
EXERCISES 1 (14.2.2023)

1. Given a Hausdorff topological space T , prove that
a)

Cb(T ) := {f ∈ C(T ) : f is bounded}

is a closed subalgebra of `∞(T ), so it is a commutative Banach algebra with a unit.
b) If T is locally compact and not compact, then consider

C0(T ) := {f ∈ C(T ) : for any ε > 0 the set {t ∈ T : |f(t)| ≥ ε} is compact}.

First, consider the one point compactification K := T ∪ {∞} of T .
(recall that topology τ on T ∪{∞} consist of open subsets of T and sets of the from G = {∞}∪ (L \K0), where K0 ⊂ L is a compact set; it is a known

fact from the course on general topology that then (T ∪ {∞}, τ) is a compact Hausdorff space and T is dense subset of T ∪ {∞})
Prove that the mapping

C(K) ⊃ {f ∈ C(K) : f(∞) = 0} 3 f 7→ f |T ∈ C0(T )

is a surjective linear isometry. Deduce that C0(T ) is a Banach space and that C0(T ) is a closed subalgebra of Cb(T ),
so it is a commutative Banach algebra. Finally, prove that C0(T ) does not have a unit. (Hint: prove that if the unit
exists, then is has to be constant one function)

2. Let X be a Banach space with dimX > 1.
a) L(X) is a Banach algebra (where multiplication is given by composition of operators) with a unit. Prove that L(X)
is not commutative. (Hint: if y, z ∈ X are linearly independent, then the operators which do no commute may be taken
of the from x 7→ x∗(x)y and x 7→ x∗(x)z for some x∗ ∈ X∗)
b) The space of compact operators K(X) ⊂ L(X) is a closed subalgebra. Prove that K(X) is a Banach algebra, which
is not commutative and that it does not have a unit if dimX = +∞. (Hint: prove that if the unit exists, then is has
to be the identity operator)

3. a) Prove that L1(Rd) with multiplication given by convolution (that is, f ∗ g(x) :=
∫
f(y)g(x− y) dy) is a com-

mutative Banach algebra without a unit. (Hint: in order to see that it does not have a unit, pick g =
χB(0,1)

‖χB(0,1)‖1
∈ SL1

put gn(x) := ndg(nx) and try to use the fact that if e ∈ L1(Rd) was a unit, we would have gn = e ∗ gn → e)
b) Let G be a commutative group. Prove that `1(G) with multiplication ∗ given by

(x ∗ y)(g) :=
∑
h∈G

x(h)y(g − h), x, y ∈ `1(G)

is a commutative Banach algebra with a unit.



EXERCISES 2 (21.2.2023)

1. Let us consider operators S, T ∈ L(`2) given by

T (x1, x2, . . .) = (0, x1, x2, . . .), S(x1, x2, . . .) = (x2, x3, . . .), x ∈ `2.

a) Prove that T does not have right inverse, but it has left inverse (and describe all the left inverses of T ).
b) Prove that S does not have left inverse, but it has right inverse (and describe all the right inverses of S).

2. Consider the commutative group G = (Zn,+), where Zn = {0, 1, . . . , n− 1} and addition is modulo n.
a) Find explicit formula for an isomorphism from the Banach algebra `1(G) into the Banach algebra Mn.
(Hint: use Theorem 8 from the lecture).
b) For n = 2 and n = 3 give an explicit characterization of invertible elements in `1(G).
(Hint: use the representation by matrices from the previous item)

EXERCISES 3 (28.2.2023)

1. a) Prove that given a Hausdorff compact space K and f ∈ C(K), we have σ(f) = Rng f .
b) Prove that given a Hausdorff locally compact space T which is not compact and f ∈ C0(T ), we have σ(f) =
Rng f ∪ {0}.
c) Find two examples of Hausdorff locally compact spaces T1, T2 which are not compact such that: for every f ∈ C0(T1)
we have σ(f) = Rng f ; there exists f ∈ C0(T2) such that σ(f) 6= Rng f . (Hint: T1 may be any non σ-compact space;
T2 may be e.g. the real line)

2. Let us consider the commutative Banach algebra A = (`1(Z), ∗) and pick any n ∈ Z \ {0}. Prove that σ(en) = {λ ∈
K : |λ| = 1} and that

Ren(λ) =

{∑∞
k=0

ekn
λk+1 , |λ| > 1,∑∞

k=1−λk−1e−kn, |λ| < 1.



EXERCISES 4 (7.3.2023)

In this series of exercises, given a Banach algebra A, x ∈ A and a function f holomorphic on a neighborhood of σ(x),
we denote f(x) := φ(x)f (that is, the value of f under the holomorphic calculus corresponding to the element x).

1. Consider the Banach algebra A = Mn, n ≥ 2. Pick some z ∈ C and consider the matrix

J =


z 1 0 · · · 0 0
0 z 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · z 1
0 0 0 · · · 0 z


a) Prove that σ(J) = {z}.

b) Prove that for λ ∈ ρ(J) we have

(λI − J)−1 =


1

λ−z
1

(λ−z)2 · · · 1
(λ−z)n

0 1
λ−z · · · 1

(λ−z)n−1

...
...

. . .
...

0 0 · · · 1
λ−z


c) Let f be a holomorphic function on a neighborhood of z. Prove that

f(J) =


f(z) f ′(z) f ′′(z)

2 · · · f
(n−1)

(n−1)!

0 f(z) f ′(z) · · · f (n−2)

(n−2)!
...

...
...

. . .
...

0 0 0 · · · f(z)


d) From the above deduce that the value of f(J) is not given just by f |σ(J).

2. (not suitable for a credit, but interesting) a) Let f be a holomorphic function on C and let f(λ) =∑∞
n=0 anλ

n, λ ∈ C be its Taylor expansion. Prove that for every Banach algebra A and every x ∈ A we have
f(x) =

∑∞
n=0 anx

n.
b) Consider the Banach algebra A = C(K) and g ∈ A. Prove that whenever F is a holomorphic function on a neigh-
borhood of σ(g) = Rng g, then F (g) = F ◦ g.

3. Consider the Banach algebra A = L(X) (X is infinite-dimensional Banach space) and for x0 ∈ X \ {0} and
x∗ ∈ X∗ with x∗(x0) 6= 0 consider T ∈ A given by the formula Tx := x∗(x)x0, x ∈ X.
a) Prove that σ(T ) = {0, x∗(x0)} and for λ /∈ {0, x∗(x0)} find a formula for RT (λ).
(Hint: the solution is RT (λ) = 1

λI + 1
λ(λ−x∗(x0))T ).

b) Given a function f holomorphic on a neighborhood of σ(T ) compute the value of f(T ).
(Solution: f(T ) = I ·f(0)+T · f(x

∗(x0))−f(0)
x∗(x0)

; Hint: first using the formula for RT (λ) observe that it suffices to compute

the curve integrals of functions f(λ)
λ and f(λ)

λ(λ−x∗(x0)) , when computing the integral of the second function observe that

decomposition using partial fractions we have f(λ)
λ(λ−x∗(x0)) = 1

x∗(x0)
( f(λ)
λ−x∗(x0) −

f(λ)
λ ))



EXERCISES 5 (14.3.2023)

1. Let K be a compact Hausdorff space and for closed F ⊂ K denote I(F ) := {f ∈ C(K) : f |F ≡ 0}. Prove that all
the closed ideals of C(K) are {I(F ) : F ⊂ K closed}.
(Hint: each I(F ) is a closed ideal; if I ⊂ C(K) is an ideal, put F :=

⋂
f∈I f

−1(0) and prove that I(F ) = I.)

2. a) Let (G,+) be a commutative group and A = `1(G). Prove that ϕ ∈ `∞(G) = A∗ belongs to ∆(A) if and
only if ϕ : G→ T := {λ ∈ C : |λ| = 1} is a group homomorphism.
(Hint: Note that eg+h = eg ∗ eh.)
b) For A = `1(Z) use a) to describe ∆(A) and explain how to understand the equality ∆(A) = T.
c) Consider the commutative groupG = (Zn,+), where Zn = {0, 1, . . . , n−1} and addition is modulo n. For A = `1(Zn)
use a) to describe ∆(A) and prove that it consists of exactly n elements.

EXERCISES 6 (21.3.2023)

1. Consider the commutative Banach algebra A = `1(Z).
a) Using the identification ∆(A) = T from one Exercise 5.2b) above, describe the Gelfand transform of A and (using
it) express the spectrum of a general element of A.
b) Is the Gelfand transform one-to-one? If yes, what is its inverse? (Hint: use knowledge of Fourier series)
c) Consider the mapping ∗ : A→ A given by x∗(n) := x(−n), n ∈ Z for every x ∈ A. Prove that ∗ is an involution on
A and that for x = e0 − e1 − e2 we have ‖x∗x‖ = 5 and ‖x‖2 = 9 (therefore, (A, ∗) is not a C∗-algebra).

2. Consider the commutative Banach algebra A = L1(R) and representation of its dual A∗ = L∞(R).
a) For x ∈ R, consider the function φx ∈ L∞ defined as φx(t) := eitx, t ∈ R. Prove that {φx : x ∈ R} ⊂ ∆(A).
b) Let us mention the (nontrivial) known fact that

∆(A) ⊂ {f ∈ C(R) : |f(t)| = 1 and f(t+ s) = f(t)f(s) for every t, s ∈ R}

(proof is e.g. on page 288 here: https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf).
Using the above mentioned fact, prove that {φx : x ∈ R} = ∆(A).
(Hint: pick f ∈ C(R) satisfying f(t+ s) = f(t)f(s) for t, s ∈ R, prove equality f(t)

∫ t0
0 f(s) ds =

∫ t+t0
t f(s) ds for ever

y t and deduce that f is differentiable, then observe that f satisfies differential equation f ′(t) = f ′(0)f(t) for every t)
c) Using the identification of ∆(A) with R from part b), show that the Gelfand transform on L1(R) and the Fourier
transform on L1(R) are up to a constant identical.
d) Consider the mapping ∗ : A→ A given by f∗(x) := f(x), x ∈ R for every f ∈ A. Prove that ∗ is an involution on
A and that for f = i(χ(0,1) − χ(−1,0)) we have ‖f ∗ f∗‖ = 8

3 and ‖f‖2 = 4 (therefore, (A, ∗) is not a C∗-algebra).



EXERCISES 7 (28.3.2023)

1. Let H be a Hilbert space and A ⊂ L(H) be a closed ∗-subalgebra. Consider the set Mn(A) consisting of n × n
matrices with entries belonging to A.
a) Define natural algebraic operations on Mn(A) and a norm on Mn(A) in such a way that Mn(A) is isometric to a
∗-subalgebra of L(Hn) = L(H ⊕2 . . .⊕2 H). Prove that then Mn(A) is a C∗-algebra.
b) For a Hausdorff compact space K consider the C∗-algebra C(K,A) := {f : K → A : f is continuous} (on C(K,A)
we consider the supremum norm and the algebraic operations are defined pointwise). Prove that if A = Mn(C), then
the C∗-algebras C(K,A) and Mn(C(K)) are isometrically ∗-isomorphic.

2. a) Let A be a C∗-algebra with a unit. Let a, b ∈ A be normal elements which are unitarily equivalent (that
is, there exists u ∈ A with u∗ = u−1 and u∗au = b). Prove that the C∗-algebras alg{e, a, a∗} and alg{e, b, b∗} are
isometrically ∗-isomorphic.
(Hint: prove that σ(a) = σ(b) and use continuous calculus)
b) Let A be a C∗-algebra with a unit, a ∈ A be self-adjoint with σ(a) ⊂ [0, ε] ∪ [1 − ε, 1] for some ε ∈ (0, 14). Prove
that there exists a projection p ∈ A (that is, some p ∈ A satisfying p = p∗ = p2) such that ‖p− a‖ ≤ ε.
(Hint: using the continuous calculus, define p = g(a) for a suitable g ∈ C(σ(a)) with Rng(g) ⊂ {0, 1})
c) Let i : (0, 1) → R be the inclusion map. Then i is continuous. Show that ϕ : C0(R) → C0((0, 1)) defined by
ϕ(f) := f ◦ i is not a ∗-homomorphism. What goes wrong?

EXERCISES 8 (4.4.2023)
1. Consider the operator T : L2([0, 1])→ L2([0, 1]) given by the formula Tf(x) :=

∫ x
0 f(t) dt, x ∈ [0, 1].

a) Prove that T is a compact operator. (Hint: consider operators A : L2([0, 1]) → C([0, 1]) and B : C([0, 1]) →
L2([0, 1]), where A is given by the same formula as T and B is the “identity”; prove that both A and B are continuous
linear and using Arzela-Ascoli theorem show that A is compact; then use the identity T = B ◦A.)
b) Prove that if T ∗Tf = λf for some λ > 0 and f ∈ L2([0, 1]), then f ∈ C2([0, 1]) and λf ′′ + f = 0.

2. Consider the operator T : L2([0, 1]) → L2([0, 1]) given by the formula Tf(x) :=
∫ x
0 f(t) dt, x ∈ [0, 1]. In this

exercise you may use both 1.a and 1.b from the exercise above. Using the proof of the Schmidt theorem, find positive
numbers (λn)n∈N and orthogonal systems of functions (fn)n∈N and (gn)n∈N in L2([0, 1]) such that

Tf =
∞∑
n=0

λn

(∫ 1

0
f(t)fn(t) dt

)
gn.

(Recall: in what sense is the sum above convergent?)



EXERCISES 9 (11.4.2023)

1. Let H = `2. For z ∈ `∞ consider the operator Mz ∈ L(`2) defined as Mz(x) = (znxn)∞n=1 (recall that ‖Mz‖ =
‖z‖∞ and σ(Mz) = {zn : n ∈ N}, see e.g. Příklad 8 here: https://www2.karlin.mff.cuni.cz/~spurny/doc/fa2/
fa-priklady.pdf). Fix some z ∈ `∞.
a) Prove that Mz is normal operator.

Further, by φ : Borb(σ(Mz)) → L(H) denote the borel calculus from Theorem 89 and by µx,y the measures from
Definition 86. Prove that the following holds.
b) For f ∈ C(σ(Mz)) we have φ(f) = Mf◦z, where f ◦ z = (f(zn))∞n=1.
c) For every n,m ∈ N we have µen,en = δzn and µen,em = 0 if n 6= m.
d) For x, y ∈ H we have µx,y =

∑∞
n=1 xnynδzn .

(Hint: for finitely supported vectors use the already proven part and Remark 87; for the general case consider aN =∑N
i=1 xiei, bN =

∑N
i=1 yiei, note that for any T ∈ L(H) we have 〈TaN , bN 〉 → 〈Tx, y〉 and apply it for T = φ(f))

e) For g ∈ Borb(σ(Mz)) we have φ(g) = Mg◦z.
f) Every A ⊂ σ(Mz) is µx,y-measurable and if A is moreover Borel, then φ(χA)x =

∑
n,zn∈A xnen for every x ∈ H.

(Hint: use the well-known fact that given µ ∈ M(σ(Mz)) with µ ≥ 0, a set A ⊂ σ(Mz) is µ-measurable if and only if
there are Borel sets B ⊂ A ⊂ C such that µ(C \B) = 0.)

2. Let (Ω,A, µ) be a measurable space with the property that given A ⊂ Ω with µ(A) > 0, there exists B ⊂ A
with µ(B) ∈ (0,∞). Let H = L2(µ) and g ∈ L∞(µ) and consider the operator Mg ∈ L(H) given as Mg(f) = g · f .
a) Prove that ‖Mg‖ = ‖g‖∞ and that Mg is normal operator.
b) Prove that

σ(Mg) = essRng g := {λ ∈ K : µ
(
g−1(U(λ, ε))

)
> 0 for every ε > 0}.

c) If φ : Borb(σ(Mg)) → L(H) is the borel calculus from Theorem 89, then for any f ∈ Borb(σ(Mg)) we have
φ(f) = Mf◦g.
d) Given a borel set A ⊂ (σ(Mg)), we have φ(χA) = Mχg−1(A)

.
(Hint: for a sketch of the solution see page 229 here:
https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf)



EXERCISES 10 (18.4.2023)

1. Let H be a Hilbert space and T ∈ L(H) \ {0} compact normal operator. Let {λn}Mn=1, M ∈ N∪{∞} be one-to-one
sequence of all the eigenvalues of the operator T and Pn orthogonal projection onto Ker(λnI −T ). Using Corollary 97
prove that

• T =
∑M

n=1 λnPn, where the series converges in the SOT topology on the space L(H);

• the mapping σ(T ) ⊃ A 7→ E(A) :=
∑
{n:λn∈A} Pn is spectral measure satisfying that T =

∫
id dE;

• if f : σ(T ) → C is a bounded function and E is as above, then
∫
f dE =

∑M
n=1 f(λn)Pn, where the series

converges in the SOT topology on the space L(H).

2. a) Let H, K be Hilbert spaces, T ∈ L(H) \ {0} normal operator and U : H → K unitary operator (that is,
surjective isometry). Let E be the spectral measure satisfying T =

∫
id dE. Consider now the operator TU := U∗TU ∈

L(K). Prove that TU is normal operator and if EU is defined as EU (A) := U∗E(A)U , then EU is the spectral measure
satisfying TU =

∫
id dEU .

b) Consider now the Hilbert space H = `2(Z) and the unique operator T ∈ L(H) satisfying T (ek) = ek−1, k ∈ Z.
Further, consider the Hilbert space K = L2(T, µ), where µ is the normalized Lebesgue measure on the circle (that
is,
∫
T f(t) dµ = 1

2π

∫
f(eix) dx) and the unique operator U : `2 → L2(T, µ) given by Uek = tk. Prove that then T is

normal, U is unitary and that for the function g ∈ L∞(µ) satisfying g(t) = t−1, t ∈ T we have T = U∗MgU , where Mg

is the operator from Exercises 9.2. As a corollary, find spectral decomposition of the operator T (that is, a formula for
the spectral measure E such that T =

∫
id dE).

(Hint: for a sketch of the solution see page 113 here:
https://www2.karlin.mff.cuni.cz/~spurny/doc/fa2/fa-priklady.pdf)



EXERCISES 11 (25.4.2023)

1. a) Let X = `p, p ∈ [1,∞) and z = (zn) be a sequence of (real or complex) numbers. Let

D(Mz) := {x ∈ X : (xnzn) ∈ X}.

Prove that D(Mz) ⊂ X is dense subspace. Consider now the operator Mz : D(Mz)→ X defined as Mz(x) := (xnzn),
x ∈ D(Mz). Prove that Mz is densely defined, closed and that it is bounded (hence everywhere defined) if and only if
the sequence z is bounded.
b) Let (Ω,A, µ) be a measure space with µ semifinite (that is, if A ∈ A is such that µ(A) > 0, then there exists B ⊂ A
with µ(B) ∈ (0,∞)). Let X = Lp(µ), p ∈ [1,∞) and g : Ω→ K be a measurable function. Consider

D(Mg) := {f ∈ X : gf ∈ X}.

Prove that D(Mg) is dense subspace of X. Consider now the operator Mg : D(Mg) → X defined as Mg(f) = gf ,
f ∈ D(Mg). Prove that Mg is densely defined, closed and that it is bounded (hence everywhere defined) if and only if
the function g is essentially bounded.

2. a) Let X = `p, p ∈ (1,∞) and

Y := {x ∈ X : (nxn) ∈ X&
∞∑
n=1

xn = 0}.

Prove that Y is a dense subspace. Consider now the operator T : Y → X defined as Tx := (nxn), x ∈ Y . Prove that
T is densely defined and closed.
(Hint: using Hölder inequality prove that if (nxn) ∈ X implies x ∈ `1, this will prove that Y is well-defined and a linear
subspace; in order to prove that Y is dense prove that c00 ⊂ Y and in order to prove that T is closed use definitions
and Hölder inequality)
b) Let X = Lp((1,∞)), p ∈ (1,∞) and

Y := {f ∈ X : (t 7→ tf(t)) ∈ X&

∫ ∞
1

f = 0}.

Prove that Y is a dense subspace. Consider now the operator T : Y → X defined as Tf(t) := tf(t), f ∈ Y , t ∈ (1,∞).
Prove that T is densely defined and closed.
(Hint: using Hölder inequality prove that if (t 7→ tf(t)) ∈ X implies x ∈ L1, this will prove that Y is well-defined and
a linear subspace; in order to prove that Y is dense prove that χA ∈ Y for A ⊂ (1,∞) bounded and in order to prove
that T is closed use definitions and Hölder inequality)

3. Let X = Lp((0, 1)), p ∈ [1,∞) and

Y := {f ∈ AC([0, 1]) : f ′ ∈ X} ⊂ X.

Define the operators Tj , j = 1, . . . , 6 by the same formula Tj(f) := f ′ with domains

D(T1) := Y, D(T2) := {f ∈ Y : f(0) = 0},
D(T3) := {f ∈ Y : f(1) = 0}, D(T4) := {f ∈ Y : f(0) = f(1) = 0},

D(T5) := {f ∈ Y : f(0) = f(1)}, D(T6) := {f ∈ Y : f(0) = −f(1)}.

Show that all those operators are densely defined and closed.
(To prove density use that test functions are dense in Lp; to prove they are closed pick (fn, f

′
n) → (f, g) and show

e.g. that hn(x) := fn(x) − fn(0) =
∫ x
0 f
′
n is a cauchy sequence in C([0, 1]), further show that fn(0) has a convergent

subsequence and deduce that f(x) =
∫ x
0 g + const.)



EXERCISES 12 (2.5.2023)

In the following exercises, given an operator T on a Banach spaceX, we put σp(T ) := {λ ∈ K : λI−T is not one-to-one}.
1. Let Mz and Mg be the operators from Exercises 11.1. Find σp(Mz), σp(Mg) and show that

σ(Mz) = {zn : n ∈ N}

and
σ(Mg) = essRng g := {λ ∈ K : µ

(
g−1(U(λ, ε))

)
> 0 for every ε > 0}.

2. Find σp(T ) and σ(T ) for the operators T from Exercises 11.2.
3. Find σp(T ) and σ(T ) for the operators T ∈ {Ti : i = 1, . . . , 6} from Exercises 11.3.
(Hint: note that given g ∈ X, the function f(t) := −eλt

∫ t
0 g(s)e−λs ds solves the equation λf − f ′ = g)

EXERCISES 13 (9.5.2023)

1. Consider the operators Ti, i ∈ {1, . . . , 6} from Exercises 11.2 in the space L2((0, 1)). Prove that
a) we have T ?1 = −T4, T ?2 = −T3, T ?3 = −T2, T ?4 = −T1, T ?5 = −T5, T ?6 = −T6.
(Hint: To prove the inclusions ‘⊃’ use integration by parts. To prove ‘⊂’ proceed as follows: Let g ∈ D(T ?i ). Then there
is h ∈ L2((0, 1)) such that 〈Tif, g〉 = 〈f, h〉 for any f ∈ D(Ti). Set H(t) :=

∫ t
0 h(s) ds, t ∈ [0, 1]. Apply integration by

parts. Note that D((0, 1)) ⊂ D(Ti) and deduce that the distributive derivative of g + H on (0, 1) is zero, thus g + H
is almost everywhere equal to a constant. So, g ∈ AC([0, 1]) and H = g(0) − g. Plug this to the computation and
conclude.)
b) iT5 and iT6 are self-adjoint and iT4 is symmetric.

2. a) Consider the operator T from Exercises 11.2a in the space `2. Prove that

D(T ?) = {x ∈ `2 : limnxn exists and is finite, and (kxk − limnxn)∞k=1 ∈ `2}

and T ?x = (kxk − limnxn)∞k=1, x ∈ D(T ?).
(Hint: “⊃” is easy using definitions; for “⊂” proceed as follows: Let y ∈ D(T ?), then there exists z ∈ `2 such that
〈Tx, y〉 = 〈x, z〉 for x ∈ D(T ), apply it for x = e1 − en, n ≥ 2 and deduce that nyn = y1 − z1 + zn. Using that zn → 0
compute limnyn and conclude.)
b) Consider the operator T from Exercises 11.2b in the space X = L2((1,∞)). Set

D(ψ) = {f ∈ X : ∃C ∈ C such that the function t 7→ C + tf(t) is in X}.

Show that D(ψ) is a dense linear subspace of X, that for f ∈ D(ψ) the constant C from the definition is uniquely
determined and the mapping ψ : D(ψ)→ C mapping f to the respective C (that is, such that (t 7→ ψ(f)+ tf(t)) ∈ X)
is a linear functional defined on D(ψ).

Show that D(T ?) = D(ψ) and T ?f(t) = ψ(f) + tf(t), t ∈ (1,∞) for f ∈ D(T ).
(Hint: “⊃” is easy using definitions; for “⊂” proceed as follows: Let g ∈ D(T ?), then there exists h ∈ X such that
〈Tf, g〉 = 〈f, h〉 for f ∈ D(T ), apply it for f = (r− 1)χ(1,2) − χ(r,1). Differentiate the resulting equality with respect to
r and deduce that h(r) =

∫ 2
1 (h(t)− tg(t)) dt+ rg(r) almost everywhere. Then complete the argument.)



EXERCISES 14 (16.5.2023)

1. Let (Ω,A, µ) be as in Exercises 11.1b and for g : Ω→ C measurable let Mg be the operator as in Exercises 11.1b.
a) Prove that for every g : Ω→ C measurable we have (Mg)

? = Mg.
b) For a measurable g : Ω→ R find h : Ω→ C measurable such that Mh is the Cayley transformation of Mg.
(Hint: you may use without proof the fact used in the solution of Exercises 12.1 that if λ /∈ essRng g then (λI−Mg)

−1 =
M 1

λ−g
.)

c) Find a characterization of measurable functions g : Ω→ C such that Mg ∈ L(µ) is a unitary operator and I −Mg

is one-to-one. Further, for those functions g find h : Ω→ C measurable such that Cayley transformation of Mh is Mg.
(Hint: you may use without proof the fact used in the solution of Exercises 12.1 that λI−Mg is one-to-one if and only
if µ(g−1(λ)) = 0.)

2. a) Compute the Cayley transform of the self-adjoint operators iT5 and iT6 from Exercises 13.1b.
Hint: you may without proof use the fact used in the solution of Exercises 12.3 that σ(T5) = σp(T5) = {2πin : n ∈ Z},
σ(T6) = σp(T6) = {−iπ2 + 2πin : n ∈ Z}, for λ /∈ σ(T5) we have

(λI − T5)−1g(t) = −e−λt
(∫ t

0
g(s)e−λs ds+ eλ

1−eλ

∫ 1

0
g(s)e−λs ds

)
and for λ /∈ σ(T6) we have

(λI − T6)−1g(t) = −e−λt
(∫ t

0
g(s)e−λs ds− eλ

1+eλ

∫ 1

0
g(s)e−λs ds

)
.

b) Compute the Cayley transform of the symmetric operator iT4 from Exercises 13.1b.
Hint: you may without proof use the fact used in the solution of Exercises 12.3 that σ(T4) = ∅ and for λI − T4 and
g ∈ L2((0, 1)) the equation (λI − T )f = g, f ∈ D(T4) has a solution if and only if g ∈ {et}⊥ and in this case the
solution is

f(t) := −eλt
∫ t

0
g(s)e−λs ds.

FURTHER EXERCISE
Not covered during semester, may be used during oral Exam.

1. Let (Ω,A, µ), g : Ω → C and Mg be as in Exercises 11.1b. For a Borel set A ⊂ C and f ∈ L2(µ) put
E(A)f := Mχg−1(A)

f . Prove that E is spectral measure for (C,Bor(C), L2(µ)) satisfying Mg =
∫

id dE.
(Hint: see Příklad 69 here https: // www2. karlin. mff. cuni. cz/ ~spurny/ doc/ ufa/ funkcionalka. pdf )


