
NMSA405: exercise 5 { symmetric simple random walk

Definition 2.6: Let X1, X2, . . . be an iid random sequence such that P(X1 = 1) = P(X1 = −1) = 1/2.
We call the corresponding random walk (Sn) the symmetric simple random walk.

Exercise 5.1: (Proposition 2.9) (Reflection principle) Let (Sn) be a symmetric simple random walk.
Consider the stopping time T , the first hitting time of the set {a} by the random walk for a given a ∈ N.
Denote

Srk = 2Smin{k,T} − Sk, k ∈ N.

Then
(Sr1 , S

r
2 , . . . )

d
=(S1, S2, . . . ).

Exercise 5.2: (Proposition 2.10) (Maxima of the symmetric simple random walk) For a symmetric
simple random walk (Sn) denote Mn = maxk=1,...,n Sk, n ∈ N. Consider the stopping time T , the first
hitting time of the set {a} by the random walk for a given a ∈ N. Then

P(T ≤ n) = P(Mn ≥ a) = 2P(Sn ≥ a)− P(Sn = a) and lim
n→∞

P(Mn ≥ a) = 1.

NMSA405: exercise 6 { martingales

Definition 2.10: Let {Fn} be a filtration and let X = (X1, X2, . . .) be a sequence of integrable
random variables. We say that X is an Fn-martingale if it is Fn-adapted and E[Xn+1|Fn] = Xn a.s.
for all n ∈ N. If {Fn} is the canonical filtration of X, we call X simply a martingale and it satisfies
E[Xn+1|X1, X2, . . . , Xn] = Xn a.s. for all n ∈ N. If the equality sign is replaced by ≥, X is called
Fn-submartingale or submartingale, respectively. If the equality sign is replaced by ≤, X is called Fn-
supermartingale or supermartingale, respectively.

Exercise 6.1: (Proposition 2.18) Let (Xn) be a sequence of independent integrable random variables.
Denote Sn = X1 + . . .+Xn for n ∈ N.

• c) If EXn = 1 for all n ∈ N then Zn =
∏n
j=1Xj is a martingale.

• d) If P(Xn = −1) = q and P(Xn = 1) = p where p ∈ (0, 1) and p + q = 1 then Yn = (q/p)Sn is
a martingale.

Exercise 6.2: Consider the probability space ([0, 1],B([0, 1]), λ|[0,1]), a finite measure µ � λ on
([0, 1],B([0, 1])) and an increasing sequence of sets {0 = tn0 < tn1 < . . . < tnkn = 1} such that

max
k∈{0,1,...,kn−1}

|tnk+1 − tnk | → 0.

Denote Bnk = [tnk , t
n
k+1) and

Dn(x) =
µ(Bnk )

λ(Bnk )
, x ∈ Bnk .

Show that (Dn) is an (Fn)-martingale where Fn = σ(Bn1 , . . . , B
n
kn

). What is the a.s. limit of Dn for
n→∞?

Exercise 6.3: Let Y be an integrable random variable and let (Fn) be a filtration. Consider the sequence
Xn = E[Y | Fn], n ∈ N, and show that (Xn) is a Fn-martingale.

Exercise 6.4: (Pólya urn model) Consider an urn which at time n = 0 contains b black and w white
balls, b, w ∈ N. At each time n ∈ N we draw a ball from the urn at random, write down its color and put
it back together with ∆ ∈ N new balls of the same color. Denote Xn the relative frequency of the white
balls in the urn at time n (i.e. the ratio of the number of white balls to the number of all balls in the
urn at the given time). Show that (Xn) is a martingale. Consider also the case with ∆ = 0 or ∆ = −1.



Exercise 6.5: A deck of cards contains a black and b red cards. The deck has been shuffled randomly
and we start drawing the cards from the top one after another. Denote Xn the relative number of black
cards after drawing n cards where n ∈ {0, . . . , a + b − 1}. Let Xn = Xa+b−1 for n ≥ a + b. Show that
(Xn) is a martingale.

Exercise 6.6: Let (Xn) be a sequence of random variables such that the probability density function
fn : Rn → (0,∞) of the random vector (X1, . . . , Xn) is positive on Rn. Suppose we are given a con-
sistent system of probability density functions (gn), i.e. gn : Rn → [0,∞) fulfills

∫
Rn gn(x) dx = 1 and∫

R gn+1(x, y) dy = gn(x) for almost all x ∈ Rn. We define the likelihood ratio

Sn =
gn(X1, . . . , Xn)

fn(X1, . . . , Xn)
, n ∈ N.

Show that (Sn) is a martingale.

Exercise 6.7: Let (Fn) be a filtration on the probability space (Ω,F ,P) and (Qn) a consistent system
of Fn-probability measures, i.e. Qn+1|Fn

= Qn for n ∈ N, such that Qn � P|Fn
. We define Xn = dQn

dP|Fn
.

Show that (Xn) is a Fn-martingale.

Exercise 6.8: Let Xn : (Ω,F) → (Sn,Sn), n ∈ N, be a sequence of random variables. Let P be
a probability measure on (Ω,F) and (νn) a consistent system of probability distributions such that
νn � PX1,...,Xn =: µn. Similarly as above show that the likelihood ratio Tn = dνn

dµn
(X1, . . . , Xn) between

H1 : (X1, . . . , Xn)T ∼ νn and H0 : (X1, . . . , Xn)T ∼ µn is a σ(X1, . . . , Xn)-martingale under the null
hypothesis H0.

Exercise 6.9: Let (Xn) be an iid random sequence. Let α ∈ R be such that β = lnEeαX1 ∈ R. We
define Zn = exp{αSn − βn} where Sn = X1 + . . .+Xn. Show that (Zn) is a martingale.

Exercise 6.10: Let (Xn) be a sequence of independent integrable random variables with zero mean.

We define Mn =
∑n
k=1

∏k
i=1Xi for n ∈ N. Show that (Mn) is a martingale.

NMSA405: exercise 7 { Doob decomposition

Definition 2.11: Let {Fn} be a filtration. The random sequence I1, I2, . . . is Fn-predictable if In is
Fn−1-measurable for all n ∈ N, where we put F0 = {∅,Ω}, i.e. I1 is a constant.

Theorem 2.20: Let {Sn} be an F-submartingale. Then there exists an Fn-martingale {Mn} and
a non-decreasing Fn-predictable sequence {In} so that Sn = Mn + In, n ∈ N. The summands Mn and
In are a.s. uniquely determined under the additional condition I1 = 0. The sequence {In} is called the
compensator of {Sn}.

Exercise 7.1: Let (Xn) be an iid random sequence with EX1 = 0, EX2
1 = σ2 ∈ (0,∞) and E exp{X1} =

γ <∞. Consider the corresponding random walk (Sn). Show that the following sequences are submartin-
gales and determine their compensators:

• a) S2
n,

• b) Vn = X2
1 + . . .+X2

n,

• c) exp{Sn}.

Exercise 7.2: Let (Xn) be a Fn-martingale such that Xn ∈ L2. Show that

In =

n∑
k=1

var(Xk | Fk−1)

is the compensator of the sequence Zn = X2
n where F0 = {∅,Ω}.


