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Introduction

Almost all results obtained in branch of application of quasigroups in cryptology and coding
theory to the end of eighties years of the XX-th century are described in [20, 21]. In the present
survey the main attention is devoted more late articles in this direction.

Basic facts on quasigroup theory it is possible to find in [5, 6, 7, 64]. Information on basic
fact in cryptology it is possible to find in many books see, for example, [3, 11, 60, 54].

Cryptology is a science that consists form two parts: cryptography and cryptanalysis. Cryp-
tography is a science on methods of transformation (ciphering) of information with the purpose
of a protection this information from an unlawful user. Cryptanalysis is a science on methods
and ways of breaking down of ciphers ([32]).

In some sense cryptography is a “defense”, i.e. this is a science on construction of new
ciphers, but cryptanalysis is an “attack”, i.e. this is a science and some kind “art”, a set of
methods on breaking of ciphers. This situation is similar to situation with intelligence and
contr-intelligence.

These two objects (cryptography and cryptanalysis) are very closed and there does not exist
a good cryptographer that do not know methods of cryptanalysis.

It is clear, that cryptology depends from a level of development of a society and a level of
development of technology.

We recall, a cipher is a way (a method, an algorithm) of a transformation of information
with purpose of its defense. A key is some hidden part (a little bit, usually) or parameter of a
cipher.

Steganography is a set of means and methods of hiddenness of a fact of sending (or passing)
of information, for example, a communication or a letter. Now there exist methods of hiddenness
of a fact of sending information by usual post, by e-mail post and so on.
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In this survey Coding Theory (Code Theory) will be meant a science on defense of information
from accidental errors by transformation and sending (passing) this information.

By sending of important and confidential information, as it seems us, there exists a sense to
use methods of Code Theory, Cryptology, and Steganography all together.

In cryptology often one uses the following Kerkhoff’s (1835-1903) rule: an opponent (an
unlawful user) knows all ciphering procedure (sometimes a part of plaintext or ciphertext) with
exception of a key.

Many authors of books devoted cryptology divide this science (sometimes and do not tak-
ing for attention this fact) on two parts: before article of Diffie and Hellman ([30]) (so-called
cryptology with non-public (symmetric) key) and past this work (a cryptology with public or
non-symmetric key). Especially fast development of the second part of cryptology is connected
with very fast development of Personal Computers and Nets of Personal Computers, other elec-
tronics technical devices in the end of XX-th century. Many new mathematical, cryptographical
problems are appeared in this direction and some of them have not solved. Solving of these
problems have big importance for practice.

Almost all known construction of error detecting and error correcting codes, cryptographic
algorithms and enciphering systems have made use of associative algebraic structures such as
groups and fields, see, for example, [55]. There exists a possibility to use such non-associative
structures as quasigroups and neo-fields in almost all branches of coding theory, and especially
in cryptology.

Codes and ciphers based on non-associative systems show better possibilities than known
codes and ciphers based on associative systems [22, 51].

There is a sense to notice that in the last years the quantum code theory and quantum
cryptology ([68, 39, 71]) have been developed intensively.

Efficacy of applications of quasigroups in cryptology is based on the fact that quasigroups
are “generalized permutations” of some kind and the number of quasigroups of order n is larger
than n! · (n− 1)! · ... · 2! · 1! ([20]).

It is worth noting that several of the early professional cryptographers, in particular, A.A.
Albert, A. Drisko, J.B. Rosser, E. Schönhardt, C.I. Mendeson, R. Schaufler, M.M. Gluhov
were connected with the development of Quasigroup Theory. The main known “applicants” of
quasigroups in cryptology were and are J.Denes and A.D. Keedwell [20, 21, 22].

Of course, one of the most effective cipher methods is to use unknown, non-standard or very
rare language. Probably the best enciphering method was and is to have a good agent (a good
spy).

Some problems of cryptology for computer systems

Recall some problems of protection information in computer systems ([31]). At construction of
protected computer systems (PCS) the role of cryptographic methods for the decision of various
problems of information safety is difficult for overestimating. Cryptographic methods now are
base for maintenance reliable authentication schemes by an information exchange, for protec-
tion of the information in transport subsystem, in PCS, for acknowledgement (confirmation) of
integrity of objects of PCS, etc.
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Cryptographic protection information concern to means equipment rooms, hardware, hardware-
software and the software realizing cryptographic algorithms of transformation of the information
with the purpose:

protection of the information at its processing, storage and transfer in transport environment
of Computer systems;

maintenance of reliability and integrity of the information (including with use of algorithms
of electronic digital signature) at its processing, storage and transfer in transport environment
of Computer systems;

manufactures of the information used for identification and authentication of subjects, users
and devices;

manufactures of the information used for protection of authenticating elements of PCS at
their development (manufacture), snore, processing and transfer.

It is supposed, that Means of Computer Protection of Information (MCPI) are used also
to some computer system (in a number of sources such that information - telecommunication
system or communication networks), together with mechanisms of realization and warranting of
some politics of safety.

Historical digression to a problem of synthesis of means of cryptographic protection of infor-
mation on the basis of computer systems allows to speak about that, complexity a safety with
help of MCPI grows with growth of complexity of a communication facility and information
technologies.

The basic difficulties are connected to the following factors:
means of realization of cryptographic algorithm in computer system represents equal in rights

with other a resource (is the program and uses the data of computer system);
key information of MCPI is the data of computer system with an opportunity of access on the

part of other programs and with passage at processing also through a number (a line) external
in relation to MCPI program modules;

functioning MCPI occurs not independently, and is carried out under the control of opera-
tional system and various programs - intermediaries who at desire can deform any way entered
and deduced (removed) MCPI the information;

the program environment in which works MCPI is arranged hierarchically, i.e. for perfor-
mance of typical functions all programs use the same fragments of a code and the data;

work MCPI is connected to occurrence of erroneous situations in the hardware and program
environment of computer system.

The described complexities are aggravated also with that many countries now are not engaged
in development of own hardware decisions in the field of modern computer facilities (excluding a
special chips) and program decisions in the field of operational systems and the basic functional
appendices.

In this connection for good safety in modern information-telecommunication systems (ITS)
based on advanced information technologies, it is necessary to solve information effectively a
circle of complex (difficult) scientific and technical problems, namely:

to provide optimum, formally checked realization of cryptographic algorithms (further -
cryptographic algorithms) within the framework of maintained in ITS program and hardware
platforms;
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to provide at designing MCPI of a measure of maintenance of fault tolerance, protection
against failures and distortions of an equipment room components;

to provide security MCPI and its resources (the key information and other) from the non-
authorized access on the part of other programs;

to guarantee quality of management MCPI on the part of operational system of the programs
- intermediaries developed by foreign firms, including in conditions of erroneous and deliberate
actions of users.

It is necessary to notice, that component of scientific and technical activity no to all speci-
fied directions development of requirements, classifications, techniques, working and educational
technical materials, recommendations of the instructions for use concerning development, man-
ufacture, operation MCPI is important.

It is necessary to note also, that realization MCPI in complex universal operational environ-
ments such as Windows or Unix demands carrying out of significant volumes of basic researches
for definition of points of embedding MCPI in operational system and maintenance of a correct-
ness of their work.

Application of quasigroups in “classical” cryptology

There exist two main elementary methods by ciphering of information.
(i). Symbols in a plaintext (or in its piece (its bit)) are permuted by some law. The first

known cipher of such kind is cipher “Scital” (Sparta, 2500 years ago).
(ii). All symbols in a fixed alphabet are changed by a law on other letters of this alphabet.

One of the first ciphers of such kind was Cezar’s cipher (x → x + 3 for any letter of Latin
alphabet, for example a→ d, b→ d and so on).

In many contemporary ciphers (DES, Russian GOST, Blowfish ([60, 31])) are used methods
(i) and (ii) with some modifications.

Trithemius cipher makes use of 26 × 26 square array containing the 26 letters of alphabet
(assuming that the language is English) arranged in a Latin square. Different rows of this square
array are used for enciphering the various letters of the plaintext in a manner prescribed by the
keyword or key-phrase ([3, 44]). Since a Latin square is the multiplication table of a quasigroup,
this may be regarded as the earliest use of a non-associative algebraic structure in cryptology.
There exists a possibility to develop this direction using quasigroup approach, in particular,
using orthogonal systems of binary or n-ary quasigroups.

R. Schaufler in his Ph.D. dissertation ([66]) of 1948 discussed the minimum amount of plain-
text and corresponding ciphertext which would be required to break the Vigenere cipher (i.e.
Trithemius cipher). That is, he considered the minimum member of entries of particular Latin
square which would determine the square completely.

Recently this problem has re-arisen as the problem of determining so-called critical sets in
Latin squares, see [47, 16, 17, 18, 19], and, possibly, future A.D. Keedwell’s survey on BCC’03.
See, also, articles, devoted Latin trades, for example, [4].

More recent enciphering systems which may be regarded as extension of Vigenere’s idea are
mechanical machines such as Jefferson’s wheel and the M-209 Converter (used by U.S.Army until
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the early 1950’s) and the electronically produced stream ciphers of the present day ([50, 60]).
We recall, a cipher is called a stream cipher, if by ciphering of a block (a letter) Bi of a plaintext
is used the previous ciphered block Ci−1.

In [50] (see also [51, 52]) C.Koscielny has shown how quasigroups/neofields-based stream
ciphers may be produced which are both more efficient and more secure than those based on
groups/fields.

Eliska Ochodkova and Vaclav Snasel ([63]) proposed to use quasigroups for secure encoding
of file system.

It is well known that a quasigroup (Q, ·) and its (23)-parastroph (Q, ?) (x ·y = z ⇔ x?z = y)
for all x, y, z ∈ Q satisfies the following identities x ? (x · y) = y, x · (x ? y) = y. The authors
propose to use this property of the quasigroups to construct a stream cipher.

Definition. Let A be a non-empty alphabet, k be a natural number, ui, vi ∈ A, i ∈ {1, ..., k}.
A fixed element l (l ∈ A) is called leader. Then f(u1u2...uk) = v1v2...vk ⇔ v1 = l · u1, vi+1 =
vi · ui+1, i = 1, 2, ..., k − 1 is an ciphering algorithm.

An enciphering algorithm is constructed in the following way: f?(v1v2...vk) = u1u2...vk ⇔
u1 = l ? v1, ui+1 = vi ? vi+1, i = 1, 2, ..., k − 1.

Authors say that this cipher is resist to the brute force attack and to the statistical attack.
Example.
Table 1. Let quasigroups (A, ·) and (A, ?) are defined by following Cayley tables

· a b c

a b c a
b c a b
c a b c

? a b c

a c a b
b b c a
c a b c

Let l = a and u = b b c a a c b a. Then the cipher text is v = c b b c a a c a. Applying of
decoding function on v we get b b c a a c b a = u.

Remark. There exists a sense to study possibilities of use an n-ary quasigroup and its
parastrophes in Ochodkova-Snasel construction.

In [56] the authors introduce a stream cipher with almost public key, based on quasigroups
for defining suitable encryption and decryption. They consider the security of this method. It is
shown that the key (quasigroups) can be public and still having sufficient security. A software
implementation is also given.

In [53] a public-key cryptosystem, using generalized quasigroup-based streamciphers is pre-
sented. It is shown that such a cryptosystem allows one to transmit securely both a cryptogram
and a secret portion of the enciphering key using the same insecure channel. The system is
illustrated by means of a simple, but nontrivial, example.

During the second World War R.Shauffler while working for the German Cryptography
service, developed a method of error detection based on the use of generalized identities (as
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they were later called by V.D. Belousov) in which the check digits are calculated by means of an
associative system of quasigroups (see also [14]). He pointed out that the resulting message would
be more difficult to decode by unauthorized receiver than is the case when a single associative
operation is used for calculation ([67]).

Therefore it is possible to assume that information on systems of quasigroups with generalized
identities (see, for example, works of Yu. Movsisyan ([61]) may be applied in cryptography of
the present day.

Definition. A bijective mapping ϕ : g� ϕ(g) of a finite group (G, ·) onto itself is called an
orthomorphism if the mapping θ : g� θ(g) where θ(g) = g−1ϕ(g) is again a bijective mapping
of G onto itself. The orthomorphism is said to be in canonical form if ϕ(1) = 1 where 1 is the
identity element of (G, ·).

A direct application of group orthomorphisms to cryptography is described in [58, 59].

“Neo-classic” cryptology and quasigroups

In [22] some applications of CI-quasigroups in cryptology with non-symmetric key are described.
Definition. Suppose that there exists a permutation J of the elements of a quasigroup

(Q, ◦) such that, for all x, y ∈ Q Jr(x ◦ y) ◦ Jsx = J ty, where r, s, t are integers. Then (Q, ◦) is
called an (r, s, t)-inverse quasigroup ([48]).

In the special case when r = t = 0, s = 1, we have a definition of CI-quasigroup.

Example ([22, 46]). A CI-quasigroup can be used to provide a one-time pad for key exchange
(without the intervention of a key distributing centre).

The sender S selects arbitrary (using a physical random number generator (see [51] on random
number generator based on quasigroups) an element c(u) of the CI-quasigroup (Q, ◦) and sends
both c(u) and enciphered key (message) c(u) ◦ m. The receiver R uses this knowledge of the
algorithm for obtaining Jc(u) = c(u+1) from c(u) and hence he computes (c(u) ◦m) ◦ c(u+1) = m.

Remark. In previous example Kerkhof’s rule is not fulfilled, so, this example need to be
improved. Maybe there exists a sense to use in this example, as and in the next example
rst-inverse quasigroups.

Example ([22]). A CI-quasigroup with a long inverse cycle (c c′ c′′ . . . ct−1) of length t and
suppose that all the users Ui (i = 1, 2, . . . ) are provided with apparatus (for example, a chip
card) which will compute a ◦ b for any given a, b ∈ Q. We assume that only the key distributing
centre has a knowledge of the long inverse cycle which serves as a look-up table for keys.

Each user Ui has a public key ui ∈ Q and a private key Jui, both supplied in advance by
the key distributing centre. User Us wishes to send a message m to user Ut. He uses Ut’s public
key ut to compute ut ◦m and sends that to Ut. Ut computes (ut ◦m) ◦ Jut = m.

Remark. It is not very difficult to understand that opponent which knows the permutation
J may decipher a message encrypted by this method.
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Secret sharing systems

Definition ([54]). A critical set C in a Latin square L of order n is a set C = {(i; j; k) | i, j, k ∈
{1, 2, . . . , n}} with the following two properties:

(1) L is the only Latin square of order n which has symbols k in cell (i, j) for each (i; j; k) ∈ C;
(2) no proper subset of C has property (1).
A critical set is called minimal if it is a critical set of smallest possible cardinality for L.

In other words a critical set is a partial Latin square which is uniquely completable to a Latin
square of order n.

If the scheme has k participants, a (t, k)-secret sharing scheme is a system where k pieces of
information called shares or shadows of a secret key K are distributed so that each participant
has a share such that

(1) the key K can be reconstructed from knowledge of any t or more shares;
(2) the key K cannot be reconstructed from knowledge of fewer than t shares.
Such systems were first studied in 1979. Simmons ([69]) surveyed various secret sharing

schemes. Secret sharing schemes based on critical sets in Latin squares are studied in [12]. We
note, critical sets of Latin squares give rise possibilities to construct secret-sharing systems.

Critical sets of Latin squares were studied in sufficiently big number of articles. We survey
results from some of these articles. The paper ( [30]) gives constructive proofs that critical sets
exist for all sizes between [n2/4] and [(n2−n)/2], with the exception of size n2/4 + 1 for n even.

In the paper [16] presents a solution to the interesting combinatorial problem of finding a
minimal number of elements in a given Latin square of odd order n by which one may restore
the initial form of this square. In particular, it is proved that in every cyclic Latin square of
odd order n the minimal number of elements equals n(n− 1)/2.

The paper [17] contains lists of (a) theorems on the possible sizes of critical sets in Latin
squares of order less than 11, (b) publications, where these theorems are proved, (c) concrete
examples of such type of critical sets. In [18] an algorithm for writing any Latin interchange as
a sum of intercalates is corrected.

Remark. See also Introduction for other application of critical sets of Latin squares in
cryptology.

Some secret-sharing systems are pointed in [21]. One of such systems is the Reed-Solomon
code over a Galois field GF [q] with generating matrix C(aij) of size k × (q − 1), k ≤ q − 1.
The determinant formed by any k columns of G is a non-zero element of GF [q]. The Hamming
distance d of this code is maximal (d = q − k) and any k from q − 1 keys unlock the secret.

In [8] an approach to some Reed-Solomon codes as a some kind of orthogonal systems of
n-ary operations is developed.

There exist generalizations of notion of orthogonality in some directions. We recall that
in [9, 21] notion of partial orthogonality for binary quasigroups is studied. On application of
this notion in code theory see [20]. Notion of partial orthogonality has good perspectives in
cryptology (private communication from Russian mathematicians).
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Cryptosystems based on power sets of Latin squares and on row-Latin squares

A Latin square is an arrangement of m symbols x1, x2, . . . , xm into m rows and m columns such
that no row and no column contains any of the symbols x1, x2, . . . , xm twice. It is well known
that Cayley table of any finite quasigroup is a Latin square ([20]).

Two Latin squares are called orthogonal if when one is superimposed upon the other every
ordered pair of symbols x1, x2, . . . , xm occurs once in the resulting square.

Each row and column of a Latin square L of order m can be thought of as a permutation of
the elements of an m-set. The product of two Latin squares L1 and L2 of order m is an m×m
matrix whose ith row is the composition of the permutations comprising the ith rows of L1 and
L2. Pick the smallest positive m such that Lm+1 = L.

In general product of two Latin squares is row Latin square since in row-Latin square only
rows are permutations of the set x1, x2, . . . , xm. If L,L2, . . . , Lm−1 are all Latin squares, then
they form a set called a Latin power set. D. A. Norton ([62]) has shown that the Latin squares
in a Latin power set are mutually orthogonal.

Power sets of Latin squares were studied in [26], [10].
The authors of article [26] conjecture that if n 6= 2 or 6 then there exists a Latin power set

consisting of at least two Latin squares of order n. This would provide another disproof of the
Euler conjecture that a pair of orthogonal Latin squares fails to exist for orders n ≡ 2 (mod 4).
The authors use resolvable Mendelsohn triple systems to establish their conjecture if n ≥ 7 and
n ≡ 0, 1(mod 3). The authors also discuss some related conjectures.

A possible application in cryptology of Latin power sets is proposed in [25].
In [29] an encrypting device is described, based on row-Latin squares with maximal period

equal to the Mangoldt function.
In our opinion big perspectives has an application of row-Latin squares in various branches

of contemporary cryptology (”neo-cryptology”). In [54] it is proposed to use row-Latin squares
to generate an open key, a conventional system for transmission of a message that is the form of
a Latin square, row-Latin square analogue of the RSA system and on row-Latin squares based
procedure of digital signature.

Example.
Let

L =

2 3 4 1
4 1 3 2
3 2 4 1
4 3 1 2

.

Then

L7 =

4 1 2 3
4 1 2 3
3 2 4 1
3 4 2 1

,
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L3 =

4 1 2 3
1 2 3 4
1 2 3 4
3 4 2 1

.

Then

L21 =

2 3 4 1
1 2 3 4
1 2 3 4
4 3 1 2

is a common key for a user A with the key L3 and a user B with key L7.

NLPN sequences over GF[q]

Non-binary pseudo-random sequences over GF[q] of length qm − 1 called PN sequences have
been known for a long time ([41]). PN sequences over a finite field GF[q] are unsuitable directly
for cryptology because of their strong linear structure ([51]). Usually PN sequences are defined
over a finite field and often it is used an irreducible polynomial for their generation.

In article [51] definition of PN sequence was generalized with the purpose to use this sequences
in cryptology.

We notice, in some sense ciphering is making a “pseudo-random sequence” from a plaintext,
and cryptanalysis is a science how to reduce a check of all possible variants (cases) by deciphering
of some ciphertext.

These new sequences were called NLPN-sequences (non-linear pseudo-noise sequences). C.Kos-
cielny proposed the following method for construction of NLPN-sequences. Let −→a be a PN
sequence of length qm− 1 over GF[q], q > 2. Let −→a i be its cyclic shift i places to the right. Let
Q = (SQ, ·) be a quasigroup of order q defined on the set of elements of the field GF[q]. Then−→
b = −→a · −→a i, −→c = −→a i · −→a , where bj = aj · aij , cj = aij · aj for any suitable value of index j

(j ∈ {1, 2, . . . , qm − 1}) are called NLPN sequences.
NLPN sequences have much more randomness than PN sequences. As notice C.Koscielny the

method of construction of NLPN sequences is especially convenient for fast software encryption.
It is proposed to use NLPN sequences by generation of keys. See also [49].

Quasigroups and authentication of a message and some other problems

By authentication of message we mean that it is made possible for a receiver of a message
to verify that the message has not been modified in transit, so that it is not possible for an
interceptor to substitute a false message for a legitimate one.

By identification of a message we mean that it is made possible for the receiver of a message
to ascertain its origin, so that it is not possible for an intruder to masquerade as someone else.



10 VICTOR SHCHERBACOV

By non-repudiation we mean that a sender should not be able later to deny falsely that he
had sent a message.

In [22] some quasigroup approaches to problems of identification of a message, problem of
non-repudiation of a message, production of dynamic password and to digital fingerprinting are
discussed. See also [13].

In [23] authors suggested a new authentication scheme based on quasigroups (Latin squares).
See also [21, 22, 15]

In [65] several cryptosystems based on quasigroups upon various combinatorial objects such
as orthogonal Latin squares and frequency squares, block designs, and room squares are consid-
ered.

Let 2 ≤ t < k < v. A generalized S(t, k, v) Steiner system is a finite block design (T,B) such
that (1) |T | = v; (2) B = B′ ∪ B′′, where any B′ ∈ B′, called a maximal block, has k points and
2 ≤ |B′′| < k for any B′′ ∈ B′′, called a small block; (3) for any B′′ ∈ B′′ there exists a B′ ∈ B′
such that B′′ ⊆ B′; (4) every subset of T with t elements not belonging to the same B′′ ∈ B′′ is
contained in exactly one maximal block.

In [57] (see also [40]) an application of generalized S(t, k, v) Steiner systems in cryptology
is proposed, namely, it is introduced a new authentication scheme based on the generalized
Steiner systems, and the properties of such scheme are studied in the generalized affine planes.
The generalized affine planes are investigated, in particular, it is proved that they are general-
ized S(2, n, n2) Steiner systems. Some important cases of generalized Steiner systems are the
generalized affine planes considered by the authors.

Hamming distance between quasigroups

Very important by construction of quasigroup based cryptosystems is a question: how big dis-
tance is between different binary or n-ary quasigroups? Information on Hamming distance
between quasigroup operation there is in the articles [33, 34, 35, 36, 37, 38, 70].

We recall, if α and β are two n-ary operations on a finite set Ω, then the Hamming distance
of α and β is defined by dist(α, β) = |{(u1, . . . , un) ∈ Ωn : α(u1, . . . , un) 6= β(u1, . . . , un)}|.

The author in [33] discusses Hamming distances of algebraic objects with binary operations.
He also explains how the distance set of two quasigroups yields a 2-complex, and points out a
connection with dissections of equilateral triangles.

For a fixed group G(◦), δ(G(◦)) is defined to be the minimum of all such distances for G(?)
not equal to G(◦) and ν(G(◦)) the minimum for G(?) not isomorphic to G(◦).

In [36] it is proved that δ(G(◦)) is 6n−18 if n is odd, 6n−20 if G(◦) is dihedral of twice odd
order and 6n − 24 otherwise for any group G(◦) of order greater than 50. In [70] it is showed
that δ(G(◦)) = 6p− 18 for n = p, a prime, and p > 7. In the article [35] are listed a number of
group orders for which the distance is less than the value suggested by the above theorems.

New results obtained in this direction there are in [38].
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On one-way function

A function F : X → Y is called one-way function, if the following conditions are fulfilled:

• there exists a polynomial algorithm of calculation of F (x) for any x ∈ X;

• there does not exist a polynomial algorithm of inverting of the function F , i.e. there does
not exist any polynomial time algorithm for a solving of equation F (x) = y relatively
variable x.

It is proved that the problem of the existence of one-way function is equivalent to well known
problem of coincidence of classes P and NP.

One of better candidates to be an one-way function is so-called function of discrete logarithms
([54]).

A neofield (N,+, ·) of order n consists of a set N of n symbols on which two binary operations
+ and · are defined such that (N,+) is a loop with identity element 0 say, (N\{0}, ·) is a group
and · distributes from the left and right over + ([22]).

Let (N,+, ·) be a finite Galois field or a cyclic ((N\{0}, ·) is a cyclic group) neofield. Then
each non-zero element u of the additive group or loop (N,+) can be represented in the form
u = aν , where a is a generator of the multiplication group (N\{0}, ·). ν is called the discrete
logarithm of u to the base a, or, sometimes, the exponent or index of u.

Given ν and a, it is easy to compute u in a finite field, but, if the order of the finite field
is a sufficiently large prime p and also is appropriately chosen it is believed to be difficult to
compute ν when u (as a residue modulo p) and a are given.

In [22] discrete logarithms are studied over a cyclic neofield whose addition is a CI-loop.
In [54] the discrete logarithm problem for the group RLn of all row-Latin squares of order n

is defined (p.103) and, on pages 138 and 139, some illustrations of applications to cryptography
are given.

Zero knowledge protocol and isotopy of quasigroups

In [27] it is proposed to use isotopy of quasigroups in so-called zero knowledge protocol. Quasi-
groups (Q, ◦) and (Q, ·) are called isotopic if there exist bijections α, β, γ of the set Q such that
equality x ◦ y = γ−1(αx · βy) is true for all x, y ∈ Q.

Jean-Jacques Quisquater and Louis Guillou explain zero-knowledge with a story about a
cave. The cave, illustrated in Figure 1. has a secret.

Someone who knows the magic words can open the secret door between C and D. To everyone
else, both passages lead to dead ends.

Peggy knows the secret of the cave. She wants to prove her knowledge to Victor, but she
doesn’t want to reveal the magic words. Here’s how she convinces him:

(1) Victor stands at point A.
(2) Peggy walks all the way into the cave, either to point C or point D.
(3) After Peggy has disappeared into the cave, Victor walks to point B.
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(4) Victor shouts to Peggy, asking her either to:
(a) come out of the left passage or
(b) come out of the right passage.

(5) Peggy complies, using the magic words to open the secret door if
she has to.

(6) Peggy and Victor repeat steps (1) through (5) n times.

A

B

C D

Figure 1.

Assume the users (u1, u2, ..., uk) form a network. ui has public-key Lui , L
′
ui (denote two

isotopic Latin squares at order n and secret-key Iui (denotes the isotopism of Lui upon L
′
ui).

ui wants to prove identity for uj but he doesn’t want to reveal the secret-key (zero-knowledge
proof).

1. ui randomly permutes Lui to produce another Latin square H.
2. ui sends H to uj .
3. uj asks ui either to:

a. prove that H and L
′
ui are isotopic,

b. prove that H and Lui are isotopic.
4. ui complies. He either

a. prove that H and L
′
ui are isotopic,

b. prove that H and Lui are isotopic.
5. ui and uj repeat steps 1. through 4. n times.

Remark. It the last procedure is possible to use even isotopy of n-ary groupoids.
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Conclusion remarks

In many cases in cryptography it is possible to change associative systems on non-associative ones
and practically in any case this change gives in some sense better results than use of associative
systems. Quasigroups in spite of their simplicity, have various applications in cryptology. Many
new cryptographical algorithms can be formed on the basis of quasigroups.
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