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Low-Mach flows

Compressible fluid flows
Speed of sound a =

√
γp/ρ.

Determines the maximal speed at which information (usually)
propagates in the flow.
Mach number M = v/a.

Incompressible fluid flows
Infinite speed of information propagation.
Unphysical but useful model.
As M → 0, compressible → incompressible.
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Low-Mach flows

M � 1 is challenging for numerics:

On the border between compressible and incompressible.
Explicit solvers: time step inversely proportional to maximal speed of
information propagation - τ ≈ Mh.
Implicit solvers: Condition number and properties of linear systems
deteriorate as M → 0.
Acoustic waves become a severe problem.
Numerical methods can produce incorrect solutions!!!

V. Kučera et al. Low-Mach consistency of a class of linearly implicit schemes



Low-Mach flows Linearly implicit schemes Asymptotic preserving analysis

Low-Mach flows

M � 1 is challenging for numerics:

On the border between compressible and incompressible.
Explicit solvers: time step inversely proportional to maximal speed of
information propagation - τ ≈ Mh.
Implicit solvers: Condition number and properties of linear systems
deteriorate as M → 0.
Acoustic waves become a severe problem.
Numerical methods can produce incorrect solutions!!!

V. Kučera et al. Low-Mach consistency of a class of linearly implicit schemes



Low-Mach flows Linearly implicit schemes Asymptotic preserving analysis

Low-Mach flows

M � 1 is challenging for numerics:

On the border between compressible and incompressible.
Explicit solvers: time step inversely proportional to maximal speed of
information propagation - τ ≈ Mh.
Implicit solvers: Condition number and properties of linear systems
deteriorate as M → 0.
Acoustic waves become a severe problem.
Numerical methods can produce incorrect solutions!!!

V. Kučera et al. Low-Mach consistency of a class of linearly implicit schemes



Low-Mach flows Linearly implicit schemes Asymptotic preserving analysis

Low-Mach flows

M � 1 is challenging for numerics:

On the border between compressible and incompressible.
Explicit solvers: time step inversely proportional to maximal speed of
information propagation - τ ≈ Mh.
Implicit solvers: Condition number and properties of linear systems
deteriorate as M → 0.
Acoustic waves become a severe problem.
Numerical methods can produce incorrect solutions!!!

V. Kučera et al. Low-Mach consistency of a class of linearly implicit schemes



Low-Mach flows Linearly implicit schemes Asymptotic preserving analysis

Low-Mach flows

M � 1 is challenging for numerics:

On the border between compressible and incompressible.
Explicit solvers: time step inversely proportional to maximal speed of
information propagation - τ ≈ Mh.
Implicit solvers: Condition number and properties of linear systems
deteriorate as M → 0.
Acoustic waves become a severe problem.
Numerical methods can produce incorrect solutions!!!

V. Kučera et al. Low-Mach consistency of a class of linearly implicit schemes



Low-Mach flows Linearly implicit schemes Asymptotic preserving analysis

Low-Mach flows

M � 1 is challenging for numerics:

On the border between compressible and incompressible.
Explicit solvers: time step inversely proportional to maximal speed of
information propagation - τ ≈ Mh.
Implicit solvers: Condition number and properties of linear systems
deteriorate as M → 0.
Acoustic waves become a severe problem.
Numerical methods can produce incorrect solutions!!!

V. Kučera et al. Low-Mach consistency of a class of linearly implicit schemes



Low-Mach flows Linearly implicit schemes Asymptotic preserving analysis

1 Low-Mach flows

2 Linearly implicit schemes

3 Asymptotic preserving analysis

V. Kučera et al. Low-Mach consistency of a class of linearly implicit schemes



Low-Mach flows Linearly implicit schemes Asymptotic preserving analysis

Semi-implicit linearization

V. Dolejší, M. Feistauer, V. Kučera

∂tw +∇· f (w) = 0

Homogeneity: f (w) = f ′(w)w
Semi-implicit scheme

wn+1 −wn

∆t
+∇·

(
f ′(wn)wn+1

)
= 0.

Discontinuous Galerkin method, non-reflecting boundary conditions,
local artificial diffusion with shock capturing, preconditioning, ...
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RS-IMEX scheme

K. Kaiser, J. Schütz, R. Schöbel, and S. Noelle. A new stable splitting for
the isentropic Euler equations. Journal of Scientific Computing 70 (2017),
pp. 1390-1407.

∂tw +∇· f (w) = 0

Reference solution of incompressible equations: wR

Flux splitting:

f̃ (w ; wR) := f (wR) + f ′(wR)(w −wR)

f̂ (w ; wR) := f (w)− f̃ (w ,wR)

Linearize:

wn+1 −wn

∆t
= −∇·

(
f̃ (wn+1; wn+1

R ) + f̂ (wn; wn
R)
)
.

Discontinuous Galerkin method, non-hyperbolicity, ...
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Linearly implicit schemes

∂tw +∇· f (w) = 0

Linearly implicit scheme based on a reference state

wn+1 −wn

∆t
+∇·

(
f (wn) + f ′(wn

R)(wn+1 −wn)
)

= 0.

For wn
R = incompressible Euler, we get Kaiser et al.

For wn
R = wn, we get Dolejší, Feistauer, Kučera.

Goal
Asymptotic consistency: We get the correct solution as M = ε→ 0.
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Formal asymptotic analysis

Linearly implicit scheme

wn+1 −wn

∆t
+∇·

(
f (wn) + f ′(wn

R)(wn+1 −wn)
)

= 0.

Formal Hilbert expansion

Assume that ρ,u,E and p have an expansion of the form

ρn(x) = ρn(0)(x) + ερn(1)(x) + ε2ρn(2)(x) + O(ε3).

We expect e.g. that ρn(0) is constant for all n, similarly ∇·un
(0) = 0.

Acoustics correspond to O(ε) perturbations of ρ, p,∇·u.
Plug in Hilbert expansions of all quantities into the scheme.
Collect terms according to powers of ε.
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Asymptotic preserving property

Theorem 1

Let the initial condition satisfy ∇·u0
(0) = 0 and ρ0

(0) be constant in space. Let
the reference solution satisfy ∇·un

R,(0) = 0 and ρnR,(0) be constant in space
for all n. Assume either slip or periodic boundary conditions. Then for each
n, ρn(0) = ρ0

(0) and

un+1
(0) − un

(0)

∆t
+∇·

(
un+1
(0) ⊗ un+1

(0)

)
+∇

pn+1
(2)

ρn+1
(0)

= En+1,

∇·un+1
(0) = 0,

where En+1 is a consistency error term satisfying

|En+1| ≤ C‖un+1
(0) − un

(0)‖W 1,∞

(
‖un+1

(0) − un
(0)‖W 1,∞ + ‖un

(0) − un
R,(0)‖W 1,∞

)
,

where C depends only on γ.
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Asymptotic preserving property

Consistency error

|En+1| ≤ C‖un+1
(0) − un

(0)‖W 1,∞

(
‖un+1

(0) − un
(0)‖W 1,∞ + ‖un

(0) − un
R,(0)‖W 1,∞

)
Feistauer, Kučera: un

R = un

|En+1| = O(∆t2).

Kaiser et al.: un
R = un

(0)

|En+1| = O(∆t2).

Superconsistency
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Well prepared initial data

Well prepared initial data

ρ0 = const + O(ε2), p0 = const + O(ε2), ∇·u0 = O(ε2).

I.e. ρ0
(1) = p0

(1) = ∇·u0
(1) = 0.

Theorem 2
Let the assumptions of Theorem 1 hold. Let the initial data be well prepared
and let ρnR,(1) = 0 for all n. Then ρn(1) = pn(1) = ∇·un

(1) = 0 for all n.
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Existence of the Hilbert expansion

wn+1 −wn

∆t
+∇·

(
f (wn) + f ′(wn

R)(wn+1 −wn)
)

= 0.

It is not clear a priori that the Hilbert expansion at tn+1 exists!

Theorem 3

Let Ω = [−π, π], periodic BCs, let all quantities be sufficiently smooth. Let
wR be constant in space. Let γ ≥ 1. Let wn,wR possess a Hilbert
expansion. Then wn+1 has a Hilbert expansion, i.e.

wn+1 = wn+1
(0) + εwn+1

(1) + ε2wn+1
(2) + . . .

Proof:
“Gaussian elimination" on the ODE level.
3rd order ODE for “linearized pressure" pL.
Solve using Fourier analysis.
Hilbert expansion for pL = Fourier series.
From pL derive expansions for other quantities.
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