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1 Introduction

1.1 The role of definitions.

This course is an extended form of lectures which author have given for
graduate students of Charles University (Prague, Czech Republic) in autumn
of year 2003.

In this section we follow books [56, 59].
In mathematics one should strive to avoid ambiguity. A very important

ingredient of mathematical creativity is the ability to formulate useful defi-
nitions, ones that will lead to interesting results.

Every definition is understood to be an if and only if type of statement,
even though it is customary to suppress the only if. Thus one may define:
”A triangle is isosceles if it has two sides of equal length”, really meaning
that a triangle is isosceles if and only if it has two sides of equal length.

The basic importance of definitions to mathematics is also a structural
weakness for the reason that not every concept used can be defined.

1.2 Sets.

A set is well-defined collection of objects. We summarize briefly some of the
things we shall simply assume about sets.

1. A set S is made up of elements, and if a is one of these elements, we
shall denote this fact by a ∈ S.

2. There is exactly one set with no elements. It is the empty set and is
denoted by ∅.

3. We may describe a set either by giving a characterizing property of
the elements, such as ”the set of all members of the United State Senate”,
or by listing the elements, for example {1, 3, 4}.

4. A set is well defined, meaning that if S is a set and a is some object,
then either a is definitely in S, denoted by a ∈ S, or a is definitely not in
S, denoted by a /∈ S. Thus one should never say ”Consider the set S some
positive numbers”, for it is not definite whether 2 ∈ S or 2 /∈ S.

1.3 Partitions and equivalence relations.

Definition. A partition of set is a decomposition of the set into cells such
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that every element of the set is in exactly one of the cells. Two cells (or sets)
having no elements in common are disjoint. Let a ∼ b denote that a is is
in the same cell as b for a given partition of a set containing both a and b.
Clearly the following properties are always satisfied: a ∼ a; if a ∼ b, then
b ∼ a; if a ∼ b and b ∼ c, then a ∼ c, i.e. if a is in the same cell as b and b is
in the same cell as c, then a is in the same cell as c.

Theorem. Let S be a nonempty set and let ∼ be a relation between
elements of S that satisfies the following properties:

1. (Reflexive) a ∼ a for all a ∈ S.
2. (Symmetric) If a ∼ b, then b ∼ a.
3. (Transitive) If a ∼ b and b ∼ c, then a ∼ c.
Then ∼ yields a natural partition of S, where ā = {x ∈ S |x ∼ a} is

the cell containing a for all a ∈ S. Conversely, each partition of S gives
rise to a natural relation ∼ satisfying the reflexive, symmetric, and transitive
properties if a ∼ b is defined to mean that a ∈ b̄.

Definition. A relation ∼ on a set S satisfying the reflexive, symmetric,
and transitive properties is an equivalence relation on S. Each cell ā in the
natural partition given by an equivalence relation is an equivalence class.

Definition. The Cartesian product of sets S1, S2, . . . , Sn is the set of
all ordered n-tuples (a1, a2, . . . , an) where ai ∈ Si. The Cartesian product is
denoted by either S1×S2×· · ·×Sn or by

∏n
i=1 Si. If S1 = S2 = · · · = Sn = S,

then we have S × S × · · · × S = Sn = {(a1, a2, . . . , an) | ai ∈ S} (the n-th
power of the set S).

1.4 Maps.

One of the truly universal concepts that runs through almost every phase of
mathematics is that of a function or mapping from one set to another. One
could safely say that there is no part of mathematics where the notion does
not arise or play a central role. The definition of a function from one set to
another can be given in a formal way in terms of a subset of the Cartesian
product of these sets. Instead, here, we shall give an informal and admittedly
nonrigorous definition of a mapping (function) from one set to another.

Let S, T be sets; function or mapping f from S to T is a rule that assigns
to each element s ∈ S unique element t ∈ T .

Definition. The mapping f : S → T is onto or surjective if every t ∈ T
is the image under f of some s ∈ S; that is, if and only if, given t ∈ T , there
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exists an s ∈ S such that t = f(s).

Definition. A mapping f : S → T is said to be one-to-one (written 1-1)
or injective if for s1 6= s2 in S, f(s1) 6= f(s2) in T . Equivalently, f is 1-1 if
f(s1) = f(s2) implies s1 = s2.

Definition. A mapping f : S → T is said to be 1-1 correspondence or
bijection if f is both 1-1 and onto (i.e. f is injective and surjective map).

We shall consider the set A(S) all bijections of S onto itself. When S
has finite number of elements, say n, then A(S) has a special name. It is
called the symmetric group of degree n and it will be denoted as Sn. Its
elements are called permutations of S. In the investigation of finite groups
and quasigroups, Sn plays a central role.

A sequence xm, xm+1, . . . , xn, where m,n are natural numbers and m ≤ n,
will be denoted by xn

m, a sequence x, . . . , x (k times) will be denoted by xk.
The expression 1, n designates a set {1, 2, . . . , n} of natural numbers [14].

An n-ary operation defined on a non-empty set Q is a map A : Qn −→
Q such that D(A) = Qn, i.e. this map is defined for any n-tuple. The
number n is called arity of operation A. If the element c corresponds to
the n-tuple (b1, b2, . . . , bn), then we shall write this fact in the following form
A(b1, b2, . . . , bn) = c, or in the form A : (b1, b2, . . . , bn) 7−→ c.

If n = 2, then the operation A is called a binary operation, if n = 1, then
the operation A is called unary operation, if n = 0, then the operation A is
called nul-ary operation (∀a ∈ Q A(a) = e, where e is a fixed element of the
set Q).

2 Objects

2.1 Groupoids and quasigroups.

A binary groupoid (G,A) is understood to be a non-empty set G together
with a binary operation A.

Often one uses different symbols to denote a binary operation, for exam-
ple, ◦, ?, ·, i.e. we may write x ◦ y instead A(x, y).

An n-ary groupoid (G,A) is understood to be a non-empty set G together
with an n-ary operation A.

There exists a bijection (1-1 correspondence) between the set of all bi-
nary (n-ary, arity is fixed) operations defined on a set Q and the set of all
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groupoids, defined on the set Q. Really, A←→ (Q,A).
As usual an

1 = (a1, a2, . . . , an), 1, n = {1, 2, . . . , n}. We shall say that
operations A and B coincide, if A(an

1 ) = B(an
1 ) for all ai ∈ Q, i ∈ 1, n.

The order of n-ary groupoid (Q,A) is cardinality |Q| ( ¯̄Q) of the carrier
set Q. An n-ary groupoid (Q, ·) is said to be finite whenever its order is
finite.

Any finite n-ary groupoid (not a very big size) (Q,A) it is possible to
define as a set of (n + 1)-tuples (a1, a2, . . . , an, A(an

1 )). In binary case any
finite binary groupoid it is possible to define as a set of triplets or with help
of square table, for example, as:

· a b c
a a a b
b b c a
c c a b

where a · c = b. This table is called Cayley table of groupoid (Q, ·), where
Q = {a, b, c}.

Note. Usually it is supposed that elements of carried set Q are arranged.
So the groupoid (Q, ◦) defined with help of the following Cayley table

◦ b c a
b c a b
c a b c
a a b a

is equal (as set of triplets) to the groupoid (Q, ·), but (Q, ·) 6= (Q, ∗), where
groupoid (Q, ∗) has the following Cayley table:

∗ b c a
b a a b
c b c a
a c a b

.

Definition 1. An n-ary groupoid (Q,A) with n-ary operation A such
that in the equality A(x1, x2, . . . , xn) = xn+1 knowledge of any n elements
of x1, x2, . . . , xn, xn+1 uniquely specifies the remaining one is called n-ary
quasigroup ([14]).

In binary case this definition is equivalent to the following:
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Definition 2. Binary groupoid (Q, ◦) is called a quasigroup if for all or-
dered pairs (a, b) ∈ Q2 there exist unique solutions x, y ∈ Q to the equations
x ◦ a = b and a ◦ y = b ([12]).

Let (G, ·) be a groupoid and let a be a fixed element in G. The so-called
translation maps La and Ra can be defined by Lax = a · x, Rax = x · a for
all x ∈ G. It follows that La : G −→ G and Ra : G −→ G for each a ∈ G.
These maps will play a prominent role in much of what we do.

Example of quasigroup and its left and right translations.

· a b c
a a c b
b c b a
c b a c

For this quasigroup we have the following left and right translations:
La = (bc);Lb = (ac);Lc = (ab);Ra = (bc);Rb = (ac);Rc = (ab).

It is easy to see that in Cayley table of a quasigroup (Q, ·) each row and
each column is a permutation of the set Q. So we may give the following
definition of a quasigroup.

Definition 3. A groupoid (G, ·) is called a quasigroup if the maps La :
G −→ G, Ra : G −→ G are bijections for all a ∈ G ([95]).

Note. Condition “the equation x ◦ a = b has unique solution for all
a, b ∈ Q” and “Ra is bijection of the set G for any a ∈ G” are equivalent.
Similarly, are equivalent conditions “the equation a◦y = b has unique solution
for all a, b ∈ Q” and “La is bijection of the set G for any a ∈ G”.

Really, if we fix the element a, we see that for any element b ∈ Q there
exist unique elements x, y ∈ Q such that R◦

ax = b and L◦
ay = b, i.e. trans-

lations R◦
a, L

◦
a are bijections. If translations R◦

a and L◦
a are bijections, then

x = (R◦
a)

−1b, y = (L◦
a)

−1b.

Note. An unbordered Cayley table of a quasigroup is a Latin square.

A groupoid (Q, ◦) is called a right quasigroup if, for all a, b ∈ Q, there
exists a unique solution x ∈ Q to the equation x ◦ a = b, i.e. in this case any
right translation of the groupoid (Q, ◦) is a permutation of the set Q.

A groupoid (Q, ◦) is called a left quasigroup if, for all a, b ∈ Q, there exists
unique solution y ∈ Q to the equation a ◦ y = b, i.e. in this case any left
translation of the groupoid (Q, ◦) is a permutation of the set Q.
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A left and right quasigroup (Q, ◦) is called a quasigroup.

2.2 Parastrophy. Quasigroup as algebra with three bi-
nary operations.

From Definition 1 it follows that in binary case with any quasigroup (Q,A)
it possible to associate else (3! − 1) = 5 quasigroups, so-called parastrophes
of quasigroup (Q,A): A(x1, x2) = x3 ⇔ A(12)(x2, x1) = x3 ⇔ A(13)(x3, x2) =
x1 ⇔ A(23)(x1, x3) = x2 ⇔ A(123)(x2, x3) = x1 ⇔ A(132)(x3, x1) = x2.

In other words

Aσ(xσ1, xσ2) = xσ3 ⇔ A(x1, x2) = x3,

where σ ∈ S3. For example, A(132)(x3, x1) = x2 ⇔ A(x1, x2) = x3: that is,

A(132)(x(132)1, x(132)2) = x(132)3 ⇔ A(x1, x2) = x3.

Usually the operation (12)A is denoted as “ ∗ ”, the operation (13)A is
denoted as “/”, the operation (23)A is denoted as “\”.

Note. Notion of parastrophy has sense and for groupoids. Now we give
a theorem on parastrophes of groupoids without a proof. We hope, below we
will be able to prove more general theorem.

Theorem. (1) If (1 3)-parastrophe of a groupoid (Q,A) is a groupoid,
then (Q,A) is a right quasigroup.

(2) If (2 3)-parastrophe of a groupoid (Q,A) is a groupoid, then (Q,A) is
a left quasigroup.

(3) If (1 2 3)-parastrophe of a groupoid (Q,A) is a groupoid, then (Q,A)
is a quasigroup.

(4) If (1 3 2)-parastrophe of a groupoid (Q,A) is a groupoid, then (Q,A)
is a quasigroup.

(5) If (1 2)-parastrophe of a left quasigroup (Q,A) is a groupoid, then
(Q,A) is a quasigroup.

(6) If (1 2)-parastrophe of a right quasigroup (Q,A) is a groupoid, then
(Q,A) is a quasigroup.

(7) If (2 3)-parastrophe of a right quasigroup (Q,A) is a groupoid, then
(Q,A) is a quasigroup.

(8) If (2 3)-parastrophe of a left quasigroup (Q,A) is a groupoid, then
(Q,A) is a quasigroup.
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It was happened that class of quasigroups in signature with one binary
operation is not closed relatively homomorphic images, i.e. homomorphic
image of a quasigroup can be only division groupoid, but not a quasigroup
[9]. Below we give some definitions in order to make situation more clear.

Definition. A groupoid (G, ·) is called left cancellation, if the following
implication fulfilled: a · x = a · y ⇒ x = y for all a, x, y ∈ G, i.e. translation
La is injective map for any a ∈ G.

A groupoid (G, ·) is called right cancellation, if the following implication
fulfilled: x · a = y · a ⇒ x = y for all a, x, y ∈ G, i.e. translation Ra is
injective map for any a ∈ G ([62]).

A groupoid (G, ·) is called cancellation, if it is left and right cancellation.

Example. Let x ◦ y = 2x+ 3y for all x, y ∈ Z, where (Z,+, ·) is ring of
integers. It is possible to check that (Z, ◦) is cancellation groupoid.

A groupoid (G, ·) is said to be a left (right, resp.) division groupoid if La

(Ra, resp.) is surjective for every a ∈ G; it said to be division groupoid if it
is a left and right division groupoid ([62]).

We can give equivalent definition of division groupoid.
Definition. A groupoid (G, ·) is called division groupoid, if equations

a ·x = b and y · a = b have solutions (not necessary unique solutions) for any
ordered pair of elements a, b ∈ Q.

Example. Let x ◦ y = x2 · y3 for all x, y ∈ C, where (C,+, ·) is field of
complex numbers. It is possible to check that (C, ◦) is a division n groupoid.

Theorem. Finite cancellation groupoid is a quasigroup, finite division
groupoid is a quasigroup.

Proof. We remember well known fact that, if Q is a finite set, then any
injective (x 6= y ⇒ ϕx 6= ϕy) map ϕ on this set (ϕ(Q) ⊆ Q) is a bijective
map, any surjective map ψ of this set into itself (ψ(Q) = Q) is a bijective
map, too.

Since any left and right translation of a cancellation groupoid (G, ·) is an
injective map, then in case when the set G is finite, we have that (G, ·) is a
quasigroup.

Similarly, since any left and right translation of division groupoid (G, ·)
is a surjective map, then in case, when the set G is finite, we have that any
division groupoid is a quasigroup.

It is true the following
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Theorem. Any homomorphic image of a quasigroup (Q, ·) is a division
groupoid.

We hope, we will be able to prove this theorem below.

Problem. Number N of all binary quasigroups of order n is more than
n!(n − 1)!(n − 2)! . . . 2!1! (i.e. this is lower bound of number N) ([34]). To
find exact formula for number of all binary (m-ary, m ≥ 3) quasigroups of a
fixed finite order n.

Definition 4. A groupoid (Q, ·) is called a quasigroup, if on the set
Q there exist operations ”\” and ”/” such that in algebra (Q, ·, \, /) the
following identities are fulfilled:

x · (x\y) = y, (1)

(y/x) · x = y, (2)

x\(x · y) = y, (3)

(y · x)/x = y. (4)

Note. Identities (1) and (2) provide existence of solutions of equations
x · a = b and a · y = b, identities (3) and (4) provide uniqueness of solutions
in these equations. See below.

Prove equivalence Definitions 2 and 4.

(Definition 2 ⇒ Definition 4). Let (Q, ·) be a quasigroup. Since for
every pair of elements a, b ∈ Q there exists an unique element x such that
a · x = b, we can associate with this equation an operation on the set Q,
namely a · x = b↔ a\b = x. If we substitute the last expression in equality
a · x = b, then we obtain a · (a\b) = b for all a, b ∈ Q. We received identity
(1) from Definition 4.

Similarly, y · a = b↔ b/a = y, (b/a) · a = b for all a, b ∈ Q and we obtain
identity (2).

Identities (3) and (4) follow from definitions of operations \ and /. Really,
x\(x · y) = y ↔ x · y = x · y, (y · x)/x = y ↔ y · x = y · x.

(Definition 4 ⇒ Definition 2). Let (Q, ·, /, \) be an algebra with three
binary operations such that in this algebra identities (1), (2), (3) and (4)
hold.

We need to prove the existence and the uniqueness of solutions of equa-
tions a · x = b and y · a = b.
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(Existence). Let x = a\b. Then a · x = a(a\b) (1)
= b. Similarly, if y = b/a,

then y · a = (b/a) · a (2)
= b.

(Uniqueness). Suppose that there exist two solutions x1 and x2 of equa-
tion a · x = b, i.e. a · x1 = b and a · x2 = b. Then x1 = a\b and further we
have

x1 = a\b = a\(ax2)
(3)
= x2.

Similarly, if y1 · a = b and y2 · a = b, then y1 = b/a,

y1 = b/a = (y2 · a)/a
(4)
= y2.

Note. Often Definition 4 it is used by study word problems, free objects
in Quasigroup Theory.

It is possible to rewrite identities (1)-(4) on language of translations in
the following form:

L
(·)
x L

(\)
x y = y (1)? R

(·)
x R

(/)
x y = y (2)?

L
(\)
x L

(·)
x y = y (3)? R

(/)
x R

(·)
x y = y (4)?

We defined left and right translations of a groupoid and, therefore, of a
quasigroup. But for quasigroups it is possible to define and the third kind of
translations, namely Pa : x 7−→ Pa(x), and x · Pax = a ([16]).

In the following table there are connections between different kinds of
translations in different parastrophes of a quasigroup (Q, ·).

Table 1.

ε (12) (13) (23) (123) (132)

R R L R−1 P P−1 L−1

L L R P−1 L−1 R−1 P
P P P−1 L−1 R L R−1

R−1 R−1 L−1 R P−1 P L
L−1 L−1 R−1 P L R P−1

P−1 P−1 P L R−1 L−1 R

Thus, in Table 1, for example, R(23) = P (·).

Exercise. To prove that following identities hold in algebra (Q, ·, \, /):

x/(y\x) = y, (5)
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(x/y)\x = y, (6)

or, equivalently, L
(/)
x R

(\)
x y = y,R

(\)
x L

(/)
x y = y.

Solving. From Table 1 it follows that L
(/)
x = P−1

x , R
(\)
x = Px.

We recall, we use the following order by multiplication of permutations:
(αβ)x = α(βx), where α, β are permutations of the set Q, x ∈ Q.

Remark. Equalities (1)?− (4)? help to construct Cayley tables of quasi-

groups (Q, \) and (Q, /). From (1)? we have L
(\)
x y = (L

(·)
x )−1y, from (2)? we

have R
(/)
x y = (R

(·)
x )−1y

Problem. Research properties of algebra (Q, ·, /, \) with various combi-
nations of identities (1)-(6).

2.3 Ochadkova-Snasel binary quasigroup based cryp-
tosystem.

Eliska Ochodkova and Vaclav Snasel ([92]) proposed to use quasigroups for
secure encoding of file system.

A quasigroup (Q, ·) and its (23)-parastroph (Q, \) satisfy the following
identities x\(x · y) = y, x · (x\y) = y (identities (1) and (3)). The authors
propose to use this property of the quasigroups to construct a stream cipher.

Definition. Let A be a non-empty alphabet, k be a natural number,
ui, vi ∈ A, i ∈ {1, ..., k}. A fixed element l (l ∈ A) is called leader. Then
f(u1u2...uk) = v1v2...vk ⇔ v1 = l · u1, vi+1 = vi · ui+1, i = 1, 2, ..., k − 1 is an
ciphering algorithm.

An enciphering algorithm is constructed in the following way:

f (\)(v1v2...vk) = u1u2...vk ⇔ u1 = l\v1, ui+1 = vi\vi+1, i = 1, 2, ..., k − 1.

Authors say that this cipher is resist to the brute force attack and to the
statistical attack.

Example.
Table 1. Let quasigroups (A, ·) and (A, \) are defined by following Cayley

tables

· a b c
a b c a
b c a b
c a b c
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\ a b c
a c a b
b b c a
c a b c

Let l = a and u = b b c a a c b a. Then the cipher text is v = c b b c a a c a.
Applying of decoding function on v we get b b c a a c b a = u.

Remark. There exists a sense to study possibilities of use an n-ary
quasigroup and its parastrophes in Ochodkova-Snasel construction.

2.4 Identity elements

Definition. An element f(b) of a quasigroup (Q, ·) is called left local identity
element of an element b ∈ Q, if f(b) · b = b, in other words, f(b) = b/b, or
f(b) = R−1

b b.
An element e(b) of a quasigroup (Q, ·) is called right local identity element

of an element b ∈ Q, if b ·e(b) = b, in other words, e(b) = b\b, or e(b) = L−1
b b.

An element e is a left (right) identity element for quasigroup (Q, ·) means
that e = f(x) for all x ∈ Q (respectively, e = e(x) for all x ∈ Q).

An element e is identity element for a quasigroup (Q, ·) means that e(x) =
f(x) = e for all x ∈ Q, i.e. all left and right local elements for quasigroup
(Q, ·) coincide.

Definition. A quasigroup (Q, ·) with an identity element e ∈ Q is called
a loop.

Theorem. A quasigroup (Q, ·) with identity x ·(y ·z) = (x ·y) ·z (identity
associativity) is a loop (is a group).

The following identities are called Moufang identities: x(y ·xz) = (xy ·x)z,
(zx · y)x = z(x · yx), yx · zy = y(xz · y).

Theorem. A quasigroup (Q, ·) with any from Moufang identities is a
loop.

Definition. A groupoid (Q, ·) is called a loop, if on the set Q there exist
operations ”\” and ”/” such that in algebra (Q, ·, \, /) the following identities
are fulfilled: x·(x\y) = y, (y/x)·x = y, x\(x·y) = y, (y ·x)/x = y, x/x = y\y.

Problem. It is easy to see that in loops 1 · ab = 1a · 1b. Describe
quasigroups with the property f(ab) = f(a)f(b) for all a, b ∈ Q, where

12



f(a) is left local element of element a. Medial quasigroups (with identity
xy · uv = xu · yv), right F-quasigroup (with identity yz · x = yf(x) · zx)
possess such property ([13]).

2.5 Multiplication group of quasigroups.

Let (Q, ·) be a quasigroup. With every element a ∈ Q it is possible to asso-
ciate left (La), right (Ra) and middle (Pa) translations. These translations
are some permutations of the set Q. They can be considered as elements of
the symmetric group SQ.

With any quasigroup (Q, ·) it is possible associate sets of all left transla-
tions (L), right translations (R), middle translations (P). We denote groups
generated by all left, right and middle translations of a quasigroup (Q, ·) as
LM(Q, ·), RM(Q, ·) and PM(Q, ·), respectively.

The group generated by all left and right translations of a quasigroup
(Q, ·) is called (following articles of A.A. Albert) multiplication group of
a quasigroup. This group usually denoted as M(Q, ·). This group play
important role by study of quasigroups, especially by study of loops.

By FM(Q, ·) we shall denote a group generated by sets L,R,P of a qua-
sigroup (Q, ·).

There is a sense to name the approach to study quasigroups with help of
their multiplication groups as Albert’s way.

Theorem. (A.A. Albert.) The center of a loop (Q, ·) is isomorphic to
the center of the group M(Q, ·).

On a quasigroup (Q, ·) of finite order n it is possible to see as on a set
T of permutations of the group Sn with the property: if α, β ∈ T and there
exists an element x ∈ Q such that α−1βx = x, then α = β.

A set T of permutations on a finite set Q is called sharply transitive, if
for any pair of elements a, b ∈ Q there exists exactly one permutation α ∈ T
such that αa = b.

Set of all left (right, middle) translations of a quasigroup (Q, ·) give us a
sharply transitive set of permutations on the set Q.

Center Z of a group G is a set (a subgroup) of elements of this group
such that ax = xa for all elements x ∈ G, a ∈ Z.

Theorem. If Q is a group, then LM(Q) ∼= Q, M/Z ∼= Q/Z × Q/Z,
FM ∼= M h Z2, FM(Q, ·) ∼= PM(Q, ·) ([100]).
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The importance of multiplication groups lies in the connections between
the structure of a quasigroup and structure of its multiplication group. Some-
times it is easier to gain insight into a quasigroup or a loop by studying its
multiplication group. Especially important role multiplication groups play
in the theory of normality of quasigroups and loops.

Let (Q, ·) be a quasigroup. The group Ih = {α ∈ M(Q, ·)|αh = h}
is called inner mapping group of a quasigroup (Q, ·) relatively an element
h ∈ Q. Group Ih is stabilizer of element h by action (α : x 7−→ α(x) for all
α ∈ M(Q, ·), x ∈ Q) of group M(Q, ·) on the set Q. In loop case usually it
is studied the group I1(Q, ·) = I(Q, ·), where 1 is the identity element of a
loop (Q, ·).

It is possible to define “inner mapping groups” for groups LM(Q, ·),
RM(Q, ·), PM(Q, ·), FM(Q, ·) of a quasigroup (Q, ·), namely, it is possible
to define groups LIh(Q, ·), RIh(Q, ·), PIh(Q, ·), FIh(Q, ·). Of course, it is
possible to define “inner mapping groups” for other ”multiplication groups”
of a quasigroup (Q, ·).

Since all listed above multiplication groups of a quasigroup (Q, ·) act
transitively on the set Q, inner mapping groups relatively different elements
of the set Q are isomorphic, for example, PIh(Q, ·) ∼= PIg(Q, ·), FIh(Q, ·) ∼=
FIg(Q, ·) and so on.

Theorem. (V.D. Belousov). In a quasigroup (Q, ·)

Ih(Q, ·) =< Ra,b, La,b, Ta | a, b ∈ Q >,

where Ra,b = R−1
a•bRbRa, h(a • b) = (ha)b, La,b = L−1

a◦bLaLb, (a ◦ b)h = a(bh),
Ta = L−1

σaRa, σ = R−1
h Lh.

Theorem. ([102]). In a quasigroup (Q, ·)

Ih(Q, ·) =< La,b, Ta,b | a, b ∈ Q >,

where La,b = L−1
a◦bLaLb, (a ◦ b)h = a(bh), Ta,b = L−1

a?bRbLa, (a ? b)h = ah · b.
Corollary. (R.H. Bruck). In a loop (Q, ·)

Ih(Q, ·) =< Ra,b, La,b, Ta | a, b ∈ Q >,

where Ra,b = R−1
ab RbRa, La,b = L−1

ab LaLb, Ta = L−1
a Ra.

Proposition.([101]). In a quasigroup (Q, ·)

LIh(Q, ·) =< La,b | a, b ∈ Q >,
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where La,b = L−1
a◦bLaLb, (a ◦ b)h = a(bh).

Proposition.([102]). In a loop (Q, ·)

PIh(Q, ·) =< Pa,b | a, b ∈ Q >,

where Pa,b = P−1
a\bPaPb.

Problems. To describe groups that can be or cannot be multiplication
group of a loop (of a quasigroup). We hope, our reader will be able to
generalize this problem on other “multiplication groups” of quasigroups and
loops (or left quasigroups).

We notice, there are many articles in which properties of quasigroups
(or loops) are studied with various conditions on their various kinds inner
multiplication groups (articles of T. Kepka, A. Drapal, M. Nimenmaa and
their pupils).

2.6 Transversals. “Come back way”.

If we gave a quasigroup (Q, ·), then we have a possibility to generate (to
obtain) groups M(Q, ·), LM(Q, ·), Ih(Q, ·), LI(Q, ·) and so on.

Transversals give us a possibility to construct any loop from a group and
a subgroup of this group. Let (G, ·) be a group, (H, ·) is its subgroup, 1 is
the identity element of this group. A complete system T of representatives
of the left cosets aH, a ∈ G is called a left transversal in group (G, ·) by (to)
subgroup (H, ·).

I.e., from any coset ai · H we take only one element, for example, el-
ement ai. Thus G = 1 · H t a1 · H t a2 · H t . . . an · H t . . . and
T = {1, a1, a2, . . . , an, . . . } is a left transversal.

Define on the set T an operation ? in the following way: a ? b = a · b
(mod H). Probably R.Baer was the first who defined this operation on a
transversal ([6, 7]). It is possible to check that that (T, ?) is a right quasigroup
with identity element 1, i.e. equation a ? x = b has unique solution for any
a, b ∈ Q and 1 ? x = x ? 1 = x for all x ∈ T .

If (T, ?) is a loop, then is called a loop transversal.
In general, any quasigroup (Q, ◦) it is possible to construct in this way,

i.e. as a left transversal of a group by its subgroup with operation ?. Really,
we can take (G, ·) = LM(Q, ◦) and (H, ·) = ILh(Q, ◦).
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Example. Let G = S3 = {a, b | a3 = b2 = (ab)2 = 1} =
{1, a, a2, b, ab, a2b}, H =< b >. We have the following set of left cosets:
H = {1, b}, aH = {a, ab}, a2H = {a2, a2b}. Elements {b, ab, a2b} form
transversal T . We can construct Cayley table of right quasigroup (T, ?).

? b ab a2

b b a2 ab
ab ab b a2

a2 a2 b ab.

If we denote b as 1, ab as 2, a2 as 3, then we obtain the following Cayley
table:

? 1 2 3
1 1 3 2
2 2 1 3
3 3 1 2.

3 Morphisms

3.1 Isotopy of groupoids and quasigroups.

An ordered (n+ 1)-tuple of permutations (bijections) of a set G is called an
isotopism (an isotopy).

Definition. Set T of all isotopisms of a set Q forms a group Sn+1
Q =

SQ×SQ×· · ·×SQ which is a direct sum (n+1) copies of the group SQ relatively
the following operation (multiplication of (n+1)-tuples): (µ1, µ2, . . . , µn+1)∗
(ν1, ν2, . . . , νn+1) = (µ1ν1, µ2ν2, . . . , µn+1νn+1).

Let G be a class of all n-ary groupoids (arity is fixed) defined on a set Q,
Q be a class quasigroups defined on a set Q. Define action of elements of
the group T on classes G,Q in the following way: if (Q, f) is n-ary groupoid,
T = (ν1, ν2, . . . , nun, nn+1) ∈ T , then (Q, f)T = ν−1

n+1f(ν1x1, ν2x2, . . . , νnxn)
for all x1, x2, . . . , xn.

Theorem. (i) GT = G, (ii) QT = Q.

Proof. (i). If (Q, f) is an n-ary groupoid, T = (ν1, ν2, . . . , nun, nn+1) ∈
T , then (Q, f)T define some other n-ary groupoid (Q, g) since the operation
g(xn

1 ) = ν−1
n+1f(ν1x1, ν2x2, . . . , νnxn) is defined for all x1, . . . , xn ∈ Q.
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(ii). Prove this theorem for binary case. For n-ary (n > 2) the proof is
similar. Let (Q, ·) be a quasigroup and T = (α, β, γ) is an isotopy. Prove
that operation x ◦ y = γ−1(αx · βy) is a quasigroup operation. From (i) it
follows, that (Q, ◦) is a binary groupoid.

For any fixed element x the map L◦
x is a permutation of the set Q, since

L◦
xy = γ−1L·

αxβy and product of permutations is a permutation. The map
R◦

yx = γ−1R·
βyαx is a permutation, too. Taking into consideration Definition

3 of a quasigroup, we conclude, that groupoid (Q, ◦) is a quasigroup.

Corollary. Any isotope of a left (right) quasigroup (Q, ◦) is a left (right)
quasigroup.

Problem. To describe identities such that a class K of n-ary (binary)
groupoids (quasigroups, left quasigroups) with these identities is closed rel-
atively isotopisms, i.e. KT = K. Class of binary groups is closed relatively
isotopisms, class of quasigroups isotopic to G-loops, (to groups) is such class,
too.

We give and more traditional definition of isotopy. We say that n-ary
groupoid (G, f) is an isotope of n-ary groupoid (G, g) if there exist permuta-
tions µ1, µ2, . . . , µn, µ of the set G such that

f(x1, x2, . . . , xn) = µ−1g(µ1x1, . . . , µnxn) (1)

for all x1, . . . , xn ∈ G.We can write this fact and in the form (G, f) = (G, g)T
where T = (µ1, µ2, . . . , µn, µ).

If in (1) f = g, then (n + 1)-tuple (µ1, µ2, . . . , µn, µ) of permutations of
the set G is called an autotopy of n-groupoid (Q, f). The last component
of an autotopy of an n-groupoid is called a quasiautomorphism (by analogy
with binary case).

A set of all autotopies of a groupoid (Q, f) forms the group of autotopies
relatively the usually defined operation on this set: if T1 = (µ1, µ2, . . . , µn, µ)
and T2 = (ν1, ν2, . . . , νn, ν) are autotopies of groupoid (Q, f), then T1T2 =
(µ1ν1, µ2ν2, . . . , µnνn, µν) is an autotopy of groupoid (Q, f). Autotopy group
of a groupoid (Q, f) will be denoted as T(Q, f).

If in (1) µ1 = µ2 = · · · = µn = µ, then groupoids (Q, f) and (Q, g) are
isomorphic.

At last, if in (1) the n-ary operations f and g are equal and µ1 = µ2 =
· · · = µn = µ, then we obtain an automorphism of groupoid (Q, f), i.e. a
permutation µ of the set Q is said an automorphism of an n-groupoid (Q, f)
if for all x1, . . . , xn ∈ Q the following relation is fulfilled: µf(x1, . . . , xn) =
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f(µ1x1, . . . , µnxn). We denote by Aut(Q, f) automorphism group of an n-ary
groupoid (Q, f).

We list some properties of isotopisms. As usual ε denotes identity per-
mutation.

Lemma 1. If α, β, γ) is an isotopism, then (α, β, γ) = (α, β, ε)∗(ε, ε, γ) =
(α, ε, ε) ∗ (ε, β, ε) ∗ (ε, ε, γ) = (ε, β, ε) ∗ (ε, ε, γ) ∗ (α, ε, ε) and so on.

The last Lemma helps by construction of Cayley tables of isotopic image
of a finite quasigroup (groupoid).

Remark. If (Q, ◦) = (Q, ·)(α, ε, ε), i.e. x ◦ y = αx · y for all x, y ∈ Q,
then L◦

xy = L·
αxy.

If (Q, ◦) = (Q, ·)(ε, β, ε), i.e. x ◦ y = x · βy for all x, y ∈ Q, then
R◦

yx = R·
βyx.

Let (Q, ◦) = (Q, ·)(ε, ε, γ), i.e. x◦y = γ−1(x·y) for all x, y ∈ Q. Therefore,
if x · y = a, then x ◦ y = γ−1a.

This Remark helps us to find Cayley table of isotopic image of a groupoid
in the following way: if we have isotopy (α, β, γ), then we permute rows by
the rule L◦

x = L·
αx, past this we permute columns by the rule R◦

y = R·
βy,

and finally we rename elements into Cayley table by the following rule: if
x · y = a, then x ◦ y = γ−1a. As it follows from Lemma 1, we can change
order of execution of steps 1, 2, 3.

Example. Let T = ((1234), (12)(34), (123)). Let a quasigroup (Q, ·) has
the following Cayley table:

· 1 2 3 4
1 2 1 3 4
2 3 2 4 1
3 4 3 1 2
4 1 4 2 3.

If we apply to this quasigroup isotopy ((1234), ε, ε) (change of rows), then
we obtain the following Cayley table

∗ 1 2 3 4
1 2 1 3 4
2 3 2 4 1
3 4 3 1 2
4 1 4 2 3,
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further, if we ally to this quasigroup the isotopy (ε, (12)(34), ε) (we change
order of columns in previous Cayley table), then we obtain such quasigroup

◦ 1 2 3 4
1 2 3 1 4
2 3 4 2 1
3 4 1 3 2
4 1 2 4 3,

finally, with help of isotopy (ε, ε, (123) (γ−1 = (132)) we rename elements
inside the last Cayley table:

• 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 4 3 2 1
4 3 1 4 2.

Definition. Isotopism of the form (α, β, ε) is called a principal isotopism.

Usually we shall write the fact that groupoids (Q,A) and (Q,B) are
isotopic in such form: (Q,A) ∼ (Q,B)

Lemma. Any isotopism up to isomorphism is a principal isotopism.

Proof. Let (Q,A) and (Q,B) are isotopic groupoids. If (Q,B) =
(Q,A)(α, β, γ), then (Q,B)(γ−1, γ−1, γ−1) = (Q,A)(αγ−1, βγ−1, ε). There-
fore (Q,C) = (Q,A)(αγ−1, βγ−1, ε), where (Q,C) = (Q,B)(γ−1, γ−1, γ−1).

Definition. Let (Q, ·) be a quasigroup, a, b be any fixed elements of the
set Q. Isotopism of the form (R−1

a , L−1
b , ε) where Lb, Ra are left and right

translations of the quasigroup (Q, ·) is called LP-isotopy (loop isotopy).

Theorem. Any LP-isotope of a quasigroup (Q, ·) is a loop.

Proof. Prove that quasigroup (Q, ◦), where x ◦ y = R−1
a x · L−1

b y, is
a loop. Let 1 = b · a. Then we have (x = 1) 1 ◦ y = R−1

a ba · L−1
b y =

R−1
a Rab · L−1

b y = b · L−1
b y = LbL

−1
b y = y. If we take y = 1, then we have

x ◦ 1 = R−1
a x · L−1

b ba = R−1
a x · a = RaR

−1
a x = x. Element 1 is the identity

element of the quasigroup (Q, ◦).
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Theorem. If (Q, ◦) = (Q, ·)(α, β, ε) and (Q, ◦) is a loop, then there exist
elements a, b ∈ Q such that α = R−1

a , β = L−1
b , where Rax = x ·a, Lbx = b ·x.

Proof. Let x ◦ y = αx · βy. If x = 1, then we have 1 ◦ y = y = α1 · βy.
Therefore Lα1β = ε, β = L−1

α1 . If we take y = 1, then we have x ◦ 1 = x =
αx · β1, Rβ1α = ε, α = R−1

β1 .

Albert Theorem. If (Q, ◦) = (Q, ·)(α, β, ε), (Q, ·) is a group, (Q, ◦) is
a loop, then (Q, ◦) is a group isomorphic to group (Q, ·).

Proof. By previous theorem α = R−1
a , β = L−1

b .
But in a group R−1

a = Ra−1 . Really, R−1
a x · a = RaR

−1
a x = x. Therefore

R−1
a x = x · a−1 = Ra−1x, i.e. R−1

a x = x · a−1.
Similarly, in any group L−1

b = Lb−1 . Really b ·L−1
b x = LbL

−1
b x = x. Then

L−1
b x = b−1x = Lb−1x.

Therefore x ◦ y = R−1
a x · L−1

b y = xa−1 · b−1y = x(a−1b−1)y. Denote the
element a−1b−1 as c. Then (x ◦ y) · c = (x · c) · (y · c), Rc(x ◦ y) = Rcx ·Rcy.

Hence (Q, ◦) ∼= (Q, ·). If a · b = 1, then (Q, ◦) = (Q, ·).

3.2 Connection between parastrophy and isotopy.

If T = (α1, α2, α3) is an isotopy, σ is a parastrophy of a quasigroup (Q,A),
then we shall denote by T σ the triple (ασ1, ασ2, ασ3).

Lemma. ([12]). In a quasigroup (Q,A): (i) (AT )σ = AσT σ; (ii)
(T1T2)

σ = T σ
1 T

σ
2 .

Proof. (i) We have AT = (α1x1, α2x2, α3x3), where x3 = A(x1, x2). By
definition of parastrophy we have Aσ = (xσ1, xσ2, xσ3). Then we have

(AT )σ = (α1x1, α2x2, α3x3)
σ = (ασ1xσ1, ασ2xσ2, ασ3xσ3) = AσT σ.

(ii) Let T1 = (β1, β2, β3), T2 = (γ1, γ2, γ3). Then we have

(T1T2)
σ = (β1γ1, β2γ2, β3γ3)

σ = (βσ1γσ1, βσ2γσ2, βσ3γσ3) = T σ
1 T

σ
2 .

3.3 Autotopisms of quasigroups.

Definition. An autotopism (sometimes we shall call autotopism and as au-
totopy) is an isotopism of a quasigroup (Q, ·) into itself, i.e. a triple (α, β, γ)
of permutations of the set Q is an autotopy if the equality x ·y = γ−1(αx ·βy)
is fulfilled for all x, y ∈ Q.
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Denote set of all autotopies of a quasigroup (Q, ·) as Top(Q, ·). It is
clear that defined on this set operation ? of multiplication of autotopies
(α1, β1, γ1) ? (α2, β2, γ2) = (α1α2, β1β2, γ1γ2) is a group operation. We have a
possibility to speak on group (Top(Q, ·), ?).

Lemma. Set of all the first (the second, the third) components of auto-
topies of a quasigroup (Q, ·) forms a group.

Theorem. ([14]). If n-ary quasigroups (Q, f) and (Q, g) are isotopic with
isotopy T , i.e. (Q, f) = (Q, g)T , then Top(Q, f) = T−1Top(Q, g)T .

Proof. Quasigroups (Q, f) and (Q, g) are in one orbit (they are isotopic)
by action of the group T on the set Q of all quasigroups of a fixed arity
n. Autotopy groups of these quasigroups are stabilizers of elements (Q, f)
and (Q, g) by this action. It is known that stabilizers of elements of a set S
from one orbit by action of a group G on the set S are isomorphic ([64, 56]),
moreover, they are conjugate subgroups of the group S3

Q.

Lemma. If T is an autotopy, then any its two components define the
third by unique way.

Proof. If (α1, β, γ) and (α2, β, γ) are autotopies, then (α−1
2 , β−1, γ−1) is

an autotopy and (α1α
−1
2 , ββ−1, γγ−1) = (α1α

−1
2 , ε, ε) is an autotopy too. We

can re-write the last form of autotopy in such form: α1α
−1
2 x · y = x · y, then

α1 = α2.
If (ε, ε, γ1γ2) is an autotopy, then we have x · y = γ1γ

−1
2 (x · y). If we put

in the last equality y = e(x), then we obtain x = γ1γ
−1
2 x for all x ∈ Q, i.e.

γ1 = γ2.

There exists and more strong form of the last result.

Lemma. If (Q, ·) is a loop, then any its autotopy has the form

(R−1
a , L−1

b , ε)(γ, γ, γ).

Proof. Let T = (α, β, γ) be an autotopy of a loop (Q, ·), i.e. αx · βy =
γ(x · y). If we put x = 1, then we obtain α1 · βy = γy, γ = Lα1β, β = L−1

α1γ.
If we put y = 1, then, by analogy, we obtain, α = R−1

β1 γ.

Therefore T = (R−1
β1 γ, L

−1
α1γ, γ) = (R−1

k , L−1
d , ε)(γ, γ, γ), where β1 = k,

α1 = d.
We can obtain more detail information on autotopies of a group, and,

since autotopy groups of isotopic quasigroups are isomorphic, on autotopies
of quasigroups that are some group isotopes.
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Theorem. Any autotopy of a group (Q,+) has the form

(Laδ, Rbδ, LaRbδ),

where La is a left translation of the group (Q,+), Rb is a right translation of
this group, δ is an automorphism of this group.

Proof. Let T = (α, β, γ) be an autotopy of a group (Q,+), i.e. for all
x, y ∈ Q equality

αx+ βy = γ(x+ y) (1)

is true.
If in equality (1) we put x = y = 0, then we obtain α0 + β0 = γ0.
If in equality (1) we put only x = 0, then α0+βy, Lα0β = γ, β = L−α0γ.
If in equality (1) we put only y = 0, then αx + β0 = γx, Rβ0α = γ,

α = R−β0γ.
Now we can re-write equality (1) in such form: R−β0γx + L−α0γy =

γ(x + y), i.e. γx − β0 − α0 + γy = γ(x + y). Denote −β0 − α0 as c, and,
it is easy to receive, that −c = α0 + β0. From the last equality we have
γx + c + γy + c = γ(x + y) + c, i.e. Rcγ is an automorphism of the group
(Q,+).

Let θ = Rcγ. Then we have that γ = R−cθ, αx = R−β0γx =
R−β0R−cθx = θx+α0+β0−β0 = θx+α0 = α0−α0+ θx+α0 = Lα0Iα0θx,
where Iα0x = −α0 + x+ α0 is an inner automorphism of the group (Q,+).

Similarly, βx = L−α0γx = L−α0R−cθx = −α0+θx+α0+β0 = Rβ0Iα0θx.
We can write the permutation γ and in the following form: γx = θx +

α0 + β0 = α0− α0 + θx+ α0 + β0 = Lα0Rβ0Iα0θx.
If we rename α0 as a, β0 as b, Iα0θ as δ, then we obtain the following

form of any autotopy of a group (Q,+):

(Laδ, Rbδ, LaRbδ).

Theorem.([80]) If (Q,+) is a group, then

Top(Q,+) ∼= ((Q,+)× (Q,+)) h Aut(Q,+).

22



3.4 G-loops and G-quasigroups.

In this subsection we follow [13, 95].

Definition. A bijection θ on a set Q is called a right pseudo-
automorphism of a quasigroup (Q, ·) if there exists at least one element c ∈ Q
such that θx · (θy · c) = (θ(x · y)) · c for all x, y ∈ Q, i.e. (θ, Rcθ,Rcθ) is an
autotopy a quasigroup (Q, ·). The element c is called a companion of θ.

(This definition belongs to R.H. Bruck.)

Theorem. If a quasigroup (Q, ·) possesses a right pseudo-automorphism
θ with companion c, then (Q, ·) possesses a right identity e = θ−1f(c), where
f(c) is the local left identity of c.

Proof. From θx · (θy · c) = (θ(x · y)) · c with y = θ−1f(c) we have
θx · c = θ(x · θ−1f(c)) · c, x = x · θ−1f(c), i.e. θ−1f(c) is right identity element
of the quasigroup (Q, ·), i.e. any quasigroup with at least one non-trivial
pseudo-automorphism is a right loop.

Corollary. If (Q, ·) is a loop, then θ1 = 1.

Proof. Really, in a loop with identity element 1 f(c) = 1, e = 1.

Theorem. Set of all right pseudo-automorphisms of a quasigroup (Q, ·)
forms a group relatively operation of multiplication of these pseudo-automor-
phisms as autotopisms of the quasigroup (Q, ·).

Proof. If Raϕ, Rbψ are the second components of the right pseudo-
automorphisms (ϕ,Raϕ,Raϕ) and (ψ,Rbψ,Rbψ) respectively, then we have

RaϕRbψx = Raϕ(ψx·b) = (ϕ(ψx·b))·a def.ofps.−aut.
= ϕψx·(ϕb·a) = Rϕb·aϕψx.

Then (ϕ,Raϕ,Raϕ) ∗ (ψ,Rbψ,Rbψ) = (ϕψ,Rϕb·aϕψ,Rϕb·aϕψ).
Let us prove that (ϕ,Raϕ,Raϕ)−1 = (ϕ−1, Rϕ−1aϕ

−1, Rϕ−1aϕ
−1), where

a−1 · a = e, the element e is the right identity element of the quasigroup
(Q, ·).

Really,

(ϕ,Raϕ,Raϕ) ∗ (ϕ−1, Rϕ−1aϕ
−1, Rϕ−1aϕ

−1) =
(ε, Rϕϕ−1a−1·aϕϕ

−1, Rϕϕ−1a−1·aϕϕ
−1) =

(ε, ε, ε).

Further we have

(ϕ−1, Rϕ−1aϕ
−1, Rϕ−1aϕ

−1) ∗ (ϕ,Raϕ,Raϕ) =
(ε, Rϕ−1a·ϕ−1a−1 , Rϕ−1a·ϕ−1a−1).
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Prove, that ϕ−1a · ϕ−1a−1 = e. Since ϕ is a right pseudo-automorphism
with companion a, we have ϕ(ϕ−1a · ϕ−1a−1) · a = ϕϕ−1a · (ϕϕ−1a−1 · a) =
a · (a−1 · a) = a · e = a. Therefore ϕ(ϕ−1a · ϕ−1a−1) = f(a). Hence ϕ−1a ·
ϕ−1a−1 = ϕ−1f(a) = e.

Definition. G-loop is a loop which is isomorphic to all its loop isotopes
(LP-isotopes).

Theorem. ([12]). A loop (L, ·) is G-loop if and only if every element
x ∈ L is a companion of some right and some left pseudo-automorphism of
(L, ·).

Definition. A quasigroup (Q, ·) is called a right G-quasigroup, if any its
element is a companion of some its right pseudo-automorphism.

We notice that it is possible to prove that any right G-quasigroup is a
loop.

Problem. Research G-loops and right G-loops. Whether there is a right
G-loop which is not a G-loop?

4 Sub-objects.

4.1 Subquasigroups. Nuclei and centre.

Definition. A non-empty subset H of a set Q is subquasigroup (subloop,
subgroup) of a quasigroup (Q, ·) means that (H, ·) is a quasigroup (loop,
group).

Definition [95]. Let (Q, ·) be a groupoid and let a ∈ Q. The element
a is left (middle, right) nuclear element in (Q, ·) means that Lax = LaLx ⇔
ax · y = a · xy (Lxa = LxLa ⇔ xa · y = x · ay, Rxa = RaRx ⇔ y · xa = yx · a)
for all x, y ∈ Q.

An element a is nuclear in groupoid (Q, ·) means that a is left, right, and
middle nuclear element in (Q, ·).

Definition [95]. Let (Q, ·) be a groupoid. The left nucleus Nl (middle
nucleus Nm, right nucleus Nr) of (Q, ·) is the set of all left (middle, right)
nuclear elements in (Q, ·) and nucleus is given by N = Nl ∩Nr ∩Nm.

In other words

Nl = {a ∈ Q|a · xy = ax · y, x, y ∈ Q},
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Nm = {a ∈ Q|xa · y = x · ay, x, y ∈ Q},

Nr = {a ∈ Q|xy · a = x · ya, x, y ∈ Q}.

R.H. Bruck defined a center of a loop (Q, ·) as Z(Q, ·) = N ∩ C, where
C = {a ∈ Q|a · x = x · a ∀x ∈ Q}.

Exercise. Prove that for a loop (even for a groupoid) Z = Nl ∩Nr ∩C.

Theorem. Let (Q, ·) be a groupoid. If Nl (Nm, Nr) is non empty, then
Nl (Nm, Nr) is a subgroupoid of (Q, ·).

Proof. Let Lax = LaLx, Lbx = LbLx for all x ∈ Q. Prove, that Lab·x =
LabLx. We have

Lab·x = LLabx = LLaLbx = La·bx = LaLbx = LaLbLx = LabLx.

Theorem. [95]. Let (Q, ·) be a quasigroup. If Nm 6= ∅, then Nm is

a subgroup of (Q, ·) and the identity element e of (Nm, ·) is the identity
element of (Q, ·). If Nl 6= ∅, then Nl is a subgroup of (Q, ·) and the identity
element of (Nl, ·) is a left identity element of (Q, ·). If Nr 6= ∅, then Nr

is a subgroup of (Q, ·) and the identity element of (Nr, ·) is a right identity
element of (Q, ·).

M.D. Kitaroage ([72]) gives the following definition of nuclei of a quasi-
group (Q, ·):

Nl(h) = {a ∈ Q|ax · y = a · L−1
h (hx · y) ∀x, y ∈ Q},

Nm(h) = {a ∈ Q|R−1
h (xa) · y = x · L−1

h (ay), ∀x, y ∈ Q},

Nr(h) = {a ∈ Q|yx · a = R−1
h (y · xh) · a, ∀x, y ∈ Q}.

Let (Q, ·) be a quasigroup. We recall that inner mapping group Ih(Q, ·)
of a quasigroup (Q, ·) is generated by following permutations: Ra,b, La,b, Ta,
where Ra,b = R−1

a•bRbRa, h(a • b) = (ha)b, La,b = L−1
a◦bLaLb, (a ◦ b)h = a(bh),

Ta = L−1
σaRa, σ = R−1

h Lh.
The permutation Ra,b will be denoted as Rh

a,b, the permutation La,b will

be denoted as Lh
a,b, the permutation Ta will be denoted as T h

a .

Definition.[22, 21]. A left h-nucleus Nh
l of a quasigroup (Q, ·) is called

the maximal subset H of the set Q such that
(1) Rh

a,ba = a · e(h) for all x, y ∈ Q, a ∈ H;
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(2) H · e(h) = H.

Definition.[22, 21]. A right h-nucleus Nh
l of a quasigroup (Q, ·) is called

the maximal subset H of the set Q such that
(1) Lh

a,ba = f(a) · a for all x, y ∈ Q, a ∈ H;
(2) f(h) ·H = H.

P.I. Grama defined a center of a quasigroup (Q, ·) as a set C of all elements
a ∈ Q such that Rh

x,ya = a, Lh
x,ya = a, T h

x a = a for all x, y ∈ Q.
Later G.B. Belyavskaya and J.D.H. Smith give more general definition

of center of a quasigroup. J.D.H. Smith have given definition of center of
a quasigroup on language of universal algebra (Congruence Theory). G.B.
Belyavskaya gives the following definition of center of a quasigroup.

Definition.[22, 21]. The maximal subset H of the set Q that consists
from elements a ∈ Q such that

(1) Rh
x,ya = a · e(a), Lh

x,ya = f(h) · a, T h
x a = σ−1

h a for all x, y ∈ Q, a ∈ H;

(2) H · e(h) = f(h) ·H = H, h ∈ R−1
h a ·H, for all a ∈ H,

where R−1
h a ·H = {R−1

h a · b | b ∈ H} is called a center Zh of a quasigroup
(Q, ·).

4.2 Regular permutations.

Notion of regular permutations is very closed with notions of autotopy and
nucleus.

Definition. A permutation λ (ρ) of a set Q is called a left (right) regular
permutation for a quasigroup (Q, ·), if λx · y = λ?(xy) (x · ρy = ρ?(xy)) for
all x, y ∈ Q. A permutation ϕ is middle regular if ϕx · y = x · ϕ?y.

A quasigroup (Q, ·) is called L-transitive (respectively R-transitive, Φ-
transitive), if group L (R, Φ) of all left (right, middle) regular permutations
is transitive on the set Q.

Theorem. L-transitivity and L?-transitivity (respectively R and R?-
transitivity, Φ and Φ?-transitivity) are equivalent properties for a quasigroup.

“Nuclear” and “central” properties of a quasigroup are closed with prop-
erty of “linearity” of a quasigroup. See below.
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4.3 Congruences, normal subquasigroups, homotopy
of quasigroups.

Definition. A quasigroup (Q, ·) is a homotopic image of a quasigroup (P, ◦)
if there exist surjective maps α, β, γ ∈ QP (α ∈ QP ⇔ α : P → Q) such
that γ(x ◦ y) = αx · βy for all x, y ∈ Q.

If α = β = γ, then homotopy (homotopism) is a homomorphism.

Theorem. A quasigroup (P, ◦) then and only then is homotopic to a qua-
sigroup (Q, ·), when a LP-isotope of the quasigroup (P, ◦) is homotopically
mapped on a LP-isotope of the quasigroup (Q, ·).

Let ϕ : (Q, ·) −→ (Q′, ◦) is an homomorphism of a quasigroup (Q, ·)
on a quasigroup (Q′, ◦). Define in (Q, ·) the following binary relation: a ∼
b ↔ ϕa = ϕb. The binary relation ∼ is an equivalence relation. Moreover,
ϕ(a · c) = ϕa ◦ ϕc, ϕ(b · c) = ϕb ◦ ϕc. So, if a ∼ b↔ ϕa = ϕb, then

ϕ(ac) = ϕa ◦ ϕc = ϕb ◦ ϕc = ϕ(ab),

i.e. ac ∼ bc. Similarly, a ∼ b→ ca ∼ cb. Then, ∼ is a congruence on (Q, ·).
The following implications are fulfilled too:

(1) ac ∼ bc −→ a ∼ b,
(2) ca ∼ cb −→ a ∼ b.
We prove (1).

ac ∼ bc→ ϕ(ac) = ϕ(bc)⇐⇒ ϕa ◦ ϕc = ϕb ◦ ϕc.

Since (Q′, ◦) is a quasigroup, then ϕa = ϕb↔ a ∼ b.

Exercise. If a ∼ b and c ∼ d, then ac ∼ bd.

A congruence ∼ with conditions (1), (2) is called normal congruence.

Exercise. In a group (G, ·, −1, 1) any congruence is normal.

Definition. A quasigroup (Q, ·) with identities xy = yx, x · xy = y,
xy · y = x is called TS-quasigroup.

Exercise. In any TS-quasigroup any congruence is normal.

Let θ be a normal congruence of a quasigroup (Q, ·). Let θ(a) = {x |xθa}
be a coset class of an element a. We list some properties of θ(a):
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• if b ∈ θ(a), then θ(b) = θ(a);

• θ(a) = θ(b) or θ(a) ∩ θ(b) = ∅;

• a · θ(b) = θ(a · b) = (θa) · b;

• θ(a) · θ(b) = θ(a · b).

Define an operation ◦ on the setQ̄ of all cosets of normal congruence θ
(Q̄ = {θ(a) | a ∈ Q}) in the following way: θ(a) ◦ θ(b) = θ(a · b). It is
possible to check that (Q̄, ◦) is a quasigroup. A map ϕ : a −→ ā = θ(a) is a
homomorphism of a quasigroup (Q, ·) onto quasigroup (Q̄, ◦).

The quasigroup (Q̄, ◦) is called a factor-quasigroup of a quasigroup (Q, ·)
by the normal congruence θ. The (Q̄, ◦) is denoted as Q/θ.

Theorem. If ϕ is a homomorphism of a quasigroup (Q, ·) onto quasi-
group (Q̄, ◦), then there exists a normal congruence θ on quasigroup (Q, ·),
such that

(Q̄, ◦) ∼= (Q, ·)/θ

and vice versa.

Definition. A subquasigroup (H, ·) of a quasigroup (Q, ·) is called nor-
mal (or normal divisor) if H is a a coset of a normal congruence θ and we
shall denote this fact as follows: H EQ.

Theorem. A coset H = θ(h) of a normal congruence θ of a quasigroup
(Q, ·) is a subquasigroup if and only if h θ h2.

Theorem. Let (Q, ·) be a loop with the identity element 1 and N be a
normal subloop, i.e. N = θ(1) for a normal congruence θ. Then

(1) x ·N = N · x for all x ∈ Q;
(2) x · (y ·N) = (x · y) ·N , (N · x) · y = N · (x · y) for all x, y ∈ Q;
(3) (x ·N) · (y ·N) = (a · b) ·N for all x, y ∈ Q.

Theorem. A subquasigroup H of a quasigroup Q is normal if and only
if IkH ⊆ H for all k ∈ H.

A.A. Albert studied normal subloops of a loop (L, ·) using normal sub-
groups of the group M(L, ·) ([2, 3]).
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4.4 Constructions.

Direct product of quasigroups is standard algebraic construction.
We give construction of crossed product of quasigroups ([12]). Let (P, ·)

be a some quasigroup, defined on a set P = {u, v, w, . . . } and let on a set Q
defined a system of quasigroups Σ. For any ordered pair of elements u, v ∈ P
we correspond an operation A ∈ Σ, i.e. we define a map δ : P 2 −→ Σ.

On the set M = P ×Q we define the following operation ◦:

(u, a) ◦ (v, b) = (v · v, Au,v(a, b)),

where u, v ∈ P, a, b ∈ Q. Therefore (M, ◦) is a groupoid.

Theorem. If (P, ·) is a quasigroup, Σ is a system of quasigroups defined
on a set Q, then (M, ◦) is a quasigroup. (M, ◦) is a loop if and only if (P, ·)
is a loop and and there exist an element c ∈ Q such that

Au,1(a, e) = A1,v(e, a) = a

for all a ∈ Q, u, v ∈ P . In this case the identity element of the loop (M◦)
will be the pair (1, e).

Remark. If Σ = {(Q,A)}, then (M, ◦) ∼= (P, ·)× (Q,A).

5 Some quasigroup classes

5.1 Medial quasigroups.

A quasigroup (Q, ·) with the identity

xy · uv = xu · yv (1)

is called medial. Remarkable Toyoda theorem (T-theorem) ( [12], [13], [90],
[111], [24]) says that every medial quasigroup (Q, ·) it is possible to present
as an special kind isotope of abelian group:

x · y = ϕx+ ψy + a, (2)

where (Q,+) is an abelian group, ϕ, ψ are automorphisms of (Q,+) such
that ϕψ = ψϕ, x, y ∈ Q, a is a some fixed element from the set Q.
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In view of T-theorem theory of medial quasigroup is very closed with
theory of abelian groups but it is not exactly theory of abelian groups. For
example, a very simple for abelian groups fact that every simple abelian
group is finite was proved for medial quasigroups only in 1977 [7].

Medial quasigroups as and other classes of quasigroups isotopic to groups
give us a possibility to construct quasigroups with preassigned properties.
Often these properties it is possible to express on language of properties of
groups and components of isotopy. Systematically this approach was used by
study of T-quasigroups in [61]. By study of automorphisms of linear group
isotopes this approach was used in [99].

An element d such that d · d = d is called an idempotent element of a
binary quasigroup (Q, ·).

Any quasiautomorphism of a group (Q,+) has a form L+
a β, where a ∈ Q,

β ∈ Aut(Q,+) [12]. Obviously β0 = 0, where, as usually, 0 is neutral element
of (Q,+).

Theorem A quasigroup (Q, ·) is a medial quasigroup if and only if there
exist an abelian group (Q,+), its automorphisms α, ϕ, αϕ = ϕα, an element
a ∈ Q, such that x · y = αx+ ϕy + a for all x, y ∈ Q.

(=⇒). By proving this implication in the main we follow the book [13].
Let us consider a LP-isotope (Q,+) of a medial quasigroup (Q, ·) of a form:
x+y = R−1

r(0) ·L
−1
0 where 0 ·r(0) = 0, i.e. r(0) is a right local identity element

of the element 0. This LP-isotope (Q,+) is a loop with the identity element
0 · r(0) = 0. Denote Rr(0) by α and L0 by β. We remark that Rr(0)0 = 0,
then α0 = 0.

Using our notations we can write medial identity in the following form:

α(αx+ βy) + β(αu+ βv) = α(αx+ βu) + β(αy + βv). (5)

By x = 0, y = β−10 from (5) we have

β(αu+ βv) = αβu+ β(αβ−10 + βv). (6)

Therefore permutation β is a quasiautomorphism of the loop (Q,+).
By u = 0, v = β−20 in (5) we have

α(αx+ βy) = α(αx+ β0) + β(αy + β−10) (7)

and we obtain that the permutation α is a quasiautomorphism of the loop
(Q,+).
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If we use equalities (6) and (7) in (5), then we have

(αRβ0αx+ βRβ−10αy) + (αβu+ βLαβ−10βv) =
(αRβ0αx+ βRβ−10αu) + (αβy + βLαβ−10βv).

(8)

If we change in equality (8) the element x by the element α−1R−1
β0α

−1x,

the element y by α−1R−1
β−10β

−1y, the element u by the element β−1α−1u, the

element v by the element β−1L−1
αβ−10β

−1v.
Then we have

(x+ y) + (u+ v) = (x+ βRβ−10αβ
−1α−1u) + (αβα−1R−1

β−10β
−1y + v).

If we take u = 0 in the last equality then we have

(x+ y) + v = (x+ βRβ−10αβ
−10) + (αβα−1R−1

β−10β
−1y + v). (9)

If we take in (9) v = 0, then we obtain x+y = (x+r)+αβα−1R−1
β−10β

−1y

where r = βRβ−10αβ
−10 is a fixed element of the set Q.

If we change in equality (9) x + y by the right side of the last equality,
then we have

((x+ r) + αβα−1R−1
β−10β

−1y) + v = (x+ r) + (αβα−1R−1
β−10β

−1y + v).

From the last equality it follows that the loop (Q,+) is associative, i.e. is a
group.

Since α is quasiautomorphism of the group and α0 = 0 we have that
permutation α is an automorphism of the group (Q,+). The permutation β
has a form β = Raϕ where ϕ ∈ Aut(Q,+).

Then we can re-write the medial identity in the form α2x+ αϕy + αa+
ϕαu+ϕ2v+ϕa+a = α2x+αϕu+αa+ϕαy+ϕ2v+ϕa+a or, past reduction
in the last equality we obtain

αϕy + αa+ ϕαu = αϕu+ αa+ ϕαy. (10)

From the last equality by u = 0 we have αϕy + αa = αa + ϕαy and by
y = 0 we have αa + ϕαu = αϕu + αa. Using these last equalities we can
re-write equality (10) in the such form αa+ αϕy + ϕαu = αa+ αϕu+ ϕαy,
hence αϕy + ϕαu = αϕu+ ϕαy. By u = 0 we have αϕy = ϕαy.

Then from equality (10) it follows that αϕy+αϕu = αϕu+αϕy, y+u =
u+ y. Therefore x · y = αx+ ϕy + a where (Q,+) is an abelian group, α, ϕ
are such automorphisms of (Q,+) that αϕ = ϕα.

(⇐=). We have α(αx+ϕy+ a)+ϕ(αu+ϕv+ a)+ a = α(αx+ϕu+ a)+
ϕ(αy + ϕv + a) + a, α2x+ αϕy + αa+ ϕαu+ ϕ2v + ϕa+ a = α2x+ αϕu+
αa+ ϕαy + ϕ2v + ϕa+ a, αβy + αβu = αβu+ αβy, 0 = 0.

31



5.2 Linear quasigroups

An n-ary quasigroup of a form

γg(x1, x2, . . . , xn) = γ1x1 + γ2x2 + · · ·+ γnxn,

where (Q,+) is a group, γ, γ1, . . . , γn are some permutations of the set
Q, is called n-ary group isotope (Q, g). Of course this equality (as often
analogous equalities that will appear later in these lectures) is true for all
x1, x2, . . . , xn ∈ Q.

An n-quasigroup of a form

g(x1, x2, . . . , xn) = α1x1 + α2x2 + · · ·+ αnxn + a =
n∑

i=1

αixi + a, (1)

where (Q,+) is a group, α1, . . . , αn are some automorphisms of the group
(Q,+), the element a is some fixed element of the set Q, will be called linear
n-ary quasigroup (Q, g) (over group (Q,+)).

A linear quasigroup over an abelian group is called n-T-quasigroup
([110]). The following identity of n-ary quasigroup (Q, g)

g(g(x11, x12, . . . , x1n), g(x21, x22, . . . , x2n), . . . , g(xn1, xn2, . . . , xnn)) =
g(g(x11, x21, . . . , xn1), g(x12, x22, . . . , xn2), . . . , g(x1n, x2n, . . . , xnn))

(2)

is called medial identity ([14]).
An n-ary quasigroup with identity (2) is called medial n-ary quasigroup.
In binary case from identity (2) we obtain usual medial identity: xy ·uv =

xu · yv ([24, 90]).

Definition. A quasigroup of the form x · y = αx+ βy + c, where (Q,+)
is a group, α, β ∈ Aut(Q,+), the element c is a fixed element of the set Q is
called a linear quasigroup.

This definition belongs to V.D. Belousov ([15]). There exists a possibility
to generalize this definition, namely, to change a group (Q,+) on a “good”
loop, to change automorphisms α, β on “good” permutations.

G.B. Belyavskaya described class of T-quasigroups with help of identities
in “quasigroup” algebra with three binary operations ·, /, \: xy · uv = xu ·
(αuy ·v), xy ·uv = (βxv ·y) ·ux, where αu = R−1

e(u)σ
−1
u Lf(u) where σu = R−1

u Lu

and βx = R−1
e(x)σxLf(u).
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Now theory of medial quasigroups and T-quasigroups is developed suffi-
ciently good.

Importance of T-quasigroups follows from the following theorems. Be-
low we use notion of nuclei and center of a quasigroup in sense of G.B.
Belyavskaya.

Theorem. Let (Q, ·) be a T-quasigroup. Then Nh
l (Q, ·) = N r

h(Q, ·) for
any h ∈ Q; Zh(Q, ·) = (Q, ·).

A quasigroup (Q, ·) with identities x ·yz = xy ·xz (left distributivity) and
xy · z = xz · yz (right distributivity) is called distributive quasigroup.

A loop (Q,+) with identity (x+ x) + (y+ z) = (x+ y) + (x+ z) is called
commutative Moufang loop (C.M.L. for short).

Theorem. V.D. Belousov. ([12, 13, 95]) Any distributive quasigroup
is isotope of a C.M.L.

A quasigroup (Q, ·) with identities x ·yz = xy · e(x)z (left F-identity) and
zy · x = zf(x) · yx (right F-identity) is called F-quasigroup.

Any F-quasigroup is an isotope of a Moufang loop (T. Kepka, J.D. Philips,
M. Kinyon, 2003).

Definition. A quasigroup (Q, ·) with identities x(xy) = y, xy = yx
such that any its three elements generate a medial subquasigroup is called
CH-quasigroup (Manin quasigroup).

Any CH-quasigroup (Q, ◦) it is possible to obtain with help of the follow-
ing construction: x ◦ y(−x− y) + d, where the element d is an element from
the center of C.L.M. (Q,+) and (−x) + x = 0.

Medial quasigroups, distributive quasigroups, T-quasigroups, CH-quasi-
groups, F-quasigroups are linear quasigroups in sense of the following defini-
tion:

Definition. A quasigroup (Q, ·) is called linear over a loop (Q,+) if there
exist automorphisms ϕ, ψ ∈ Aut(Q,+), an element c (usually c is an element
from a nucleus of the loop) such that x · y = (ϕx+ ψy) + c for all x, y ∈ Q.

A quasigroup (Q, ·) is called left linear, if x · y = ϕx + a + βy, where
(Q,+) is a group, ϕ ∈ Aut(Q,+), β ∈ SQ.

A quasigroup (Q, ·) is called alinear, if x · y = ϕx+ a+ βy, where (Q,+)
is a group, ϕ is an anti-automorphism, β ∈ SQ.

Theorem. A.H. Tabarov, G.B. Belyavskaya. Nh
m = Q if and only

a quasigroup (Q, ◦) is alinear quasigroup.
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Nh
l = Nh

r = Q if and only if a quasigroup (Q, ·) is a linear over a group
quasigroup.

Nh
l = Nh

r = Nh
m = Q if and only if a quasigroup (Q, ·) is a T-quasigroup.

In any distributive quasigroup Nh
l = Nh

r = Nh
m = Zh = Q.

A quasigroup (Q, ·, /, \) is linear from the right if and only if holds the
identity (x(u\y))z = (x(u\u)) · (u\yz).

5.3 Various kind of inverse quasigroups

Almost all the well-known (classical) kinds of quasigroup and loop such as
IP -, LIP -, WIP - and CI-loops and quasigroups are included among the
classes of quasigroup which have some kind of inverse property. Most re-
cently, (r, s, t)-inverse quasigroups were defined as a generalization of various
kinds of “crossed-inverse” property quasigroup and loop: in particular, they
generalize CI-, WIP - and m-inverse loops [65].

1) A quasigroup (Q, ◦) has the LIP-inverse-property if there exists a per-
mutation λ of the set Q such that

λx ◦ (x ◦ y) = y (1)

for all x, y ∈ Q [12];
2) a quasigroup (Q, ◦) has the RIP-inverse-property if there exists a per-

mutation ρ of the set Q such that

(x ◦ y) ◦ ρy = x (2)

for all x, y ∈ Q [12];
3) a quasigroup (Q, ◦) has the IP-inverse-property if it is LIP- and RIP-

inverse quasigroup [12];
4) a quasigroup (Q, ◦) has the rst-inverse-property if there exists a per-

mutation J of the set Q such that

Jr(x ◦ y) ◦ Jsx = J ty (3)

for all x, y ∈ Q [69];
5) a quasigroup (Q, ◦) has the n-inverse-property if there exists a permu-

tation J of the set Q such that

Jn(x ◦ y) ◦ Jn+1x = Jny (4)
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for all x, y ∈ Q [65];
6) a quasigroup (Q, ◦) has the weak-inverse-property if there exists a per-

mutation J of the set Q such that

x ◦ J(y ◦ x) = Jy (5)

for all x, y ∈ Q [7, 109, 69];
7) a quasigroup (Q, ◦) has the crossed-inverse-property if there exists a

permutation J of the set Q such that

(x ◦ y) ◦ Jx = y (6)

for all x, y ∈ Q [4, 69];

There exist potential applications of m-inverse quasigroups with long in-
verse cycles to cryptography.

In a loop (Q, ·) define x−1 as an element such that x · x−1 = 1, −1x as
−1x · x = 1 for all x ∈ Q.

Lemma. In a LIP-loop (Q, ·) −1x = x−1.

Proof. −1x · (x · x−1) = −1x · 1 = −1x. Applying LIP-property we have
−1x · (x · x−1) = x−1. Therefore −1x = x−1.

We give some properties of an IP-quasigroup (Q, ·).

Theorem.

1. ρ2 = λ2 = ε.

2. (y · ρx) · x = y, x · (λx · y) = y.

3. a · x = b⇒ x = λa · b, y · a = b⇒ y = b · ρa.

4. ρ(x · y) = λy · λy.

5. Lλa = L−1
a , Rρa = R−1

a .

6. ρRaλ = L−1
a , λLaρ = R−1

a .

7. ρLaλ = Rλa, λRaρ = Lρa.
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Theorem. Any parastrophe of IP-quasigroup (Q, ·) is isotopic to (Q, ·).
Proof. If (x · y) · ρy = x, then x/y = x · ρy. If λx · (x · y) = y, then

x\y = λx · y. And so on.
We recall, the following identities are called Moufang identities: x(y·xz) =

(xy ·x)z, (zx · y)x = z(x · yx), yx · zy = y(xz · y). In a loop (in a quasigroup)
all these identities are equivalent. The identity x(y · xz) = (x · yx)z is called
left Bol identity. A loop with any from Moufang identities is called Moufang
loop, a loop with left Bol identity is called left Bol loop.

Theorem. If any loop, that is isotopic to a loop (Q, ·) is IP-loop, then
(Q, ·) is Moufang loop.

Theorem. If any loop, that is isotopic to a loop (Q, ·) is LIP-loop, then
(Q, ·) is left Bol loop.

6 Quasigroups and combinatorics

6.1 Orthogonality of quasigroups

A Latin square is an arrangement of m symbols x1, x2, . . . , xm into m rows
andm columns such that no row and now column contains any of the symbols
x1, x2, . . . , xm twice [34, 35]. It is well known that unbordered (i.e. without
of the first row and the first column) Cayley table of any finite quasigroup is
a Latin square.

Definition. Binary groupoids (Q,A) and (Q,B) are called orthogonal if
system of equations {

A(x, y) = a
B(x, y) = b.

has unique solution (x0, y0) for any fixed pair of elements a, b ∈ Q. We shall
denote this fact as follows: (Q,A)⊥(Q,B).
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Example. We give an example of pair of orthogonal groupoids of order
6.

A 1 2 3 4 5 6
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6

B 1 2 3 4 5 6
1 1 2 3 4 5 6
2 1 2 3 4 5 6
3 1 2 3 4 5 6
4 1 2 3 4 5 6
5 1 2 3 4 5 6
6 1 2 3 4 5 6

It is proved that does not exists a pair of orthogonal Latin squares of
order 6.

Example. We give an example of pair of orthogonal Latin squares of
order 10([79]). In any cell the first number is from the first Latin square, the
second number from the second Latin square.

·, ? 0 1 2 3 4 5 6 7 8 9
0 12 23 31 46 59 64 78 87 95 00
1 74 42 27 09 61 58 85 90 33 16
2 51 14 45 67 08 80 93 22 76 39
3 07 71 10 38 83 92 44 56 12 65
4 35 57 73 82 94 11 06 49 60 28
5 20 05 52 91 77 36 19 63 48 84
6 43 30 04 55 26 79 62 18 81 97
7 89 98 66 24 32 03 50 75 17 41
8 68 86 99 70 15 47 21 34 02 53
9 96 69 88 13 40 25 37 01 54 72

Example. Quasigroups (Z11, ?) and (Z11, ◦), where x ? y = x + 2 · y,
x ◦ y = 3 · x + y for all x, y ∈ Z11, (Z11,+, ·) is ring of residues modulo 11,
are orthogonal.

Denote by N(n) number of mutually (in pairs) orthogonal Latin squares
of order n.

Theorem. N(n) ≤ (n− 1).

Problem. Find triple of mutually orthogonal Latin squares of order 10.
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There exists and concept of orthogonality for n-ary groupoids.

Definition. n-Ary groupoids (Q,A1), . . . , (Q,An) are called orthogonal
if system of equations 

A1(x
n
1 ) = a1

A2(x
n
1 ) = a2

................
An(xn

1 ) = an

has unique solution (bn1 ) for any fixed n-tuple of elements an
1 ∈ Q.

6.2 About signs of Bol loop translations

Let L = {La | a ∈ Q}, R = {Ra | a ∈ Q}, I = {Ia | a ∈ Q} be the
sets of all left, right and middle translations of a quasigroup (Q, ·), where
Lax = ax, Rax = xa, x · Iax = a, respectively.

Under the sign function we mean homomorphism of the symmetric group
Sn onto the group Z2 of order 2, Z2 = {1,−1}. If α ∈ Sn is a product of
the even number of cycles of length 2 (2-cycles), then sgnα = 1. If α is a
product of the odd number of 2-cycles, then sgnα = −1.

We shall mention some properties of the sign function. Let α, β, γ ∈ Sn.
Then sgn(αβ) = sgnα · sgn β = sgn β · sgnα = sgn(βα), sgn(α(βγ)) =
sgn((αβ)γ), because the associative and commutative identities hold in the
group Z2.

Let (Q, ·) be a finite quasigroup of order n. We use the known notions

sgnL =
n∏

i=1

sgn(Lai
), sgnR =

n∏
i=1

sgn(Rai
), sgn I =

n∏
i=1

sgn(Iai
), where ai ∈

Q; moreover let’s define tsgnQ = 〈sgnL, sgnR, sgn I〉.
A loop (Q, ·) with identity x(y · xz) = (xy · x)z is called a Moufang loop;

a loop with identity x(y · xz) = (x · yx)z is called a left Bol loop. We shall
consider only left Bol loops and shall call them Bol loops omitting the word
“left” for short.

Theorem. ([82]). Let Q be a finite Bol loop.

• If | Q |= 4k, then tsgnQ = 〈1, 1, 1〉;

• if | Q |= 4k + 1, then tsgnQ = 〈1, 1, 1〉;

• if | Q |= 4k + 2, then tsgnQ = 〈−1,−1,−1〉.
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Corollary. Let Q be a finite Moufang loop.

• If | Q |= 4k, then tsgnQ = 〈1, 1, 1〉;

• if | Q |= 4k + 1, then tsgnQ = 〈1, 1, 1〉;

• if | Q |= 4k + 2, then tsgnQ = 〈−1,−1,−1〉;

• if | Q |= 4k + 3, then tsgnQ = 〈1, 1,−1〉.

Let (Q, ◦) be a quasigroup. Denote as sgnQ the following product
sgnQ = sgnL · sgnR · sgn I.

Theorem. Let Q be a finite quasigroup.

• If | Q |= 4k, then sgnQ = 1;

• if | Q |= 4k + 1, then sgnQ = 1;

• if | Q |= 4k + 2, then sgnQ = −1;

• if | Q |= 4k + 3, then sgnQ = −1.

7 (r, s, t)-inverse quasigroups

7.1 Some general properties of (r, s, t)-inverse quasi-
groups

In this section we shall use “right” form by writing of acting of a permutation
on an element, i.e. xα instead of αx.

Now we shall speak on rst-inverse quasigroups and loops. Results of this
section there are in [69]. As it was observed in [66], every (r, s, t)-inverse loop
relatively a permutation J such that 1J = 1 is an (r, r + 1, r)-inverse loop:
that is, it is an r-inverse loop.

Proposition. (x◦y)Jr◦xJs = yJ t for all x, y ∈ Q⇐⇒ xJ−s◦(y◦x)J−t =
yJ−r for all x, y ∈ Q.

In particular, a weak-inverse-property loop (which satisfies the relation
x ◦ (y ◦ x)J = yJ) is a (−1, 0,−1)-inverse loop. We discuss such loops (and
quasigroups) in more detail below.
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Moreover, since (x◦y)◦xJ = y =⇒ xJ−1◦(y◦x) = y =⇒ z◦(y◦zJ) = y,
where z = xJ−1, we have the well-known result that a crossed inverse loop
may be defined by the latter relation instead of the former.

Theorem. If the identity (a · b)α · aβ = bγ holds in a quasigroup (Q, ·),
where α, β, γ are cyclically (or pairwise) permutable permutations of the set
Q, then αβγ is an automorphism of the quasigroup (Q, ·).

Corollary. (1) Jr+s+t is an automorphism of an (r, s, t)-inverse quasi-
group. (2) J2 is an automorphism of a weak inverse property quasigroup.

Remark. If the quasigroup (Q, ◦) is an (r, s, t)-inverse quasigroup with
respect to the permutation J and Jh ∈ Aut(Q, ◦) for some integer h, then
(Q, ◦) is (r + uh, s+ uh, t+ uh)-inverse for any u ∈ Z.

Remark. Since J is an automorphism of a (0, 1, 0)-inverse quasigroup, it
follows from previous Remark that such a quasigroup is also a (1, 2, 1)-inverse
quasigroup. that is, every CI-quasigroup has the weak inverse property.

Definition. A left linear quasigroup over the loop (Q,+) is a quasigroup
(Q, ·) such that x ·y = c+xϕ+yψ for all x, y ∈ Q, where ϕ is in Aut(Q,+), ψ
is a permutation of the set Q such that ψ0 = 0 (where the symbol 0 denotes
the identity element of the loop) and c is in the left nucleus Nl of the loop.
It becomes a linear quasigroup if ϕ and ψ are both automorphisms of (Q,+).

As a special case of this, a quasigroup (Q, ·) defined over an abelian group
(Q,+) by x · y = c+ xϕ+ yψ, where c is a fixed element of Q and ϕ and ψ
are both automorphisms of the group (Q,+), is called a T-quasigroup.

(The latter concept was first introduced in [70] and [71].)

Theorem 1. A left linear quasigroup (Q, ·) over a loop (Q,+) is an
(r, s, t)-inverse quasigroup with respect to the permutation J of the set Q,
where Jr ∈ Aut(Q,+) and 0J = 0 if and only if

(i) c+ cJrϕ = 0, (iii) xϕJrϕ+ xJsψ = 0 for all x ∈ Q,
(ii) ψ = J tϕ−1J−r, (iv) (Q,+) is a CI-loop.

Remark. When the conditions of Theorem 1 hold, Jr+s+t = (Jrϕ)3I0,
where I0 is defined by x + xI0 = 0 for all x ∈ Q. Consequently, Jr+s+t is in
Aut(Q,+) as well as being in Aut(Q, ·).

Remark. Since a non-abelian group cannot have the crossed inverse
property, it follows immediately from Theorem 3.1 that (r, s, t)-inverse left
(or right) linear quasigroups over a non-abelian group do not exist.
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EXAMPLE 1. J : z −→ 2z (mod 11) in the cyclic group (Z11,+). Since
210 ≡ 1 (mod 11), we require r + s+ t = 10. Let r = 6, s = t = 2. Then the
quasigroup (Z11, ·) defined by x·y = c+(2−6x)I0+(22y)I0 is a (6, 2, 2)-inverse
quasigroup.

EXAMPLE 2. J : z −→ 2z (mod 9) in the cyclic group (Z9,+). Since
26 ≡ 1 (mod 9), we require r + s + t = 6. Let r = 2, s = 3, t = 1. Then the
quasigroup (Z9, ·) defined by x · y = c+(2−2x)I0 +(2y)I0 is a (2, 3, 1)-inverse
quasigroup.

Remark 3. Note that, in the above two examples, the mapping J is
an automorphism of the cyclic group but not of the quasigroup constructed
from it.

Remark 4. Since an m-inverse quasigroup is an (m,m + 1,m)-inverse
quasigroup, we can construct an m-inverse quasigroup over (Zn,+) in the
above manner only when J : z −→ hz with h relatively prime to n and
h3m+1 ≡ 1 mod n.

We observe that a special case of Theorem 1 is the following:

Theorem 2. A left linear quasigroup (Q, ·) over a loop (Q,+), where
x · y = c+ xϕ+ yψ, is a CI-quasigroup relative to the permutation J , where
0J = 0, if and only if c+ cϕ = 0, ψ = ϕ−1, xϕ3 + xJ = 0 for all x ∈ Q and
(Q,+) is a CI-loop.

Remark 5. Since ψ = ϕ−1, it follows that, if ϕ is an automorphism, so
is ψ. Therefore, a left linear CI-quasigroup over a loop must in fact be a
linear CI-quasigroup.

7.2 WIP-quasigroups

We pointed out that a weak-inverse-property loop (WIP -loop) is a
(−1, 0,−1)-inverse loop. If we use additive notation for the loop and de-
note the identity by 0, we have

Definition 1. A loop (Q,+) with the property that

x+ (y + x)I0 = yI0 (1)

for all x, y ∈ Q, where I0 is the permutation of Q such that x + xI0 = 0, is
called a weak-inverse-property loop.
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Evidently, we can generalize this definition to that of a WIP -quasigroup
as follows:

Definition 2. A quasigroup (Q, ◦) is said to be a WIP -quasigroup with
respect to the permutation J of Q if

x ◦ (y ◦ x)J = yJ (2)

for all x, y ∈ Q.

In this Section we obtain necessary and sufficient conditions for such a
quasigroup to be a principal isotope of a WIP -loop. (This then provides a
method by which WIP -quasigroups may be constructed.)

Remark 1. A definition very similar to that of Definition 2 was earlier
made by Steinberger [109] who studied what he called T −WI-groupoids.

Lemma 1. Let (Q, ◦) be a quasigroup defined over the loop (Q,+) by
x ◦ y = xϕ + yψ, where ϕ and ψ are permutations of Q such that 0ϕ = 0
and 0ψ = 0. Then, sufficient conditions for (Q, ◦) to be a WIP -quasigroup
with respect to the permutation J of Q are (i) Jψ = ϕ−1J ∈ Aut(Q,+); (ii)
xϕ+ xψJψ = 0 for all x ∈ Q; and (iii) (Q,+) is a CI-loop.

When (Q,+) is a CI-loop, we have u+ (v + uI0) = v for all u, v ∈ Q, as
we showed in Section 2 of this paper, so x ◦ (y ◦ x)J = yJ follows.

Lemma 2. Let (Q, ◦) be a quasigroup defined over the loop (Q,+) by
x ◦ y = xϕ+ yψ, where ϕ and ψ are permutations of Q such that 0ϕ = 0 and
0ψ = 0. Then, necessary conditions for (Q, ◦) to be a WIP -quasigroup with
respect to the permutation J of Q such that 0J = 0 are (i) Jψ = ϕ−1J and
(ii) xϕ+ xψJψ = 0 for all x ∈ Q; or, equivalently, (i)* J = ψ−1ϕI0ψ

−1 and
(ii)* [ϕ−1, ψ] = I0ψ

−1I−1
0 ϕ−1.

From Lemmas 1 and 2, we easily obtain the following theorem:

Theorem 1. Let (Q, ◦) be a quasigroup defined over the loop (Q,+) by x◦
y = xϕ+yψ, where ϕ and ψ are permutations of Q such that 0ϕ = 0 and 0ψ =
0. Then, if the permutation J of Q is such that Jψ = ϕ−1J ∈ Aut(Q,+),
necessary and sufficient conditions for (Q, ◦) to be a WIP -quasigroup with
respect to the permutation J of Q are (i) xϕ+ xψJψ = 0 for all x ∈ Q; and
(ii) (Q,+) is a CI-loop.

Remark 2. The first sentence in the statements of Lemmas 1, 2 and
Theorem 1 could alternatively be re-phrased as “Let (Q, ◦) be any principal
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isotope (ϕ, ψ, ε) of the loop (Q,+) such that 0ϕ = 0ψ = 0, where 0 is the
identity of (Q,+)”.

The next theorem gives an alternative set of necessary and sufficient con-
ditions for a quasigroup (Q, ◦) of the above form to be a WIP -quasigroup.

Theorem 2. Let (Q, ◦) be a quasigroup defined over the loop (Q,+) by
x◦y = xϕ+yψ, where ϕ, ψ ∈ Aut(Q,+). Then (Q, ◦) is a WIP -quasigroup
with respect to the permutation J of Q if and only if (i) J = ψ−1ϕI0ψ

−1; (ii)
[ϕ−1, ψ] = ψ−1ϕ−1; and (iii) (Q,+) is a WIP -loop.

Remark 3. It follows from Theorem 2 of previous section that a linear
quasigroup (Q, ◦) of the form x◦y = xϕ+yϕ−1, defined over a loop (Q,+), is
a CI-quasigroup relative to the permutation J = ϕ3I0 if and only if (Q,+),
is a CI-loop.

Similarly, it follows from Theorem 2 that a linear quasigroup of the above
form is a WIP -quasigroup relative to the permutation J = ϕ3I0 if and only
if (Q,+), is a WIP -loop.

7.3 Direct products of (r, s, t)-quasigroups.

First we look at the special case of m-inverse quasigroups and give a gener-
alization of Theorem 4.1 of [66].

Definition 1. Let (Q1, ·) and (Q2, ◦) be respectively an (r1, s1, t1)-inverse
quasigroup with respect to the permutation J1 of Q1 and an (r2, s2, t2)-inverse
quasigroup with respect to the permutation J2 of Q2. Define (x1, x2)J =
(x1J1, x2J2), where J is a permutation of Q1×Q2. Let the binary operation
(∗) be defined on Q = Q1 ×Q2 by (x1, x2) ∗ (y1, y2) = (x1 · y1, x2 ◦ y2). Then
(Q, ∗) is the direct product of the quasigroups (Q1, ·) and (Q2, ◦).

Notation. Throughout this Section, we shall suppose that |Q1| = n1 and
|Q2| = n2, that h1, h2 are the least positive integers for which Jh1 ∈ Aut(Q1, ·)
and Jh2 ∈ Aut(Q2, ·) and that H1, H2 are the least positive integers for which
JH1

1 = I and JH2
2 = I.

Theorem 1. Let (Q1, ·) and (Q2, ◦) be respectively an m1-inverse quasi-
group with respect to the permutation J1 of Q1 and an m2-inverse quasigroup
with respect to the permutation J2 of Q2 respectively. Then the direct prod-
uct (Q, ∗) = (Q1, ·) × (Q2, ◦) will be an m-inverse quasigroup of order n1n2

relative to the permutation J if there exists a natural number t such that
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m1 − m2 = (h1, h2)t. In this case, m is a solution of the two congruences
given below and JH = I, where H is the least common multiple of H1 and
H2.

Lemma 1. Let (Q, ·) be a quasigroup and J be a permutation of Q of
order H (so that JH = I) and suppose that Jf ∈ Aut(Q, ·). Then also
Jh ∈ Aut(Q, ·), where h = (f,H) is the greatest common divisor of f and
H.

Remark 1. We can deduce that, in Theorem 1, h1 ≤ (3m + 1, H1) and
h2 ≤ (3m+ 1, H2).

However, it is possible to obtain a much more general theorem:

Lemma 2. Let (Q1, ·) and (Q2, ◦) be respectively an (r1, s1, t1)-inverse
quasigroup (Q1, ·) with respect to the permutation J1 of Q1 and an (r2, s2, t2)-
inverse quasigroup (Q2, ◦) with respect to the permutation J2 of Q2. Then the
direct product (Q, ∗) = (Q1, ·)× (Q2, ◦) will be an (r, s, t)-inverse quasigroup
relative to the permutation J of Q for the particular integers r, s, t if and only
if

(x1 · y1)J
r
1 · x1J

s
1 = y1J

t
1 and (x2 ◦ y2)J

r
2 ◦ x2J

s
2 = y2J

t
2. (1)

We can state the following theorem:

Theorem 2. The direct product (Q, ∗) = (Q1, ·) × (Q2, ◦) will be an
(r, s, t)-inverse quasigroup relative to the permutation J for the particular
integers r, s, t if there exist integers u1 and u2 such that

r − r1 = s− s1 = t− t1 = u1h1 and r − r2 = s− s2 = t− t2 = u2h2, (2)

where h1 and h2 are defined in the same way as before.

Remark 2. Theorem 2 can be stated as “if and only if” provided that
the two equations which appear in the proof of the theorem are not satisfied
for any indices except ri + uihi, etc. (i = 1, 2). However, this is not always
the case as the next Remark and Theorem show.

Remark 3. A quasigroup (Q, ·) which is an (r, s, t)-inverse quasi-
group relative to the permutation J is also an (r + uh, s + uh, t + uh)-
inverse quasigroup for all u ∈ Z, where Jh ∈ Aut(Q, ·), but it may hap-
pen that (Q, ·) is also an (R,S, T )-inverse quasigroup, where (R,S, T ) 6∈
{(r+uh, s+uh, t+uh) : u ∈ Z} for any choice of h such that Jh ∈ Aut(Q, ·).
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Theorem 3. Let (Q, ·) be a quasigroup which is an (r1, s1, t1)-quasigroup
relative to the permutation J of Q. Then (Q, ·) is also an (r2, s2, t2)-
quasigroup (relative to J), where (r2, s2, t2) 6∈ {(r1 + uh, s1 + uh, t1 + uh) :
u ∈ Z} for any choice of h such that Jh ∈ Aut(Q, ·) if and only if
(Js2−s1 , J t2−t1 , Jr2−r1) is an autotopism of the quasigroup (Q, ·).

Taking into account both Theorem 2 and Theorem 3, we may state:

Theorem 4. Suppose that (Q1, ·) and (Q2, ◦) are respectively an
(r1, s1, t1)-inverse quasigroup (Q1, ·) with respect to the permutation J1 of
Q1 and an (r2, s2, t2)-inverse quasigroup (Q2, ◦) with respect to the per-
mutation J2 of Q2 and that (Q1, ·) and (Q2, ◦) have no autotopisms of
the forms (Ja1

1 , J b1
1 , J

c1
1 ) and (Ja2

2 , J b2
2 , J

c2
2 ) respectively other than automor-

phisms. Then the direct product (Q, ∗) = (Q1, ·)× (Q2, ◦) will be an (r, s, t)-
inverse quasigroup relative to the permutation J of Q for the particular in-
tegers r, s, t if and only if there exist integers u1 and u2 such that

r − r1 = s− s1 = t− t1 = u1h1 and r − r2 = s− s2 = t− t2 = u2h2.

Remark 5. Clearly, it is not possible to meet the conditions of Theorem
4 unless r1 − r2 = s1 − s2 = t1 − t2 and unless the greatest common divisor
of h1 and h2 divides each of these integers.

8 n-ary quasigroups and check character sys-

tems.

8.1 Introduction

This section based on results published in [89].
Statistical investigations of J. Verhoeff [112] and D.F. Beckley [11] have

shown that the most frequent errors made by human operators during trans-
mission of data are single errors (i.e. errors in exactly one component),
adjacent transpositions (in other words errors made by interchanging adja-
cent digits, i.e. errors of the form . . . ab . . . −→ . . . ba . . . ), and insertion or
deletion errors. We note, if all codewords are of equal length, insertion and
deletion errors can be detected easily.
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To detect single errors and adjacent transpositions one often uses check
digit systems; these usually consist of codewords a1 . . . an+1 containing, be-
sides the information digits a1 . . . an, one control character an+1.

Definition 1 ([104], [105]). A check digit system with one check character
is a systematic error detecting code over an alphabet Q which arises by
appending a check digit an+1 to every word a1a2 . . . an ∈ Qn :

C :

{
Qn −→ Qn+1

a1a2 . . . an 7−→ a1a2 . . . anan+1.

Here the word “systematic” means that the check character is the last
symbol of any codeword of the code C.

Check character systems over quasigroups have been studied in [23, 28,
53].

As usual in the study of n-quasigroups 1, n = {1, 2, . . . , n} [14]. We recall
definition of n-ary quasigroup.

Definition 2 ([12]). A non-empty set Q with an n-ary operation f such
that in the equation f(x1, x2, . . . , xn) = xn+1 knowledge of any n elements
of x1, x2, . . . , xn, xn+1 uniquely specifies the remaining one is called n-ary
quasigroup.

We can view the code C as a mapping over an alphabet Q such that the
check symbol an+1 is obtained from information symbols a1, a2, . . . , an in the
following manner: g(a1, a2, . . . , an) = an+1, where g is an n-ary operation on
the set Q. We shall call this code C with one check character an+1 over an
alphabet Q as an n-ary code (Q, g). If in an n-ary code (Q, g) the operation g
is an n-ary quasigroup operation, then this code will be called n-quasigroup
code (Q, g).

We shall say that codewords a1 . . . an+1 and b1 . . . bn+1 are equal if and
only if ai = bi for all i ∈ {1, . . . , n + 1}. Sometimes a codeword a1 . . . an+1

will be denoted as an+1
1 .

By an error in a codeword an+1
1 of a code C over an alphabet Q we mean

any word bn+1
1 ∈ Qn+1 such that there exists at least one index j ∈ 1, n+ 1

such that aj 6= bj.
As usual an n-ary code (Q, g) detects an error in a received transmission

word a1 . . . anan+1 if and only if g(an
1 ) 6= an+1.

Proposition 1. Any n-ary code (Q, g) detects all single errors if and only if
it is an n-quasigroup code, i.e. an n-ary operation g is an n-ary quasigroup
operation.
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Proof. This fact follows from properties of a n-ary quasigroup and of n-ary
quasigroup code (Q, g) since any n elements uniquely specifies the remaining
one in both cases. �

With any n-ary quasigroup (Q, f) it is possible to associate ((n+1)!− 1)
n-ary quasigroups, so-called parastrophes of the quasigroup (Q, f) [14].

Let σ be a permutation of the set 1, n+ 1. Operation fσ is called a
σ-parastroph of the operation f if and only if the following equalities are
equivalent: fσ(xσ1, xσ2, . . . , xσn) = xσ(n+1) and f(x1, x2, . . . , xn) = xn+1 for
all xn

1 ∈ Q.
Let (Q, f) is an n-ary quasigroup, f(xn

1 ) = xn+1 for all x1, . . . , xn+1 ∈ Q.
Let m be a natural number, with m ≤ n. If in the last expression we change
elements xk1 , . . . , xkm respectively by some fixed elements a1, . . . , am ∈ Q,
then this expression takes the form

f(xk1−1
1 , a1, x

k2−1
k1+1, a2, . . . , x

n
km

),

i.e. we obtain a new operation g(xk1−1
1 , xk2−1

k1+1, . . . , x
n
km

). The operation g is an
(n−m)-ary quasigroup operation. An operation g obtained in such manner
is called a retract of operation f [14].

Remark 1. By using an n-ary quasigroup retract we can fix in the equality
f(xn

1 ) = xn+1 and the last element xn+1. Really from definition of a parastro-
phy we have f(xn

1 ) = xn+1 if and only if fσ(xn−1
1 , xn+1) = xn where the opera-

tion fσ is a σ-parastroph of the quasigroup operation f and σ = (n+1, n+2).
Then f(xn

1 ) = an+1 if and only if fσ(xn−1
1 , an+1) = xn. Since in this case

any (n − 1) elements uniquely specify the remaining one, we also obtain an
(n− 1)-ary quasigroup operation g(xn−1

1 ) = xn. We shall call the (n− 1)-ary
operation g as (n+ 1)-retract of an n-ary quasigroup operation f .

Let (Q, f) and (Q, g) are n-ary and m-ary quasigroups respectively. Let

h(xm+n−1
1 ) = g(xi−1

1 , f(xi+n−1
i ), xm+n−1

i+n ).

Then (Q, h) will be an (m + n − 1)-ary quasigroup. This quasigroup is
obtained by the superposition of the quasigroup (Q, f) with the quasigroup
(Q, g) on the i-th place [14].

In order to define a systematic n-ary code C one often uses a check equa-
tion of the following form: f(xn+1

1 ) = e where elements x1, . . . , xn are in-
formation symbols, element xn+1 is a check symbol, the element e is a fixed
element of the set Q, the operation f is an (n+ 1)-ary operation.
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It is easy to see that an n-ary code (Q, g) is defined with the help of the
check equation f(xn+1

1 ) = e if and only if the equality f(xn
1 , g(x

n
1 )) = e is

true for all elements x1, . . . , xn ∈ Q.
If in an n-ary code (Q, g) with check equation f(xn+1

1 ) = e the operation
f is a quasigroup operation, then xn+1 = fσ(xn

1 , e) where the operation fσ

is a σ-parastroph of the quasigroup operation f and σ = (n + 1, n + 2).
Therefore in this case we have xn+1 = g(xn

1 ) = fσ(xn
1 , e).

Statement 1. Any n-ary quasigroup code (Q, g) it is possible to define
with help of a check equation f(xn+1

1 ) = e such that this equation is an
(n + 2)-retract (we fix the (n + 2)-th place) of an (n + 1)-ary quasigroup
operation.

Proof. Let A(x, y) = z be a binary group operation on the set Q with
the identity element e. We construct the following (n + 1)-ary quasigroup
operation A(g(xn

1 ), y) = z. Then A((g(xn
1 ), e) = xn+1 where the element xn+1

is a check digit of the information symbols xn
1 of the code (Q, g).

Thus the equation f(xn+1
1 ) = A(23)(g(xn

1 ), xn+1) = e is a check equation of
the code (Q, g) such that this equation is an (n+2)-retract of an (n+1)-ary
quasigroup operation. �

Below we shall suppose that the check equation f(xn+1
1 ) = e of an n-ary

quasigroup code (Q, g) is obtained as the (n+ 2)-th retract of an (n+ 1)-ary
quasigroup operation f(xn+1

1 ) = xn+2.
The systems most commonly in use are defined over alphabets endowed

with a group structure. For a group G = (A, ·) one can determine the check
digit an such that the following (check) equation holds (for fixed permutations
δi of G, i = 1, ..., n, and an element e of G, for instance the identity element)

δ1(a1)δ2(a2) . . . δn(an) = e (1)

Such a system detects all single errors; and it detects all adjacent trans-
positions if and only if for all x, y ∈ G with x 6= y

x · δi+1δ
−1
i (y) 6= y · δi+1δ

−1
i (x).

The proofs are straightforward, see [104]. We shall denote this code as C1.
We give one more definition from [104]: Let (Q, ?i) be quasigroups; then

one uses as check equation

(. . . (xn ?n xn−1) ?n−1 xn−2) . . . ) ?1 x0 = e. (2)
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In this definition the element e is any fixed element of the set Q. If ele-
ments xn−1

0 are information symbols, then element xn is some check symbol.
We shall denote this code as C2.

Corollary 1. The code C1 is an (n − 1)-ary quasigroup code and the code
C2 is an n-ary quasigroup code.

Proof. The left-hand side of the check equation (1) defines an n-ary qua-
sigroup operation f [14]. Check equation (1) is obtained as the (n + 1)-th
retract (we fix the (n + 1)-th place) of the n-ary quasigroup operation f .
Therefore the code C1 is an (n− 1)-ary quasigroup code.

The code C2 is an n-ary quasigroup code by the same arguments. We see
that the check equation (2) is n-ary operation h : h(xn

0 ) = d. This operation is
the (n+2)-th retract of the operation h? : h?(xn

0 ) = xn+1 for all x0, . . . , xn+1 ∈
Q. Since the operation h? is a superposition of n binary quasigroup operations
?1, ?2, . . . , ?n, then by [14] the operation h? is an (n + 1)-ary quasigroup
operation. Therefore the code C2 is an n-ary quasigroup code. �

8.2 On possibilities of n-ary quasigroup codes to detect
errors

Now we would like to show that all n-ary quasigroup codes (Q, d) over the
same alphabet Q and with different quasigroup operations d (arity n is fixed)
have equal possibilities to detect errors.

As usual

Ck
n =

n!

k!(n− k)!
denotes a binomial coefficient. We shall call an error on k places in a code-
word as k-error.

Theorem 1. Any n-quasigroup code (Q, d) over a fixed alphabet Q, (|Q| =
q) and with a fixed finite number n of information symbols and one check
digit can detect:

a) qn+1−qn errors in n information digits and in one check symbol of any
quasigroup codeword (an+1

1 );
b) qn − qn−1 errors all possible types in the first n information symbols

of any quasigroup codeword (an+1
1 );

c) Ck
n+1(q − 1)k−1(q − 2) k-errors (k > 1) in any quasigroup codeword

(an+1
1 );
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d) Ck
n(q− 1)k−1(q− 2) k-errors (k > 1) in the first n information symbols

of any quasigroup codeword (an+1
1 ).

Proof. a) If we fix a codeword (an+1
1 ) of an n-ary quasigroup code (Q, d)

(i.e. for this word the equality an+1 = d(a1, . . . , an) holds), then all other
possible words (xn+1

1 ) where x1, . . . , xn+1 ∈ Q will be errors. Then there exist
qn+1 − 1 possible errors.

The n-ary quasigroup code (Q, d) can not detect errors in qn − 1 qua-
sigroup codewords because for these codewords the check equation xn+1 =
d(xn

1 ) does not detect any errors. Therefore an n-ary quasigroup code (Q, d)
detects qn+1 − 1− qn + 1 = qn+1 − qn errors.

b) In this case we suppose that a check symbol an+1 was transmitted
without error. The case b) is proved by analogy with the case a). There
exist qn−1 possible errors and there exist qn−1−1 quasigroup codewords for
which the check equation an+1 = d(xn

1 ) does not detect any error.
Therefore an n-ary quasigroup code (Q, d) detects qn− qn−1 errors in the

first n information symbols of any quasigroup code word (an+1
1 ).

c) We have Ck
n+1(q− 1)k words that differ from the quasigroup codeword

(an+1
1 ) on k places {i1, i2, . . . , ik} with i1 < i2 < · · · < ik. Such a set of k

places we shall call a k-place.
Really there exist (q− 1)k words that differ from the codeword (an+1

1 ) on
k fixed places. And we have Ck

n+1 different k-places. As usual two k-places
are different if they are different as sets that consist of k elements.

Any word that differs from the codeword (an+1
1 ) on k places {i1, . . . , ik}

has the form

(ai1−1
1 , x1, a

i2−1
i1+1, x2, ai2+1, . . . , aik−1, xk, aik+1, . . . , an+1)

where x1 ∈ Q \ {ai1}, x2 ∈ Q \ {ai2}, . . . , xk ∈ Q \ {aik}.
Let k = 2. Since for any fixed element x0 ∈ Q \ {ai1} there exists exactly

one element y0 ∈ Q\{ai2} such that d(ai−1
1 , x0, a

j−1
i+1 , y0, a

n
j+1) = an+1, (i.e. the

word ai−1
1 , x0, a

j−1
i+1 , y0, a

n
j+1, an+1 is a quasigroup code word), then an n-ary

quasigroup code (Q, d) can not detect q − 1 errors on two fixed places i1, i2
because for these codewords the check equation xn+1 = d(xn

1 ) does not show
any error. Therefore the code (Q, d) can not detect C2

n+1(q − 1) 2-errors.
By analogy since our n-ary quasigroup code (Q, d) can not detect (q −

1)k−1 errors on k fixed places, it can not detect Ck
n+1(q − 1)k−1 k-errors on

all k-places.
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Then any n-ary quasigroup code detects

Ck
n+1(q−1)k−Ck

n+1(q−1)k−1 = Ck
n+1(q−1)k−1(q−1−1) = Ck

n+1(q−1)k−1(q−2)

errors on k places in any quasigroup word (an+1
1 ).

d) In this case we suppose that the check symbol an+1 was transmitted
without error. The case d) is proved by analogy with the case c). �

Now we are in need of some additional n-ary quasigroup theory. We say
that an n-ary quasigroup (Q, f) is an isotope of the n-ary quasigroup (Q, g)
if there exist permutations µ1, µ2, . . . , µn, µ that

f(x1, x2, . . . , xn) = µ−1g(µ1x1, . . . , µnxn) (3)

for all x1, . . . , xn ∈ Q. We can write this fact also in the form: (Q, f) =
(Q, g)T where T = (µ1, µ2, . . . , µn, µ).

If in (3) µ1 = µ2 = · · · = µn = µ, then the quasigroups (Q, f) and (Q, g)
are isomorphic.

We shall say that n-ary quasigroup codes (Q, d) and (Q, g) are isotopic if
their n-ary quasigroup operations (Q, d) and (Q, g) are isotopic.

Remark 2. From Theorem 1 it follows that isotopic n-ary quasigroup codes
detect equal numbers of errors of all types and equal number of k-errors for
any suitable k.

Corollary 2.
a) The relative frequency detected by an n-ary quasigroup code (Q, d) of
errors in n information digits and in one check symbol of any quasigroup
codeword (an+1

1 ) is equal to

qn

qn + qn−1 + · · ·+ 1
>
q − 1

q
;

b) The relative frequency of detected by n-ary quasigroup code (Q, d) of
errors all possible types in the first n information symbols of any quasigroup
codeword (an+1

1 ) is equal to

qn−1

qn−1 + qn−2 + · · ·+ 1
>
q − 1

q
;

c) The relative frequency of detected by n-ary quasigroup code (Q, d) of
k-errors is equal to

q − 2

q − 1
;
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d) The relative frequency of detected by n-ary quasigroup code (Q, d) of k-
errors in the first n information symbols of any quasigroup codeword (an+1

1 )
is equal to

q − 2

q − 1
.

Proof. a) From Theorem 1 we have

qn+1 − qn

qn+1 − 1
=

qn(q − 1)

(q − 1)(qn + qn−1 + · · ·+ 1)
=

qn

(qn + qn−1 + · · ·+ 1)
.

Further
qn+1 − qn

qn+1 − 1
>
qn+1 − qn

qn+1
=
q − 1

q
.

b) This case is proved by analogy with the case a).
c) We have

C2
n+1(q − 1)(q − 2)

C2
n+1(q − 1)2

=
q − 2

q − 1
.

d) Case d) is proved by analogy with the case c). �
Human operators often make two types of errors on two types of places

so it is possible to detect using an n-ary quasigroup code (Q, d), namely:
transpositions ab→ ba and twin errors aa→ bb on places (i, i+ 1), (i, i+ 2)
for all suitable i ∈ 1, n+ 1.

Statement 2. In any fixed quasigroup codeword (an+1
1 ) there cannot be

more than 2n− 1 different transpositions and twin errors.

Proof. There exist n places of the form (i, i + 1) and n − 1 places of the
form (i, i + 2). At every such place can be a transposition as error (when
ai 6= ai+1 or ai 6= ai+2) or twin error (when ai = ai+1 or ai = ai+2). �

8.3 Totally anti-commutative quasigroups and possi-
bilities of n-ary quasigroup codes to detect trans-
position and twin errors

We recall that a binary quasigroup (Q, ·) is called anti-commutative (some-
times such quasigroup is called as anti-symmetric quasigroup [28]) if and only
if the following implication is true: x · y = y · x⇒ x = y for all x, y ∈ Q [12].
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Definition 3. We shall call a binary anti-commutative quasigroup (Q, ·)
totally anti-commutative if and only if the following implication is true x·x =
y · y ⇒ x = y for all x, y ∈ Q.

Remark 3. We would like to note that our definition of a totally
anti-commutative quasigroup is similar to the definition of a totally anti-
symmetric quasigroup [28]: an anti-symmetric quasigroup (Q, ·) is totally
anti-symmetric if and only if the following implication is true (c · x) · y =
(c · y) · x ⇒ x = y for all x, y ∈ Q. For example, in the case when the
quasigroup is a loop and c = 1 we have x · y = y · x⇒ x = y for all x, y ∈ Q.

Definition 4. A retract of a form f(ai−1
1 , xi, a

i+k−1
i+1 , xi+k, a

n
i+k+1), of an n-ary

quasigroup (Q, f) where ai−1
1 , ai+k−1

i+1 , an
i+k+1 are some fixed elements of the

set Q, i ∈ 1, n− k, k ∈ 1, n is called an (i, i + k) binary retract of an n-ary
quasigroup (Q, f).

Theorem 2. An (n − 1)-ary quasigroup code (Q, g) with check equation
d(xn

1 ) = e where the element e is a fixed element of the set Q detects any
transposition and twin error on places of the form (i, i+ k) (i ∈ 1, n− k, k ∈
1, n− 1) if and only if all (i, i+ k) binary retracts of n-ary quasigroup (Q, d)
are totally anti-commutative quasigroups.

Proof. If we suppose that all (i, i+k) binary retracts of an n-ary quasigroup
(Q, d) are totally anti-commutative quasigroups, then from the definition of
totally anti-commutative binary quasigroups it follows that the code (Q, g)
detects any transposition and twin error in the place (i, i+ k).

Conversely, if we suppose that there is a place (i, i + k) and there are
elements ai−1

1 , b, ai+k−1
i+1 , c, an

i+k+1 (b 6= c) such that

d(ai−1
1 , b, ai+k−1

i+1 , c, an
i+k+1) = d(ai−1

1 , c, ai+k−1
i+1 , b, an

i+k+1),

then the binary retract d(ai−1
1 , x, ai+k−1

i+1 , y, an
i+k+1) is not an anti-commutative

quasigroup, and we have a contradiction.
If we suppose that there is a place (i, i + k) and there are elements

ai−1
1 , b, ai+k−1

i+1 , c, an
i+k+1 (b 6= c) such that

d(ai−1
1 , b, ai+k−1

i+1 , b, an
i+k+1) = d(ai−1

1 , c, ai+k−1
i+1 , c, an

i+k+1),

then the binary retract d(ai−1
1 , x, ai+k−1

i+1 , y, an
i+k+1) is not an anti-commutative

quasigroup, and again we have a contradiction. �

Definition 5. An n-ary quasigroup (n-quasigroup) of the form γg(x1, x2, . . . ,
xn) = γ1x1+ γ2x2+ · · ·+ γnxn where (Q,+) is a group, γ, γ1, . . . , γn are
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permutations of the set Q will be called an n-ary group isotope (Q, g). Of
course this equality is true for all x1, x2, . . . , xn ∈ Q.

An n-quasigroup of the form

g(x1, x2, . . . , xn) = α1x1 + α2x2 + · · ·+ αnxn + a =
n∑

i=1

αixi + a

where (Q,+) is a group, α1, . . . , αn are automorphisms of the group (Q,+),
and the element a is some fixed element of the set Q, will be called a linear
n-ary quasigroup (Q, g) (over the group (Q,+)). A linear n-ary quasigroup
over an abelian group is called an n-T-quasigroup (Q, g).

If in an n-ary quasigroup code (Q, g) the operation g or the operation
d from the check equation d(xn+1

1 ) = e of this code is an n-T-quasigroup
operation, then the code (Q, g) will be called an n-T-quasigroup code (Q, g).

Corollary 3. In an n-ary group isotope (Q, g) of the form g(x1, x2, . . . , xn) =
γ1x1 + γ2x2 + · · ·+ γnxn:

a) all its (i, i + 1) (i ∈ 1, n− 1) binary retracts are totally anti-
commutative quasigroups if and only if all its binary retracts of the form
γixi + γi+1xi+1 are totally anti-commutative quasigroups;

b) all its (i, i + k) (i ∈ 1, n− k, k ∈ 1, n− 1) binary retracts are totally
anti-commutative quasigroups if and only if all its binary retracts of the form
γixi+ai+1+· · ·+ai+k−1+γi+kxi+k for any fixed elements ai+1, . . . , ai+k−1 ∈ Q
are totally anti-commutative quasigroups.

Proof. a) Assume all binary retracts of the form γixi + γi+1xi+1 of n-ary
group isotope (Q, g) are totally anti-commutative quasigroups.

If we suppose that there is a place (i, i + 1) and there are elements
ai−1

1 , b, c, an
i+2 (b 6= c) such that g(ai−1

1 , b, c, an
i+2) = g(ai−1

1 , c, b, an
i+2), i.e. that

γ1a1 + · · ·+ γi−1ai−1 + γib+ γi+1c+ γi+1ai+1 + · · ·+ γnan =
γ1a1 + · · ·+ γi−1ai−1 + γic+ γi+1b+ γi+1ai+1 + · · ·+ γnan

or, upon cancellation, that γib+γi+1c = γic+γi+1b, then we obtain a retract of
the form γixi + γi+1xi+1 which is not a totally anti-commutative quasigroup.
We have a contradiction with conditions of this corollary.

If we suppose that there is a place (i, i + 1) and there are elements
ai−1

1 , b, c, an
i+2 (b 6= c) such that g(ai−1

1 , b, b, an
i+2) = g(ai−1

1 , c, c, an
i+2), i.e. that

γ1a1 + · · ·+ γi−1ai−1 + γib+ γi+1b+ γi+1ai+1 + · · ·+ γnan =
γ1a1 + · · ·+ γi−1ai−1 + γic+ γi+1c+ γi+1ai+1 + · · ·+ γnan
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or, upon cancellation, that γib+γi+1b = γic+γi+1c, then we obtain a retract
of the form γixi +γi+1xi+1 which is not totally anti-commutative quasigroup.
We have again a contradiction with conditions of this corollary.

Therefore, if all binary retracts of the form γixi + γi+1xi+1 of the n-
ary group isotope (Q, g) are totally anti-commutative quasigroups, then all
(i, i+ 1) (i ∈ 1, n− 1) binary retracts of this n-ary group isotope are totally
anti-commutative quasigroups.

Converse assertion is obvious.
b) This case is proved by analogy with case a). �
There is a possibility to re-formulate Corollary 3 in the language of binary

quasigroups which are retracts of the n-ary quasigroup (Q, g).

Corollary 3?. In an n-ary group isotope (Q, g) of the form g(xn
1 ) = γ1x1 +

γ2x2 + · · ·+ γnxn:
a) all of the (i, i + 1) (i ∈ 1, n− 1) binary retracts are totally anti-

commutative quasigroups if and only if all binary quasigroups of the form
γixi + γi+1xi+1 are totally anti-commutative quasigroups;

b) all of the (i, i+k) (i ∈ 1, n− k, k ∈ 1, n− 1) binary retracts are totally
anti-commutative quasigroups if and only if all binary quasigroups of the
form γixi + t+γi+kxi+k, for any fixed element t, are totally anti-commutative
quasigroups.

Proof. It is sufficiently to denote the element ai+1+ · · ·+ai+k−1 by the letter
t. �

Corollary 4. An (n− 1)-ary group isotope code (Q, g) with check equation
n∑

i=1

γixi = 0 where the element 0 is the identity element of the group (Q,+)

detects any transposition and twin error on places (i, i + 1) (i ∈ 1, n− 1),
(i, i+2) (i ∈ 1, n− 2) if and only if all quasigroups of the form γixi+γi+1xi+1

and of the form γixi + ai + γi+2xi+2 for any fixed ai ∈ Q, are totally anti-
commutative quasigroups.

Proof. This follows from Corollary 3. �

Corollary 5. In an n-ary group isotope (Q, g) of the form g(x1, x2, . . . , xn) =
γ1x1 + γ2x2 + · · ·+ γnxn where the group (Q,+) is abelian all of its (i, i +
k) (i ∈ 1, n− k, k ∈ 1, n− 1) binary retracts are totally anti-commutative
quasigroups if and only if all binary retracts of the form γixi + γi+kxi+k are
totally anti-commutative quasigroups.
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Proof. If we suppose that there is a place (i, i + k) and there are elements
ai−1

1 , b, ai+k−1
i+1 , c, an

i+k+1 (b 6= c) such that

g(ai−1
1 , b, ai+k−1

i+1 , c, an
i+k+1) = g(ai−1

1 , c, ai+k−1
i+1 , b, an

i+k+1),

i.e. that γ1a1 + · · ·+ γi−1ai−1 + γib+ γi+1ai+1 + · · ·+ γi+k−1ai+k−1 + γi+kc+
γi+k+1ai+k+1 + · · · + γnan = γ1a1 + · · · + γi−1ai−1 + γic + γi+1ai+1 + · · · +
γi+k−1ai+k−1 + γi+kb+ γi+k+1ai+k+1 + · · ·+ γnan, then upon cancellation we
have γib + γi+1ai+1 + · · · + γi+k−1ai+k−1 + γi+kc = γic + γi+1ai+1 + · · · +
γi+k−1ai+k−1 + γi+kb.

Since the group (Q,+) is commutative we further obtain that γib+γi+kc =
γic+ γi+kb.

Thus we see that the retract of the form γixi + γi+kxi+k is not a totally
anti-commutative quasigroup. We have a contradiction with conditions of
this corollary.

If we suppose that there is a place (i, i + k) and there are elements
ai−1

1 , b, ai+k−1
i+1 , c, an

i+k+1 (b 6= c) such that

g(ai−1
1 , b, ai+k−1

i+1 , b, an
i+k+1) = g(ai−1

1 , c, ai+k−1
i+1 , c, an

i+k+1),

i.e. that γ1a1 + · · ·+ γi−1ai−1 + γib+ γi+1ai+1 + · · ·+ γi+k−1ai+k−1 + γi+kb+
γi+k+1ai+k+1 + · · · + γnan = γ1a1 + · · · + γi−1ai−1 + γic + γi+1ai+1 + · · · +
γi+k−1ai+k−1 + γi+kc+ γi+k+1ai+k+1 + · · ·+ γnan, then upon cancellation we
have γib + γi+1ai+1 + · · · + γi+k−1ai+k−1 + γi+kb = γic + γi+1ai+1 + · · · +
γi+k−1ai+k−1 + γi+kc.

Since the group (Q,+) is commutative we further obtain that γib+γi+kb =
γic+ γi+kc.

Thus we have that a retract of the form γixi + γi+kxi+k is not totally
anti-commutative quasigroup, and we have a contradiction with conditions
of this corollary.

Therefore, if all binary retracts of the form γixi + γi+kxi+k of the n-
ary group isotope (Q, g) over an abelian group (Q,+) are totally anti-
commutative quasigroups, then all (i, i+k) (i ∈ 1, n− k, k ∈ 1, n− 1) binary
retracts of this n-ary group isotope are totally anti-commutative quasigroups.

The converse is obvious. �

Corollary 6. An (n − 1)-ary abelian group isotope code (Q, g) with check
equation

∑n
i=1 γixi = 0 where the element 0 is the identity element of the

abelian group (Q,+) detects any transposition and twin error on places (i, i+
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1) (i ∈ 1, n− 1), (i, i + 2) (i ∈ 1, n− 2) if and only if all quasigroups of
the form γixi + γi+1xi+1 and of the form γixi + γi+2xi+2 are totally anti-
commutative quasigroups.

Proof. This follows from Corollary 5. �

Proposition 2. A binary T-quasigroup (Q, ·) of the form x ·y = αx+βy+a
will be a totally anti-commutative quasigroup if and only if the mappings
α − β and α + β are automorphisms of the group (Q,+) (i.e. they are
permutations of the set Q).

Proof. For a T-quasigroup (Q, ·) the property of anti-commutativity x · y =
y · x⇒ x = y for all x, y ∈ Q can be rewritten in the form:

(αx+ βy = αy + βx⇒ x = y)⇔
((α− β)x = (α− β)y ⇒ x = y)⇔
((α− β)(x− y) = 0⇒ x = y).

The last implication will be true only if α− β is an automorphism of group
(Q,+) (in general the mapping α − β is an endomorphism of the group
(Q,+)).

The implication x · x = y · y ⇒ x = y for all x, y ∈ Q can be rewritten in
the form

(αx+ βx = αy + βy ⇒ x = y)⇔
((α+ β)(x− y) = 0⇒ x = y).

The last implication will be true only if α+ β is an automorphism.
Conversely, if the map α− β is an automorphism (a permutation on the

set Q), then the implication (α − β)(x − y) = 0 ⇒ x = y is true since the
automorphism α− β has the identity as its kernel.

If the map α+β is an automorphism, then the implication x ·x = y ·y ⇒
x = y holds in the T-quasigroup (Q, ·). �

Theorem 3. Any (n − 1)-T-quasigroup code (Q, g) with check equation
d(xn

1 ) = α1x1 + α2x2 + · · ·+ αnxn = 0 detects:
a) any transposition error on the place (i, i+ 1), i ∈ 1, n− 1, if and only

if the mapping αi − αi+1 is an automorphism of the group (Q,+);
b) any transposition error on the place (i, i+ 2) (i.e. jump transposition

error), i ∈ 1, n− 2, if and only if the mapping αi−αi+2 is an automorphism
of the group (Q,+);

c) any twin error on the place (i, i + 1), i ∈ 1, n− 1, if and only if the
mapping αi + αi+1 is an automorphism of the group (Q,+);
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d) any twin error on the place (i, i+2) (i.e. jump twin error), i ∈ 1, n− 2,
if and only if the mapping αi +αi+2 is an automorphism of the group (Q,+).

Proof. This follows from Corollary 2 and Proposition 2. �
We shall call an n-quasigroup code (Q, d) that detects any transposition

and twin error on places (i, i + 1) where i ∈ 1, n− 1 and on places (i, i + 2)
where i ∈ 1, n− 2 an 5-n-quasigroup code (Q, d) (since such code detects five
types of errors).

Theorem 4. The direct product of a a 5-n-quasigroup code (Q1, d) and 5-n-
quasigroup code (Q2, g) is a 5-n-quasigroup code (Q1×Q2, f) where f = d◦g.
Proof. This follows from standard definition of direct product and the state-
ment that the direct product of anti-commutative quasigroups is an anti-
commutative quasigroup. The last statement follows from well known fact
that a class of universal algebras of fixed signature defined with identities
and quasi-identities is closed with respect to the direct product [74].

We recall that it is possible to define a quasigroup as an algebra
(Q, ·, /, \) with binary operations ·, /, \ such that the following identities
hold: x · (x\y) = y, (y/x) · x = y, x\(x · y) = y, (y · x)/x = y. �

Remark 4. Theorem 4 is true for n-quasigroup codes that detect any trans-
position and twin error on the same set of places of the form (i, i+ k).

8.4 Examples

Example 1. It is used now the International Standard Book Number code
(ISBN) with (Z11,+), n = 10, and the check equation 1 · x1 + 2 · x2 + 3 · x3 +
4 · x4 + 5 · x5 + 6 · x6 + 7 · x7 + 8 · x8 + 9 · x9 + 10 · x10 ≡ 0 (mod 11).

”... this system detects all adjacent transpositions but needs an element
X /∈ {0, ..., 9}” [104].

Using Theorem 3 we can say that this system detects all single errors,
transposition and twin errors on places (i, i + 1), (i, i + 2) for any possible
value of index i with the exception of twin error on place (5, 6).

If we take the check equation

1·x1+2·x2+3·x3+4·x4+5·x5+10·x6+9·x7+8·x8+7·x9+6·x10 ≡ 0 (mod 11)

or

1·x1+3·x2+5·x3+7·x4+9·x5+10·x6+8·x7+6·x8+4·x9+2·x10 ≡ 0 (mod 11),
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then these 9-ary-T-quasigroup codes over the group (Z11,+) detect all single
errors, transposition and twin errors on places (i, i + 1), (i, i + 2) for any
permissible value of index i.

Of course, in the last check equations we may change the group (Z11,+)
by any group (Zp,+) where p is a prime number, p ≥ 7 and we can take any
finite number n ≥ 4 of items (4 because we must have check symbol and a
possibility to receive jump errors).

For p = 7 we have the following systematic code with the check equation

x1 + 2x2 + 3x3 + 6x4 + 5x5 + 4x6 + x7 + 2x8 + · · ·+ axn ≡ 0 (mod 7),

where a = 1, if n ≡ 1 (mod 6), a = 2, if n ≡ 2 (mod 6), a = 3, if n ≡ 3
(mod 6), a = 6, if n ≡ 4 (mod 6), a = 5, if n ≡ 5 (mod 6), a = 4, if n ≡ 0
(mod 6) or

x1 + 3x2 + 5x3 + 6x4 + 4x5 + 2x6 + x7 + 3x8 + · · ·+ axn ≡ 0 (mod 7),

where a = 1, if n ≡ 1 (mod 6), a = 3, if n ≡ 2 (mod 6), a = 5, if n ≡ 3
(mod 6), a = 6, if n ≡ 4 (mod 6), a = 4, if n ≡ 5 (mod 6), a = 2, if n ≡ 0
(mod 6), xi ∈ Z7 for any i ∈ 1, n.

Example 2. ”The European Article Number code (EAN) and (after adding
0 as first digit) the Universal Product Code (UPC) with G = (Z10,+), n =
13, e = 0, δ2i−1(a) = a = L1(a) and δ2i(a) = 3a = L3(a) ... ” [104].

In other words the EAN code is the code with the check equation

x1 + 3x2 + x3 + 3x4 + x5 + 3x6 + x7 + 3x8 + x9 + 3x10 + x11 + 3x12 + x13 = 0

where xi ∈ Z10, i ∈ 1, 13.
”... this system (EAN code - G.M., V.Shch.) does not detect adjacent

transpositions . . . ab · · · → . . . ba . . . for |a− b| = 5 ” [104].
Moreover, this system does not detect errors of the form . . . acb . . . →

. . . bca . . . , i.e. so called jump transposition errors for any pair of elements
a, b ∈ Z10.

Really, let we have jump transposition . . . acb · · · → . . . bca. Passing to
group operation we have the following expressions . . . 3a+c+3b . . . , . . . 3b+c+
3a . . . or . . . a+3c+b . . . , . . . b+3c+a . . . . Since the group Z10 is commutative
we obtain . . . 3a + c + 3b · · · = . . . 3b + c + 3a . . . or . . . a + 3c + b · · · =
. . . b+ 3c+ a . . . . Therefore EAN code does not detect ”jump transpositions
errors”.
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The EAN code does not detect twin errors (. . . aa · · · → . . . bb . . . ) for
|a − b| = 5. Really, passing to group operation, we obtain the following
expressions · · ·+3a+ a+ · · · = · · ·+4a . . . , · · ·+3b+ b+ · · · = · · ·+4b+ . . .
or · · ·+ a+ 3a+ · · · = · · ·+ 4a+ . . . , · · ·+ b+ 3b+ · · · = · · ·+ 4b+ . . . .

In the case when 4a = 4b the EAN code will not detect this twin error. We
can re-write the last equality in such form 4(a− b) ≡ 0 (mod 10). Therefore
(a− b) ≡ 0 (mod 5), |a− b| = 5 since a, b ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

By analogy it is possible to prove that the EAN code can not detect and
jump twin errors (. . . aca · · · → . . . bcb . . . ) for any pair of elements a, b ∈ Z10

such that |a− b| = 5.
Therefore the EAN code does not detect adjacent transpositions, twin

errors, jump twin errors for any pair of elements a, b ∈ Z10 such that |a−b| = 5
and it does not detect jump transposition for any pair of elements a, b ∈ Z10.

We propose the following code with the check equation

x1 +3x2 +9x3 +7x4 +x5 +3x6 +9x7 +7x8 +x9 +3x10 +9x11 +7x12 +x13 = 0

where xi ∈ Z10, i ∈ 1, 13 as a small modification of EAN code. For conve-
nience we shall call it as the EAN-1 code.

As it follows from Theorem 3 the EAN-1 code detects all single errors
since multiplication of elements of the group Z10 by elements 1, 3, 7, 9 is
automorphism of this group.

The EAN-1 code does not detect transposition errors, jump transposition
errors, twin errors for any pair of elements a, b ∈ Z10 such that |a − b| = 5
and it does not detect jump twin errors for any pair of elements a, b ∈ Z10.

Our computer investigations show that there is not an anti-commutative
quasigroup (Z10, ◦) of the form x◦y = αx+y over the group Z10 with α ∈ S10,
but there exist more than 140.000 of totally anti-commutative quasigroups
of the form x ◦ y = αx+ βy over the group Z7 with α, β ∈ S7.

Example 3. We can propose a code C over Z10 with the following check
equation:

x1 + αx2 + βx3 + x4 + αx5 + βx6 + · · · ≡ 0 (mod 10),

where α = (0 8 7 6 3 9 1 2 5)(4), β = (0 4 5 7 8 1 6 3 2)(9).
This code does not detect two transposition errors, two jump transpo-

sition errors, not more than eight twin errors and jump twin errors on any
place of form (i, i+ 1), (i, i+ 2).
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Proof. Cayley tables of quasigroups x · y = x + αy, x ◦ y = αx + βy and
x ∗ y = βx+ y are the following:

· 0 1 2 3 4 5 6 7 8 9
0 8 2 5 9 4 0 3 6 7 1
1 9 3 6 0 5 1 4 7 8 2
2 0 4 7 1 6 2 5 8 9 3
3 1 5 8 2 7 3 6 9 0 4
4 2 6 9 3 8 4 7 0 1 5
5 3 7 0 4 9 5 8 1 2 6
6 4 8 1 5 1 6 9 2 3 7
7 5 9 2 6 2 7 0 3 4 8
8 6 0 3 7 3 8 1 4 5 9
9 7 1 4 8 4 9 2 5 6 0

◦ 0 1 2 3 4 5 6 7 8 9
0 2 4 8 0 3 5 1 6 9 7
1 6 8 2 4 7 9 5 0 3 1
2 9 1 5 7 0 2 8 3 6 4
3 3 5 9 1 4 6 2 7 0 8
4 8 0 4 6 9 1 7 2 5 3
5 4 6 0 2 5 7 3 8 1 9
6 7 9 3 5 8 0 6 1 4 2
7 0 2 6 8 1 3 9 4 7 5
8 1 3 7 9 2 4 0 5 8 6
9 5 7 1 3 6 8 4 9 2 0

∗ 0 1 2 3 4 5 6 7 8 9
0 4 5 6 7 8 9 0 1 2 3
1 6 7 8 9 0 1 2 3 4 5
2 0 1 2 3 4 5 6 7 8 9
3 2 3 4 5 6 7 8 9 0 1
4 5 6 7 8 9 0 1 2 3 4
5 7 8 9 0 1 2 3 4 5 6
6 3 4 5 6 7 8 9 0 1 2
7 8 9 0 1 2 3 4 5 6 7
8 1 2 3 4 5 6 7 8 9 0
9 9 0 1 2 3 4 5 6 7 8

In the quasigroup (Q, ·) only elements 7 and 8 are permutable: 8 · 7 =
7 · 8 = 4. Therefore this code does not detect only transposition errors
78→ 87 and 87→ 78 on places of the form (1+3j; 2+3j) for any suitable j.
On these places this code does not detect the following twin errors 00↔ 44
(i.e. 00→ 44, 44→ 00), 11↔ 77, 55↔ 88.

In the quasigroup (Q, ◦) only the elements 1 and 8 are permutable. There-
fore the code C does not detect transposition errors 18↔ 81 on places of the
form (2 + 3j; 3 + 3j) for any suitable j. On these places the code does not
detect and twin errors 11↔ 88.

Only the elements 4 and 7 commute in the quasigroup (Q, ∗). Therefore
the code C does not detect transposition errors 47↔ 74 on places of the form
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(3 + 3j; 4 + 3j) for any suitable j. On these places the code does not detect
the following eight twin errors: 33↔ 77, 44↔ 66↔ 88.

On places of the form (1 + 3j, 3 + 3j) code C can not detect the same
set errors as on the places of the form (3 + 3j; 4 + 3j), on places of the form
(2 + 3j, 4 + 3j) code C can not detect the same set errors as on the places of
the form (1+3j; 2+3j) and on places of the form (3+3j, 5+3j) code C can
not detect the same set errors as on the places of the form (2 + 3j; 3 + 3j).
Example 4. Let (Z2n+1,+) is a cyclic group of order (2n + 1) ≥ 7 and the
number 2n + 1 is prime. An n-ary quasigroup code (Z2n+1, d) with check
equation

1·x1+2·x2+3·x3+4·x4+· · ·+n·xn+1·xn+1+2·xn+2+· · · ≡ 0 (mod 2n+1)

where element 0 is identity element of the group (Z2n+1,+) detects single
errors, any transposition and twin errors on places (i, i+ 1), (i, i+ 2) for all
suitable values of natural number i.

Proof. It is known that multiplying of elements of the group (Z2n+1,+) (2n+
1 is prime number) on element k, k ∈ {1, 2, 3, . . . , 2n}, is an automorphism
of the group Z2n+1.

Taking into consideration Theorem 3 we only have to show that the fol-
lowing sums of automorphisms of the group (Z2n+1,+) 1 + 2 = 3, 1 + 3 =
4, 2+3 = 5, . . . , n−1+n = 2n−1, . . . , 1−2 = −1, 1−3 = −2, . . . , n−1−1 =
n − 2, n − 1, n − 2 are automorphisms of the group (Z2n+1,+). Easy to see
that it is so.

Therefore our code can detect all single errors, transposition and twin
errors on places (i, i+ 1), (i, i+ 2) for any suitable value of i.

Example 5. Let (Zp,+) be a cyclic group of prime order p ≥ 7. An (n−1)-
ary quasigroup code (Zp, d) with the check equation

1 · x1 + 2 · x2 + 3 · x3 + 1 · x4 + 2 · x5 + 3 · x6 + · · ·+ αxn ≡ 0 (mod p)

where elements xn−1
1 are information symbols and element xn is a check

character, (α = 1, if n = 3k + 1, α = 2, if n = 3k + 2, α = 3, if n = 3k)
detects any transposition and twin error on places (i, i+1) where i ∈ 1, n− 1,
(i, i+ 2) where i ∈ 1, n− 2.

Proof. Taking into consideration Theorem 3 we only have to show that
the following sums of automorphisms of the group (Zp,+) 1 + 2 = 3, 1 + 3 =
4, 2+3 = 5, 1−2 = −1 = p−1, 1−3 = −2 = p−2, 2−3 = −1 = p−1, 2−1 =
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1, 3 − 1 = 2, 3 − 2 = 1 are automorphisms of the group (Zp,+). Since
multiplication of elements of the group Zp on numbers 1, 2, 3, 4, 5, p−2, p−1
are automorphisms of the group (Zp,+) our code can detect all single errors,
transposition and twin errors on places (i, i+ 1) where i ∈ 1, n− 1, (i, i+ 2)
where i ∈ 1, n− 2.

Example 6. Let (Q,+) = (Zp × Zp,+) where p is prime number. For
example, let p = 2 (minimal possible value of p) or p = 5. Let

α =

(
1 0
0 1

)
, β =

(
1 1
1 0

)
, γ =

(
0 1
1 1

)
.

It is well known that these maps are automorphisms of the group (Zp ×
Zp,+), see, for example, [64].

An (n− 1)-ary quasigroup code (Q, d) with check equation

αx1 + βx2 + γx3 + αx4 + βx5 + · · ·+ δxn = 0

where elements xn−1
1 are information symbols and element xn is check char-

acter, xn
1 ∈ Q, (δ = α, if n = 3k + 1, δ = β, if n = 3k + 2, δ = γ, if

n = 3k) detects any transposition and twin errors on places (i, i + 1) where
i ∈ 1, n− 1 and on places (i, i+ 2) where i ∈ 1, n− 2.

Proof. Taking into consideration Theorem 3 we only have to show that the
following sums of automorphisms α + β, α− β, β − α, α + γ, α− γ, γ − α,
β + γ, β − γ, γ − β are automorphisms of the group (Zp × Zp,+).

As usually det(α) means determinant of the matrix α. We have det(α +
β) = 1, det(α−β) = −1, det(β−α) = −1, det(α+ γ) = 1, det(α− γ) = −1,
det(γ − α) = −1, det(β + γ) = −3, det(β − γ) = −1, det(γ − β) = −1.
Therefore all these sums of automorphisms are automorphisms of the group
(Zp × Zp,+), too.

Thus our code can detect all single errors, transposition and twin errors
on places (i, i+1) where i ∈ 1, n− 1 and on places (i, i+2) where i ∈ 1, n− 2.

Example 7. Let (Zp,+), (Zq,+) are cyclic groups of prime order p, q ≥ 7.
An (n−1)-ary quasigroup code (Q, d) = (Zp×Zq, d) with the check equation

1 · x1 + 2 · x2 + 3 · x3 + 1 · x4 + 2 · x5 + 3 · x6 + · · ·+ αxn ≡ 0 (mod pq)

where binary operation + is the operation of the group (Zp×Zq,+), elements
xn−1

1 are information symbols and element xn is a check character, xn
1 ∈ Q,
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α = 1, if n = 3k + 1, α = 2, if n = 3k + 2, α = 3, if n = 3k detects any
transposition and twin error on places (i, i + 1) where i ∈ 1, n− 1, (i, i + 2)
where i ∈ 1, n− 2.

Proof. We can take into consideration Theorem 4 and Example 5.

Example 8. An (n−1)-ary quasigroup code (Q, d) = (Zp×Zp×Zq, d) with
the check equation

α1 · x1 + α2 · x2 + α3 · x3 + α1 · x4 + α2 · x5 + α3 · x6 + · · ·+ δxn = 0

where elements xn−1
1 are information symbols and element xn is a check

character, xn
1 ∈ Q, δ = α1, if n = 3k + 1, δ = α2, if n = 3k + 2, δ = α3,

if n = 3k detects any transposition and twin error on places (i, i+ 1) where
i ∈ 1, n− 1 and on places of the form (i, i + 2) where i ∈ 1, n− 2, α1xi =
(αx′i; 1 · y′i), α2xi = (βx′i; 2 · y′i), α3xi = (γx′i; 3 · y′i) where α, β, γ are defined
as in Example 6, x′i ∈ Zp × Zp, y

′
i ∈ Zq.

Proof. We can take into consideration Theorem 4 and Examples 6, 7. In
other words we construct this code taking direct product of codes defined in
Examples 6 and 7.

9 On some known possible applications of

quasigroups in cryptology

9.1 Introduction

Almost all results obtained in branch of application of quasigroups in cryp-
tology and coding theory to the end of eighties years of the XX-th century
are described in [34, 35]. In the present survey the main attention is devoted
more late articles in this direction.

Basic facts on quasigroup theory it is possible to find in these lectures
and in more details [12, 13, 14, 95]. Information on basic fact in cryptology
it is possible to find in many books see, for example, [8, 25, 87, 79].

Cryptology is a science that consists form two parts: cryptography and
cryptanalysis. Cryptography is a science on methods of transformation (ci-
phering) of information with the purpose of a protection this information
from an unlawful user. Cryptanalysis is a science on methods and ways of
breaking down of ciphers ([46]).
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In some sense cryptography is a “defense”, i.e. this is a science on con-
struction of new ciphers, but cryptanalysis is an “attack”, i.e. this is a science
and some kind “art”, a set of methods on breaking of ciphers. This situation
is similar to situation with intelligence and contr-intelligence.

These two objects (cryptography and cryptanalysis) are very closed and
there does not exist a good cryptographer that do not know methods of
cryptanalysis.

It is clear, that cryptology depends from a level of development of a
society and a level of development of technology.

We recall, a cipher is a way (a method, an algorithm) of a transformation
of information with purpose of its defense. A key is some hidden part (a
little bit, usually) or parameter of a cipher.

Steganography is a set of means and methods of hiddenness of a fact of
sending (or passing) of information, for example, a communication or a letter.
Now there exist methods of hiddenness of a fact of sending information by
usual post, by e-mail post and so on.

In this survey Coding Theory (Code Theory) will be meant a science on
defense of information from accidental errors by transformation and sending
(passing) this information.

By sending of important and confidential information, as it seems us,
there exists a sense to use methods of Code Theory, Cryptology, and
Steganography all together.

In cryptology often one uses the following Kerkhoff’s (1835-1903) rule:
an opponent (an unlawful user) knows all ciphering procedure (sometimes a
part of plaintext or ciphertext) with exception of a key.

Many authors of books devoted cryptology divide this science (sometimes
and do not taking for attention this fact) on two parts: before article of Diffie
and Hellman ([44]) (so-called cryptology with non-public (symmetric) key)
and past this work (a cryptology with public or non-symmetric key). Espe-
cially fast development of the second part of cryptology is connected with
very fast development of Personal Computers and Nets of Personal Comput-
ers, other electronics technical devices in the end of XX-th century. Many
new mathematical, cryptographical problems are appeared in this direction
and some of them have not solved. Solving of these problems have big im-
portance for practice.

Almost all known construction of error detecting and error correcting
codes, cryptographic algorithms and enciphering systems have made use of
associative algebraic structures such as groups and fields, see, for example,
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[81]. There exists a possibility to use such non-associative structures as quasi-
groups and neofields in almost all branches of coding theory, and especially
in cryptology.

Codes and ciphers based on non-associative systems show better possi-
bilities than known codes and ciphers based on associative systems [36, 76].

There is a sense to notice that in the last years the quantum code theory
and quantum cryptology ([106, 54, 114]) have been developed intensively.

Efficacy of applications of quasigroups in cryptology is based on the fact
that quasigroups are “generalized permutations” of some kind and the num-
ber of quasigroups of order n is larger than n! · (n− 1)! · ... · 2! · 1! ([34]).

It is worth noting that several of the early professional cryptographers, in
particular, A.A. Albert, A. Drisko, J.B. Rosser, E. Schönhardt, C.I. Mende-
son, R. Schaufler, M.M. Gluhov were connected with the development of
Quasigroup Theory. The main known “applicants” of quasigroups in cryp-
tology were and are J.Denes and A.D. Keedwell [34, 35, 36].

Of course, one of the most effective cipher methods is to use unknown,
non-standard or very rare language. Probably the best enciphering method
was and is to have a good agent (a good spy).

9.2 Application of quasigroups in “classical” crypto-
logy

There exist two main elementary methods by ciphering of information.
(i). Symbols in a plaintext (or in its piece (its bit)) are permuted by

some law. The first known cipher of such kind is cipher “Scital” (Sparta,
2500 years ago).

(ii). All symbols in a fixed alphabet are changed by a law on other letters
of this alphabet. One of the first ciphers of such kind was Cezar’s cipher
(x → x + 3 for any letter of Latin alphabet, for example a → d, b → d and
so on).

In many contemporary ciphers (DES, Russian GOST, Blowfish ([87, 45]))
are used methods (i) and (ii) with some modifications.

Trithemius cipher makes use of 26 × 26 square array containing the 26
letters of alphabet (assuming that the language is English) arranged in a
Latin square. Different rows of this square array are used for enciphering
the various letters of the plaintext in a manner prescribed by the keyword
or key-phrase ([8, 63]). Since a Latin square is the multiplication table of
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a quasigroup, this may be regarded as the earliest use of a non-associative
algebraic structure in cryptology. There exists a possibility to develop this
direction using quasigroup approach, in particular, using orthogonal systems
of binary or n-ary quasigroups.

R. Schaufler in his Ph.D. dissertation ([97]) of 1948 discussed the min-
imum amount of plaintext and corresponding ciphertext which would be
required to break the Vigenere cipher (i.e. Trithemius cipher). That is, he
considered the minimum member of entries of particular Latin square which
would determine the square completely.

Recently this problem has re-arisen as the problem of determining so-
called critical sets in Latin squares, see [68, 30, 31, 32, 33], and, possibly,
future A.D. Keedwell’s survey on BCC’03. See, also, articles, devoted Latin
trades, for example, [10].

More recent enciphering systems which may be regarded as extension
of Vigenere’s idea are mechanical machines such as Jefferson’s wheel and
the M-209 Converter (used by U.S.Army until the early 1950’s) and the
electronically produced stream ciphers of the present day ([75, 87]). We
recall, a cipher is called a stream cipher, if by ciphering of a block (a letter)
Bi of a plaintext is used the previous ciphered block Ci−1.

In [75] (see also [76, 77]) C. Koscielny has shown how quasigroups/neofi-
elds-based stream ciphers may be produced which are both more efficient
and more secure than those based on groups/fields.

In [83] the authors introduce a stream cipher with almost public key,
based on quasigroups for defining suitable encryption and decryption. They
consider the security of this method. It is shown that the key (quasigroups)
can be public and still having sufficient security. A software implementation
is also given.

In [78] a public-key cryptosystem, using generalized quasigroup-based
streamciphers is presented. It is shown that such a cryptosystem allows one to
transmit securely both a cryptogram and a secret portion of the enciphering
key using the same insecure channel. The system is illustrated by means of
a simple, but nontrivial, example.

During the second World War R.Shauffler while working for the German
Cryptography service, developed a method of error detection based on the
use of generalized identities (as they were later called by V.D. Belousov) in
which the check digits are calculated by means of an associative system of
quasigroups (see also [28]). He pointed out that the resulting message would
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be more difficult to decode by unauthorized receiver than is the case when a
single associative operation is used for calculation ([98]).

Therefore it is possible to assume that information on systems of quasi-
groups with generalized identities (see, for example, works of Yu. Movsisyan
([88]) may be applied in cryptography of the present day.

Definition. A bijective mapping ϕ : g � ϕ(g) of a finite group (G, ·)
onto itself is called an orthomorphism if the mapping θ : g � θ(g) where
θ(g) = g−1ϕ(g) is again a bijective mapping of G onto itself. The ortho-
morphism is said to be in canonical form if ϕ(1) = 1 where 1 is the identity
element of (G, ·).

A direct application of group orthomorphisms to cryptography is de-
scribed in [85, 86].

9.3 “Neo-classic” cryptology and quasigroups

In [36] some applications of CI-quasigroups in cryptology with non-symmetric
key are described.

Definition. Suppose that there exists a permutation J of the elements
of a quasigroup (Q, ◦) such that, for all x, y ∈ Q Jr(x◦ y)◦Jsx = J ty, where
r, s, t are integers. Then (Q, ◦) is called an (r, s, t)-inverse quasigroup ([69]).

In the special case when r = t = 0, s = 1, we have a definition of
CI-quasigroup.

Example ([36, 67]). A CI-quasigroup can be used to provide a one-time
pad for key exchange (without the intervention of a key distributing center).

The sender S selects arbitrary (using a physical random number generator
(see [76] on random number generator based on quasigroups) an element c(u)

of the CI-quasigroup (Q, ◦) and sends both c(u) and enciphered key (message)
c(u) ◦m. The receiver R uses this knowledge of the algorithm for obtaining
Jc(u) = c(u+1) from c(u) and hence he computes (c(u) ◦m) ◦ c(u+1) = m.

Remark. In previous example Kerkhof’s rule is not fulfilled, so, this
example need to be improved. Maybe there exists a sense to use in this
example, as and in the next example rst-inverse quasigroups.

Example ([36]). A CI-quasigroup with a long inverse cycle (c c′ c′′ . . . ct−1)
of length t and suppose that all the users Ui (i = 1, 2, . . . ) are provided with
apparatus (for example, a chip card) which will compute a ◦ b for any given
a, b ∈ Q. We assume that only the key distributing center has a knowledge
of the long inverse cycle which serves as a look-up table for keys.
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Each user Ui has a public key ui ∈ Q and a private key Jui, both supplied
in advance by the key distributing center. User Us wishes to send a message
m to user Ut. He uses Ut’s public key ut to compute ut ◦m and sends that
to Ut. Ut computes (ut ◦m) ◦ Jut = m.

Remark. It is not very difficult to understand that opponent which
knows the permutation J may decipher a message encrypted by this method.

9.3.1 Secret sharing systems

Definition ([79]). A critical set C in a Latin square L of order n is a set
C = {(i; j; k) | i, j, k ∈ {1, 2, . . . , n}} with the following two properties:

(1) L is the only Latin square of order n which has symbols k in cell (i, j)
for each (i; j; k) ∈ C;

(2) no proper subset of C has property (1).
A critical set is called minimal if it is a critical set of smallest possible

cardinality for L. In other words a critical set is a partial Latin square which
is supplemented uniquely to a Latin square of order n.

If the scheme has k participants, a (t, k)-secret sharing scheme is a system
where k pieces of information called shares or shadows of a secret key K are
distributed so that each participant has a share such that

(1) the key K can be reconstructed from knowledge of any t or more
shares;

(2) the key K cannot be reconstructed from knowledge of fewer than t
shares.

Such systems were first studied in 1979. Simmons ([107]) surveyed various
secret sharing schemes. Secret sharing schemes based on critical sets in Latin
squares are studied in [26]. We note, critical sets of Latin squares give rise
possibilities to construct secret-sharing systems.

Critical sets of Latin squares were studied in sufficiently big number of
articles. We survey results from some of these articles. The paper ( [44])
gives constructive proofs that critical sets exist for all sizes between [n2/4]
and [(n2 − n)/2], with the exception of size n2/4 + 1 for n even.

In the paper [30] presents a solution to the interesting combinatorial prob-
lem of finding a minimal number of elements in a given Latin square of odd
order n by which one may restore the initial form of this square. In particu-
lar, it is proved that in every cyclic Latin square of odd order n the minimal
number of elements equals n(n− 1)/2.
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The paper [31] contains lists of (a) theorems on the possible sizes of
critical sets in Latin squares of order less than 11, (b) publications, where
these theorems are proved, (c) concrete examples of such type of critical sets.
In [32] an algorithm for writing any Latin interchange as a sum of intercalates
is corrected.

Remark. See also Introduction for other application of critical sets of
Latin squares in cryptology.

Some secret-sharing systems are pointed in [35]. One of such systems
is the Reed-Solomon code over a Galois field GF [q] with generating matrix
C(aij) of size k × (q − 1), k ≤ q − 1. The determinant formed by any k
columns of G is a non-zero element of GF [q]. The Hamming distance d of
this code is maximal (d = q−k) and any k from q−1 keys unlock the secret.

In [18] an approach to some Reed-Solomon codes as a some kind of or-
thogonal systems of n-ary operations is developed.

There exist generalizations of notion of orthogonality in some directions.
We recall that in [19, 35] notion of partial orthogonality for binary quasi-
groups is studied. On application of this notion in code theory see [34].
Notion of partial orthogonality has good perspectives in cryptology (private
communication from Russian mathematicians).

9.3.2 Cryptosystems based on power sets of Latin squares and on
row-Latin squares

A Latin square is an arrangement of m symbols x1, x2, . . . , xm into m rows
and m columns such that no row and no column contains any of the sym-
bols x1, x2, . . . , xm twice. It is well known that Cayley table of any finite
quasigroup is a Latin square ([34]).

Two Latin squares are called orthogonal if when one is superimposed
upon the other every ordered pair of symbols x1, x2, . . . , xm occurs once in
the resulting square.

Each row and column of a Latin square L of order m can be thought of as
a permutation of the elements of an m-set. The product of two Latin squares
L1 and L2 of order m is an m×m matrix whose ith row is the composition
of the permutations comprising the ith rows of L1 and L2. Pick the smallest
positive m such that Lm+1 = L.

In general product of two Latin squares is row Latin square since in
row-Latin square only rows are permutations of the set x1, x2, . . . , xm. If
L,L2, . . . , Lm−1 are all Latin squares, then they form a set called a Latin
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power set. D. A. Norton ([91]) has shown that the Latin squares in a Latin
power set are mutually orthogonal.

Power sets of Latin squares were studied in [40], [20].
The authors of article [40] conjecture that if n 6= 2 or 6 then there exists a

Latin power set consisting of at least two Latin squares of order n. This would
provide another disproof of the Euler conjecture that a pair of orthogonal
Latin squares fails to exist for orders n ≡ 2 (mod 4). The authors use
resolvable Mendelsohn triple systems to establish their conjecture if n ≥ 7
and n ≡ 0, 1(mod 3). The authors also discuss some related conjectures.

A possible application in cryptology of Latin power sets is proposed in
[39].

In [43] an encrypting device is described, based on row-Latin squares with
maximal period equal to the Mangoldt function.

In our opinion big perspectives has an application of row-Latin squares in
various branches of contemporary cryptology (”neo-cryptology”). In [79] it
is proposed to use row-Latin squares to generate an open key, a conventional
system for transmission of a message that is the form of a Latin square, row-
Latin square analogue of the RSA system and on row-Latin squares based
procedure of digital signature.

Example.
Let

L =

2 3 4 1
4 1 3 2
3 2 4 1
4 3 1 2

.

Then

L7 =

4 1 2 3
4 1 2 3
3 2 4 1
3 4 2 1

,

L3 =

4 1 2 3
1 2 3 4
1 2 3 4
3 4 2 1

.
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Then

L21 =

2 3 4 1
1 2 3 4
1 2 3 4
4 3 1 2

is a common key for a user A with the key L3 and a user B with key L7.

9.3.3 NLPN sequences over GF[q]

Non-binary pseudo-random sequences over GF[q] of length qm− 1 called PN
sequences have been known for a long time ([57]). PN sequences over a finite
field GF[q] are unsuitable directly for cryptology because of their strong
linear structure ([76]). Usually PN sequences are defined over a finite field
and often it is used an irreducible polynomial for their generation.

In article [76] definition of PN sequence was generalized with the purpose
to use this sequences in cryptology.

We notice, in some sense ciphering is making a “pseudo-random sequence”
from a plaintext, and cryptanalysis is a science how to reduce a check of all
possible variants (cases) by deciphering of some ciphertext.

These new sequences were called NLPN-sequences (non-linear pseudo-
noise sequences). C.Koscielny proposed the following method for construc-
tion of NLPN-sequences. Let −→a be a PN sequence of length qm − 1 over
GF[q], q > 2. Let −→a i be its cyclic shift i places to the right. Let Q = (SQ, ·)
be a quasigroup of order q defined on the set of elements of the field GF[q].

Then
−→
b = −→a · −→a i, −→c = −→a i · −→a , where bj = aj · ai

j, cj = ai
j · aj for any

suitable value of index j (j ∈ {1, 2, . . . , qm− 1}) are called NLPN sequences.
NLPN sequences have much more randomness than PN sequences. As

notice C.Koscielny the method of construction of NLPN sequences is espe-
cially convenient for fast software encryption. It is proposed to use NLPN
sequences by generation of keys. See also [73].

9.3.4 Quasigroups and authentication of a message and some
other problems

By authentication of message we mean that it is made possible for a receiver
of a message to verify that the message has not been modified in transit, so
that it is not possible for an interceptor to substitute a false message for a
legitimate one.
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By identification of a message we mean that it is made possible for the
receiver of a message to ascertain its origin, so that it is not possible for an
intruder to masquerade as someone else.

By non-repudiation we mean that a sender should not be able later to
deny falsely that he had sent a message.

In [36] some quasigroup approaches to problems of identification of a
message, problem of non-repudiation of a message, production of dynamic
password and to digital fingerprinting are discussed. See also [27].

In [37] authors suggested a new authentication scheme based on quasi-
groups (Latin squares). See also [35, 36, 29]

In [96] several cryptosystems based on quasigroups upon various com-
binatorial objects such as orthogonal Latin squares and frequency squares,
block designs, and room squares are considered.

Let 2 ≤ t < k < v. A generalized S(t, k, v) Steiner system is a finite block
design (T,B) such that (1) |T | = v; (2) B = B′ ∪ B′′, where any B′ ∈ B′,
called a maximal block, has k points and 2 ≤ |B′′| < k for any B′′ ∈ B′′,
called a small block; (3) for any B′′ ∈ B′′ there exists a B′ ∈ B′ such that
B′′ ⊆ B′; (4) every subset of T with t elements not belonging to the same
B′′ ∈ B′′ is contained in exactly one maximal block.

In [84] (see also [55]) an application of generalized S(t, k, v) Steiner sys-
tems in cryptology is proposed, namely, it is introduced a new authentication
scheme based on the generalized Steiner systems, and the properties of such
scheme are studied in the generalized affine planes. The generalized affine
planes are investigated, in particular, it is proved that they are generalized
S(2, n, n2) Steiner systems. Some important cases of generalized Steiner sys-
tems are the generalized affine planes considered by the authors.

9.3.5 Hamming distance between quasigroups

Very important by construction of quasigroup based cryptosystems is a ques-
tion: how big distance is between different binary or n-ary quasigroups? In-
formation on Hamming distance between quasigroup operation there is in
the articles [47, 48, 49, 50, 51, 52, 113].

We recall, if α and β are two n-ary operations on a finite set Ω, then the
Hamming distance of α and β is defined by dist(α, β) = |{(u1, . . . , un) ∈ Ωn :
α(u1, . . . , un) 6= β(u1, . . . , un)}|.

The author in [47] discusses Hamming distances of algebraic objects with
binary operations. He also explains how the distance set of two quasigroups
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yields a 2-complex, and points out a connection with dissections of equilateral
triangles.

For a fixed group G(◦), δ(G(◦)) is defined to be the minimum of all such
distances for G(?) not equal to G(◦) and ν(G(◦)) the minimum for G(?) not
isomorphic to G(◦).

In [50] it is proved that δ(G(◦)) is 6n − 18 if n is odd, 6n − 20 if G(◦)
is dihedral of twice odd order and 6n − 24 otherwise for any group G(◦) of
order greater than 50. In [113] it is showed that δ(G(◦)) = 6p−18 for n = p,
a prime, and p > 7. In the article [49] are listed a number of group orders for
which the distance is less than the value suggested by the above theorems.

New results obtained in this direction there are in [52].

9.3.6 On one-way function

A function F : X → Y is called one-way function, if the following conditions
are fulfilled:

• there exists a polynomial algorithm of calculation of F (x) for any x ∈
X;

• there does not exist a polynomial algorithm of inverting of the function
F , i.e. there does not exist any polynomial time algorithm for a solving
of equation F (x) = y relatively variable x.

It is proved that the problem of the existence of one-way function is
equivalent to well known problem of coincidence of classes P and NP.

One of better candidates to be an one-way function is so-called function
of discrete logarithms ([79]).

A neofield (N,+, ·) of order n consists of a set N of n symbols on which
two binary operations + and · are defined such that (N,+) is a loop with
identity element 0 say, (N\{0}, ·) is a group and · distributes from the left
and right over + ([36]).

Let (N,+, ·) be a finite Galois field or a cyclic ((N\{0}, ·) is a cyclic
group) neofield. Then each non-zero element u of the additive group or loop
(N,+) can be represented in the form u = aν , where a is a generator of the
multiplication group (N\{0}, ·). ν is called the discrete logarithm of u to the
base a, or, sometimes, the exponent or index of u.

Given ν and a, it is easy to compute u in a finite field, but, if the order of
the finite field is a sufficiently large prime p and also is appropriately chosen
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it is believed to be difficult to compute ν when u (as a residue modulo p)
and a are given.

In [36] discrete logarithms are studied over a cyclic neofield whose addition
is a CI-loop.

In [79] the discrete logarithm problem for the group RLn of all row-
Latin squares of order n is defined (p.103) and, on pages 138 and 139, some
illustrations of applications to cryptography are given.

9.4 Conclusion remarks

In many cases in cryptography it is possible to change associative systems
on non-associative ones and practically in any case this change gives in some
sense better results than use of associative systems. Quasigroups in spite of
their simplicity, have various applications in cryptology. Many new crypto-
graphical algorithms can be formed on the basis of quasigroups.

10 On some Belousov problems

This section is a part of survey [103].
Before conference LOOPS’99 Prof. H.O. Pflugfelder asked on 20

Belousov’s problems. These problems are presented at the end of
V.D.Belousov’s book:

V.D. Belousov: Foundations of the theory of quasigroups and loops (in
Russian), Nauka, Moscow, 1967.

In this note some information about these problems is given.

Problem 1a). Find necessary and sufficient conditions that a special
loop

is isotopic to a left F–quasigroup.
This problem is solved partially.
I.A. Florea, M.I. Ursul: F–kvasigruppy so svoistvom obratimosti. Vo-

prosy teorii kvasigrupp i lup. Kishinev, Shtiintsa, 1970, 145–156.
They proved that a left F–quasigroup with IP property is isotopic to an

A–loop.

Problem 1b). Is some identity fulfilled in a special loop?
Yes.
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L.R. Soikis: O spetsial’nyh lupah. Voprosy teorii kvasigrupp i lup.
Kishinev, Shtiintsa, 1970, 122–131.

Problem 1c). To what loops are isotopic two–sided F–quasigroups?
A left (right) F–quasigroup is isotopic to a left (right) M–loop.
V.D. Belousov: Elementy teorii kvasigrupp. Uchebnoe posobie po spet-

skursu. Kishinev, 1981, 115 ss.
Interesting results appear in Kepka’s articles.
T. Kepka: F–quasigroups isotopic to Moufang loops. Czehoslovak

Mathem. Journal, 29, (104), 1979, 62–83.
T. Kepka posed the following problem. All known examples of two-sided

F-quasigroup are isotopic to a Moufang loop. Is it true, that every two-sided
F-quasigroup is isotopic to a Moufang loop?

Problem 2. Let Q(·) be a group and let x ◦ y = z1
ε1z2

ε2 . . . zn
εn , where

zi = x or zi = y, ε = +1 (i = 1, 2, . . . , n). For what sequence of values of εi

groupoid Q(◦) is a quasigroup?
Partial results there are given in the article
S.V. Larin: Ob odnoi kvasigruppovoi operatsii na gruppe. Matem. za-

piski Krasnoyarskogo gos. ped. instituta, 1970, vyp. 3, 20–26.

Problem 3. A quasigroup Q(·) is called a Stein quasigroup, if the
identity x ·xy = yx holds in the quasigroup Q(·). To what loops are isotopic
Stein quasigroups?

Semisymmetric (x · yx = y) Stein quasigroup is isotopic to loop of expo-
nent 2; see:

G.B. Belyavskaya, A.M. Cheban: O polusimmetricheskih kvasigruppah
Steina. Matem. issledov. VII:3(25), 1972, 231–237.

General case: it is not known anything to us.
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