Adaptive numerical solution of time-dependent PDEs

V. Dolejší

Numerical Software

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \rho v_1, \rho v_2, e)^T$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^{\mathrm{T}}$ gravity forces, $g = 9.81 \text{m/s}^2$

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$,

NumSoft

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \rho v_1, \rho v_2, e)^T$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^{\mathrm{T}}$ gravity forces, $g = 9.81 \text{m/s}^2$

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$,

NumSoft

Compressible Navier-Stokes equations

$$\partial_t \mathbf{w} + \nabla \cdot \vec{\mathbf{f}}(\mathbf{w}) - \nabla \cdot \vec{R}(\mathbf{w}, \nabla \mathbf{w}) = \mathbf{g}(\mathbf{w}) \text{ in } Q_T := \Omega \times (0, T)$$

- $\mathbf{w} = (\rho, \ \rho \mathbf{v}_1, \rho \mathbf{v}_2, \mathbf{e})^{\mathrm{T}}$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^{\mathrm{T}}$ gravity forces, $g = 9.81 \text{m/s}^2$

Constitutive relations

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$, (Θ is constant is atmospheric steady state)

√ < < </p>

2 / 8

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w) \text{ in } Q_T := \Omega \times (0, T)$$

- $w = (\rho, \rho v_1, \rho v_2, e)^T$ state vector
- \bullet $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^{\mathrm{T}}$ gravity forces, $g = 9.81 \text{m/s}^2$

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$,

NumSoft

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \rho v_1, \rho v_2, e)^T$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^T$ gravity forces, $g = 9.81 \text{m/s}^2$

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$,

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \rho v_1, \rho v_2, e)^T$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^T$ gravity forces, $g = 9.81 \text{m/s}^2$

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$,

NumSoft

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \ \rho v_1, \rho v_2, e)^{\mathrm{T}}$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^{\mathrm{T}}$ gravity forces, $g = 9.81 \text{m/s}^2$

Constitutive relations

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$, $(\Theta \text{ is constant is atmospheric steady state})$

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \rho v_1, \rho v_2, e)^T$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^T$ gravity forces, $g = 9.81 \text{m/s}^2$

Constitutive relations

- state equation $\mathbf{p} = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$,

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \ \rho v_1, \rho v_2, e)^{\mathrm{T}}$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^{\mathrm{T}}$ gravity forces, $g = 9.81 \text{m/s}^2$

Constitutive relations

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$, (Θ is constant is atmospheric steady state)

√ q (~
2 / 8)

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \ \rho v_1, \rho v_2, e)^{\mathrm{T}}$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^{\mathrm{T}}$ gravity forces, $g = 9.81 \text{m/s}^2$

Constitutive relations

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$, (Θ is constant is atmospheric steady state)

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \rho v_1, \rho v_2, e)^T$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^T$ gravity forces, $g = 9.81 \text{m/s}^2$

Constitutive relations

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$,

NumSoft

Compressible Navier-Stokes equations

$$\partial_t w + \nabla \cdot \vec{f}(w) - \nabla \cdot \vec{R}(w, \nabla w) = g(w)$$
 in $Q_T := \Omega \times (0, T)$

- $w = (\rho, \rho v_1, \rho v_2, e)^{\mathrm{T}}$ state vector
- $\vec{f} = (f_1, f_2)$ inviscid fluxes
- $\vec{R} = (R_1, R_2)$ viscous fluxes
- $g(w) = (0, 0, -\rho g, -\rho g v_2)^{\mathrm{T}}$ gravity forces, $g = 9.81 \text{m/s}^2$

Constitutive relations

- state equation $p = R\rho\theta$, energy $e = \rho c_v \theta + \rho |\mathbf{v}|^2/2$,
- Exner pressure $P = (p/p_0)^{(\kappa-1)/\kappa}$, κ Poisson constant
- potential temperature $\Theta = \theta/P$, (Θ is constant is atmospheric steady state)

Problem setting

- an atmosphere in equilibrium in rectangular domain
- we add a cold bubble, it sinks to the impermeable ground
- Kelvin–Helmholtz vortices are formed

Numerical approach

- discontinuous FE space-time discretization
- adaptation of
 - mesh
 - time steps
 - polynomial degrees
 - preconditioners

Problem setting

- an atmosphere in equilibrium in rectangular domain
- we add a cold bubble, it sinks to the impermeable ground
- Kelvin–Helmholtz vortices are formed

Numerical approach

- discontinuous FE space-time discretization
- adaptation of
 - mesh
 - time steps
 - polynomial degrees
 - preconditioners

Problem setting

- an atmosphere in equilibrium in rectangular domain
- we add a cold bubble, it sinks to the impermeable ground
- Kelvin–Helmholtz vortices are formed

Numerical approach

- discontinuous FE space-time discretization
- adaptation of
 - mesh
 - time steps
 - polynomial degrees
 - preconditioners

Problem setting

- an atmosphere in equilibrium in rectangular domain
- we add a cold bubble, it sinks to the impermeable ground
- Kelvin–Helmholtz vortices are formed

Numerical approach

- discontinuous FE space-time discretization
- adaptation of
 - mesh
 - time steps
 - polynomial degrees
 - preconditioners

Problem setting

- an atmosphere in equilibrium in rectangular domain
- we add a cold bubble, it sinks to the impermeable ground
- Kelvin-Helmholtz vortices are formed

Numerical approach

- discontinuous FE space-time discretization
- adaptation of
 - mesh
 - time steps
 - polynomial degrees
 - preconditioners

Problem setting

- an atmosphere in equilibrium in rectangular domain
- we add a cold bubble, it sinks to the impermeable ground
- Kelvin-Helmholtz vortices are formed

Numerical approach

- discontinuous FE space-time discretization
- adaptation of
 - mesh
 - time steps
 - polynomial degrees
 - preconditioners

Problem setting

- an atmosphere in equilibrium in rectangular domain
- we add a cold bubble, it sinks to the impermeable ground
- Kelvin–Helmholtz vortices are formed

Numerical approach

- discontinuous FE space-time discretization
- adaptation of
 - mesh
 - time steps
 - polynomial degrees
 - preconditioners

ΔΘ

hp

DD

Density current flow [Straka et all IJNMF 93], [Giraldo Rostelli, JCP 08]

- flow through variably saturated media
- ψ pressure head [m], $\Psi = \psi + z$ hydraulic head [m]

- initial BC $\Psi = -1$
- Dirichlet BC on Γ_D : $\Psi = 1$
- homogeneous
 Neumann BC
 otherwise

- flow through variably saturated media
- ψ pressure head [m], $\Psi = \psi + z$ hydraulic head [m]

- initial BC $\Psi = -1$
- Dirichlet BC on Γ_D : $\Psi = 1$
- homogeneous
 Neumann BC
 otherwise

- flow through variably saturated media
- ψ pressure head [m], $\Psi = \psi + z$ hydraulic head [m]

- initial BC $\Psi = -1$
- Dirichlet BC on Γ_D : $\Psi = 1$
- homogeneous
 Neumann BC
 otherwise

- flow through variably saturated media
- ψ pressure head [m], $\Psi = \psi + z$ hydraulic head [m]

- initial BC $\Psi = -1$
- Dirichlet BC on Γ_D : $\Psi = 1$
- homogeneous
 Neumann BC
 otherwise

- flow through variably saturated media
- ψ pressure head [m], $\Psi = \psi + z$ hydraulic head [m]

- initial BC $\Psi = -1$
- Dirichlet BC on Γ_D : $\Psi = 1$
- homogeneous
 Neumann BC
 otherwise

Richards equation

$$\partial_t \vartheta(\psi) - \nabla \cdot (K(\psi)\nabla(\psi + z)) = 0$$
 in $Q_T := \Omega \times (0, T)$

- \bullet ψ pressure head
- $\vartheta(\psi)$ water content
- $K(\psi)$ hydraulic conductivity

Constitutive relations

- $\vartheta(\psi) = \dots$ van Genuchten formula
- $K(\psi) = \dots$ Mualem formula
- nonlinear functions depending on material parameters

Richards equation

$$\partial_t \vartheta(\psi) - \nabla \cdot (K(\psi)\nabla(\psi + z)) = 0$$
 in $Q_T := \Omega \times (0, T)$

- \bullet ψ pressure head
- $\vartheta(\psi)$ water content
- $K(\psi)$ hydraulic conductivity

Constitutive relations

- $\vartheta(\psi) = \dots$ van Genuchten formula
- $K(\psi) = \dots$ Mualem formula
- nonlinear functions depending on material parameters

Richards equation

$$\partial_t \vartheta(\underline{\psi}) - \nabla \cdot \left(K(\underline{\psi}) \nabla(\underline{\psi} + z) \right) = 0 \quad \text{in } Q_T := \Omega \times (0, T)$$

- \bullet ψ pressure head
- $\vartheta(\psi)$ water content
- $K(\psi)$ hydraulic conductivity

Constitutive relations

- $\vartheta(\psi) = \dots$ van Genuchten formula
- $K(\psi) = \dots$ Mualem formula
- nonlinear functions depending on material parameters

Richards equation

$$\partial_t \vartheta(\psi) - \nabla \cdot (K(\psi)\nabla(\psi + z)) = 0$$
 in $Q_T := \Omega \times (0, T)$

- ψ pressure head
- $\vartheta(\psi)$ water content
- $K(\psi)$ hydraulic conductivity

Constitutive relations

- $\vartheta(\psi) = \dots$ van Genuchten formula
- $K(\psi) = \dots$ Mualem formula
- nonlinear functions depending on material parameters

Richards equation

$$\partial_t \vartheta(\psi) - \nabla \cdot \left(\frac{K(\psi)}{V(\psi + z)} \right) = 0 \quad \text{in } Q_T := \Omega \times (0, T)$$

- \bullet ψ pressure head
- $\vartheta(\psi)$ water content
- $K(\psi)$ hydraulic conductivity

Constitutive relations

- $\vartheta(\psi) = \dots$ van Genuchten formula
- $K(\psi) = \dots$ Mualem formula
- nonlinear functions depending on material parameters

Richards equation

$$\partial_t \vartheta(\psi) - \nabla \cdot (K(\psi)\nabla(\psi + z)) = 0$$
 in $Q_T := \Omega \times (0, T)$

- \bullet ψ pressure head
- $\vartheta(\psi)$ water content
- $K(\psi)$ hydraulic conductivity

Constitutive relations

- $\vartheta(\psi) = \dots$ van Genuchten formula
- $K(\psi) = \dots$ Mualem formula
- nonlinear functions depending on material parameters

Single ring infiltration – mesh adaptation

Single ring infiltration – domain decomposition

