v, and
w:

U=—-u+v+w)
V =uv 4+ vw + wu

W = —uvw.

Next, using (15), we determine U, V, and W as functions of q, r, s, and ¢. They will be
symmetric functions, and expressing them in terms of the elementary symmetric functions
is the final step. That will give U, V, and W in terms of a, b, ¢, and d.

Although this program can be completed by hand, modern technology provides an easier
alternative. We can use a computer algebra system, as discussed in Sidebar 3.3. This is
practical even without the simplifying assumption g +r + s+t = 0. Using Maple and trial
and error, it took me about half an hour to express U, V, and W in terms of the elementary
symmetric functions in g, r, s, and ¢. Here are the results:

U = —20'2
V = 022 + 0103 — 404

W = —010,03 + 032 + 04012.
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How does this approach compare with those discussed in the preceding section? To com-
pare the auxiliary polynomial derived here with the ones found earlier, we again impose the
constraint g +r + s+t = 0, or equivalently, oy = 0. Then the formulas for the coefficients
U, V, and W simplify to

U= —20’2
V = 022 — 40,
W = cg.
If we write the original polynomial as x* + ax? 4+ bx + ¢, thena = 02, b = —03, and

¢ = oy4. With those substitutions, the auxiliary polynomial becomes
AX) = x3 + Ux? 4+ Vx + W = x3 —2ax? + (a®> — 4c)x + b>.

This is closely related to the auxiliary polynomials we saw in the previous section. For
example, the auxiliary polynomial featured in Descartes’ method is —A(—u?).

This shows that in all of the quartic methods we have considered, the auxiliary polyno-
mial is essentially the same as the one found by Lagrange’s analysis. Lagrange knew that
the solvability of the cubic and quartic depended on the existence of auxiliary polynomials,
which he showed could be discovered using the tools of symmetry. Attacking the quintic
equation in the same way, Lagrange was led to an auxiliary polynomial of sixth degree, and
he could find no way to reduce it. Ultimately he gave up the attempt to solve higher degree
equations, concluding, in the words of Kline [101, p. 605] that either the problem was be-
yond human capacities or the nature of the expressions for the roots must be different from
all those thus far known.

This conclusion was later proven correct. Our final topic for this chapter is the insolv-
ability by radicals of equations of degree 5 and higher.

4.6 Quintic and Higher Degree Equations

It has already been mentioned that no general methods exist for solving quintics and higher
degree equations in terms of radicals. The proof depends on an analysis of permutations of
roots, and is fully developed in what today is called Galois Theory. It is beyond the scope
of this book to give anything like a complete account of this topic. But having come so far
in the discussion of polynomial equations, it would be a shame not to at least describe the
main ideas in general terms.

We begin with the idea of a permutation group. As an instance, we might consider a set of
four objects, say {q,r, s, t}. A permutation rearranges their order. Formally, a permutation
is a function that maps the set of elements to itself, creating a one-to-one correspondence.
One example of such a pairing is shown in Fig. 4.2.

Since a permutation is one-to-one, it is invertible. Reversing the directions of all the
arrows defines a permutation, and applying the original and reverse permutations in order
has the same effect as the identity function, f(x) = x. In general, when two permutations
are composed, that is, applied one after the other, the result is again a permutation. If we
denote the first permutation by « and the second by 8, then for any element x of our set, the
result of the combined operation will be B(c(x)). It is customary to denote the combined
operation Ba.
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q o 9
r e r
N LK
t ® ¢

Figure 4.2. A sample permutation.

The set of permutations of any set forms an algebraic system called a group. Concep-
tually that means that the elements are invertible, and together they form a closed system.
The same may be true of a subset of a group. In the set {g, r, 5, t} let & be the permutation
that exchanges g and r, leaving s and ¢ fixed. Then « is its own inverse, because applying
it twice restores ¢ and r to their original positions. The set consisting of « and the identity
function thus constitute a closed system. It, too, is a permutation group, but not the group
of all possible permutations of {q, r, s, t}, so it is called a subgroup of the full permutation
group.

We have seen that the idea of permuting roots of a polynomial arises naturally when
we express the roots in terms of radicals. In Cardano’s solution of the cubic, there was
an ambiguity in extracting a cube root of u. For complex u, there are three different cube
roots, and switching from one to another permutes the roots of the original cubic. But we
do not wish to deal only with polynomials that can be solved by radicals, so we need to
understand how permutations might arise in other ways.

The modern viewpoint is to focus on number systems. We begin with the rational num-
bers, the system that contains the coefficients of our original polynomial. Next we extend
the number system to include a root of our polynomial. If the root is, say, 3 + ﬁ, then we
can form the set of numbers of the form a + b+/5 with rational a and b. This formulation
emphasizes +/5 as a new element that must be incorporated into the number system. But we
could equally well have incorporated the other square root of 5. In the end we arrive at the
same number system. But the ambiguity in the choice of square roots of 5 has the effect of
defining a transformation of the number system. The root 3 + 4+/5 defined as a result of one
choice would instead have been 3 — 4+/5 had we made the other choice. This corresponds
to the transformation a + b~/5 — a—b+/5, and is an analog of complex conjugation. There
are two key properties of this transformation. First, it leaves all of the original elements of
the number system unchanged. Second, it permutes the roots of our original polynomial.
Thus, if 2 + 34/5 is a root of a polynomial with rational coefficients, 2 — 34/5 is also a
root, and the transformation changes one into the other. More generally, permutations of
roots arise any time we have a transformation of the extended number system that leaves
elements of the original number system unchanged. The set of all transformations of this
type gives rise to a group of permutations of the roots.

Galois theory is the study of number system transformations and the corresponding per-
mutation groups. The root permutation group for a particular polynomial depends on the
coefficients, and can either be the full permutation group or a subgroup. Distinguishing
between these cases and understanding each group’s structure are central aspects of the
theory.

The idea of extending number systems also provides a way to consider roots that are
expressed in terms of radicals. We begin again with the rational numbers, which we will
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call system 1. We can extend this to a larger number system, system 2, by incorporating
one new element, %/a, where a is some element of system 1. Next we extend the number
system again by incorporating a second new element /b, with m’ possibly different from
m, and with b some element of system 2. Continuing, we can build up a number system
that incorporates any radical expression through a chain of extensions. At each stage of the
chain, we incorporate one new mth root into the preceding number system.

What we add at each stage is a root to a very simple polynomial, one of the form x™ —r.
In fact, all of these are roots of one master polynomial, the product of all the individual
simple polynomials. Because the factors are very simple, Galois theory makes it possible
to analyze the root permutation groups for the master polynomial, and the transformations
of number systems at each stage of the process. Out of this comes a key result: If a fifth
degree polynomial has roots expressible in terms of radicals, then the root permutation
group for this polynomial cannot be the full group of permutations of the five roots (and
similarly for polynomials of degree greater than 5).

At this point, we have enough of the background to consider an example: p(x) = 3x°> —
15x + 5. Methods of calculus show that this polynomial has three real roots and two non-
real complex roots. Using Galois theory, that is enough to imply that the root permutation
group for this p(x) is the full group of permutations of five roots. But it was stated earlier
that this could not occur for a polynomial whose roots are expressible in terms of radicals.
This shows that the roots of 3x> — 15x + 5 cannot be expressible in terms of radicals.

What is the significance of this example? It shows that there cannot be a general method
for solving quintics akin to the ones for cubics and quartics. If there were such a method, it
would have to apply to 3x> — 15x + 5, giving the roots in terms of radicals. But we know
the roots have no such expression.

That does not mean that no quintics can be solved in terms of radicals. For example,
we saw how to solve palindromic quintics with radicals in Chapter 2. But at least some
quintics are not solvable using radicals, and that is enough to rule out the existence of a
general method.

This completes our exploration of methods for solving polynomial equations. As men-
tioned early on, the idea of searching for roots in terms of radicals is somewhat arbitrary,
and reflects the historical development of the subject. But this tradition is completely natu-
ral in the context of the elementary mathematics curriculum. As we have seen, cubics and
quartics, like quadratics, have readily understood solutions using only elementary algebra.
On the other hand, there are no such general solutions for equations of higher degree. Not
surprisingly, it is easier to exhibit methods for solving cubics and quartics using radicals
than it is to prove that corresponding methods cannot exist for higher degree equations.
This is a central result of modern mathematics, and the ideas on which it rests remain a
cornerstone for ongoing research in the field. Here, we have traced the beginnings of Ga-
lois theory, from properties of elementary symmetric functions and permutations of roots
of polynomials arising out of the consideration of solutions for cubics and quartics .

Even without understanding all of the details of Galois theory, it is worthwhile to have
some idea of what it involves. It is Galois theory, after all, that provides the complete
picture of solvability in terms of radicals: there are known radical methods for degree four
or less, and no such methods are possible for quintics or higher degree polynomials. That
is certainly worth knowing.
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4.7 History, References, and Additional Reading

For general historical reading on polynomial equations, both Katz [94] and Kline [101]
are recommended. A more focussed treatment is provided by Edwards [47]. This work
carefully develops the ideas of Lagrange, Galois, and the other key figures in the search
for roots of polynomial equations and provides a rich source of historical information as
well. Stewart makes the development of methods to solve polynomial equations the central
theme of his account of mathematical symmetry [153].

Galois’ life makes a dramatic tale, and some of the retellings apparently have empha-
sized drama over accuracy. For a fascinating account of the true story and some of the
exaggerations, see Rothman [136]. Peterson [129] presents a lighter overview of the Galois
story.

The history of polynomial equations is tightly connected to the history of algebraic meth-
ods and notation, which is nicely summarized by Gouvea and Berlinghoff [15]. In a related
vein, Kleiner [99] argues that it was precisely the investigation of Cardano’s method for
cubics that forced the introduction of complex numbers.

In the discussion of Cardano’s solution, we encountered a surprising arithmetic fact:

2= i/10+6~/§+ i/10—6~/§‘

There is an article on identities of this sort by Osler [128].

References for the alternate solutions of quartics and cubics are: Viete’s solution of the
cubic, [101, p. 269]; Euler’s solution of the cubic and quartic, [42]; Descartes’ solution of
the quartic and Cayley’s solution of the cubic, [8, p. 20-22]; equality of two cubes, [49, 80,
156]; two cube completions, [55]; factorization identities, [91]; change of variables, [127,
160]; matrix algebra, [92].

Solutions to cubic and quartic equations can be constructed using paper folding tech-
niques. An explanation of the solution of cubics can be found in [69, activity 6]. For more
in depth discussions of cubics and quartics see [2, 46].

There are a great many other papers about the solution of cubics and quartics in exposi-
tory mathematics journals, including [3, 65, 163, 168, 170].

The biographical information on Mark Kac in Sidebar 4.2 was taken from [126]. I learned
about Kac’s solution of the cubic in Roy’s paper [137]. Although Kac describes solving the
cubic in his autobiography, he does not say how he did it. Roy gives the details of the
derivation that Kac published as a student.



