EXERCISES 1 (14.2.2023)

1. Given a Hausdorff topological space T, prove that

a)

$$C_b(T) := \{ f \in C(T) \colon f \text{ is bounded} \}$$

is a closed subalgebra of $\ell_{\infty}(T)$, so it is a commutative Banach algebra with a unit.

b) If T is locally compact and not compact, then consider

$$C_0(T) := \{ f \in C(T) : \text{ for any } \varepsilon > 0 \text{ the set } \{ t \in T : |f(t)| \ge \varepsilon \} \text{ is compact} \}.$$

First, consider the one point compactification $K := T \cup \{\infty\}$ of T.

(recall that topology τ on $T \cup \{\infty\}$ consist of open subsets of T and sets of the from $G = \{\infty\} \cup (L \setminus K_0)$, where $K_0 \subset L$ is a compact set; it is a known fact from the course on general topology that then $(T \cup \{\infty\}, \tau)$ is a compact Hausdorff space and T is dense subset of $T \cup \{\infty\}$) Prove that the mapping

$$C(K) \supset \{ f \in C(K) \colon f(\infty) = 0 \} \ni f \mapsto f|_T \in C_0(T)$$

is a surjective linear isometry. Deduce that $C_0(T)$ is a Banach space and that $C_0(T)$ is a closed subalgebra of $C_b(T)$, so it is a commutative Banach algebra. Finally, prove that $C_0(T)$ does not have a unit. (*Hint: prove that if the unit* exists, then is has to be constant one function)

2. Let X be a Banach space with $\dim X > 1$.

a) $\mathcal{L}(X)$ is a Banach algebra (where multiplication is given by composition of operators) with a unit. Prove that $\mathcal{L}(X)$ is not commutative. (*Hint: if* $y, z \in X$ are linearly independent, then the operators which do no commute may be taken of the from $x \mapsto x^*(x)y$ and $x \mapsto x^*(x)z$ for some $x^* \in X^*$)

b) The space of compact operators $\mathcal{K}(X) \subset \mathcal{L}(X)$ is a closed subalgebra. Prove that $\mathcal{K}(X)$ is a Banach algebra, which is not commutative and that it does not have a unit if dim $X = +\infty$. (*Hint: prove that if the unit exists, then is has* to be the identity operator)

3. a) Prove that $L_1(\mathbb{R}^d)$ with multiplication given by convolution (that is, $f * g(x) := \int f(y)g(x-y) \, dy$) is a commutative Banach algebra without a unit. (*Hint: in order to see that it does not have a unit, pick* $g = \frac{\chi_{B(0,1)}}{\|\chi_{B(0,1)}\|_1} \in S_{L_1}$ put $g_n(x) := n^d g(nx)$ and try to use the fact that if $e \in L_1(\mathbb{R}^d)$ was a unit, we would have $g_n = e * g_n \to e$) b) Let G be a commutative group. Prove that $\ell_1(G)$ with multiplication * given by

$$(x*y)(g) := \sum_{h \in G} x(h)y(g-h), \quad x, y \in \ell_1(G)$$

is a commutative Banach algebra with a unit.

EXERCISES 2 (21.2.2023)

1. Let us consider operators $S, T \in \mathcal{L}(\ell_2)$ given by

 $T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots), \quad S(x_1, x_2, \ldots) = (x_2, x_3, \ldots), \qquad x \in \ell_2.$

a) Prove that T does not have right inverse, but it has left inverse (and describe all the left inverses of T). b) Prove that S does not have left inverse, but it has right inverse (and describe all the right inverses of S).

2. Consider the commutative group $G = (\mathbb{Z}_n, +)$, where $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ and addition is modulo n. a) Find explicit formula for an isomorphism from the Banach algebra $\ell_1(G)$ into the Banach algebra M_n . (*Hint: use Theorem 8 from the lecture*).

b) For n = 2 and n = 3 give an explicit characterization of invertible elements in $\ell_1(G)$.

(*Hint: use the representation by matrices from the previous item*)

EXERCISES 3 (28.2.2023)

1. a) Prove that given a Hausdorff compact space K and $f \in C(K)$, we have $\sigma(f) = \operatorname{Rng} f$.

b) Prove that given a Hausdorff locally compact space T which is not compact and $f \in C_0(T)$, we have $\sigma(f) = \operatorname{Rng} f \cup \{0\}$.

c) Find two examples of Hausdorff locally compact spaces T_1, T_2 which are not compact such that: for every $f \in C_0(T_1)$ we have $\sigma(f) = \operatorname{Rng} f$; there exists $f \in C_0(T_2)$ such that $\sigma(f) \neq \operatorname{Rng} f$. (*Hint:* T_1 may be any non σ -compact space; T_2 may be e.g. the real line)

2. Let us consider the commutative Banach algebra $A = (\ell_1(\mathbb{Z}), *)$ and pick any $n \in \mathbb{Z} \setminus \{0\}$. Prove that $\sigma(e_n) = \{\lambda \in \mathbb{K} : |\lambda| = 1\}$ and that

$$R_{e_n}(\lambda) = \begin{cases} \sum_{k=0}^{\infty} \frac{e_{kn}}{\lambda^{k+1}}, & |\lambda| > 1, \\ \sum_{k=1}^{\infty} -\lambda^{k-1} e_{-kn}, & |\lambda| < 1. \end{cases}$$

In this series of exercises, given a Banach algebra $A, x \in A$ and a function f holomorphic on a neighborhood of $\sigma(x)$, we denote $f(x) := \phi(x) f$ (that is, the value of f under the holomorphic calculus corresponding to the element x).

1. Consider the Banach algebra $A = M_n$, $n \ge 2$. Pick some $z \in \mathcal{C}$ and consider the matrix

$$J = \begin{pmatrix} z & 1 & 0 & \cdots & 0 & 0 \\ 0 & z & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & z & 1 \\ 0 & 0 & 0 & \cdots & 0 & z \end{pmatrix}$$

a) Prove that $\sigma(J) = \{z\}.$

b) Prove that for $\lambda \in \rho(J)$ we have

$$(\lambda I - J)^{-1} = \begin{pmatrix} \frac{1}{\lambda - z} & \frac{1}{(\lambda - z)^2} & \cdots & \frac{1}{(\lambda - z)^n} \\ 0 & \frac{1}{\lambda - z} & \cdots & \frac{1}{(\lambda - z)^{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda - z} \end{pmatrix}$$

c) Let f be a holomorphic function on a neighborhood of z. Prove that

$$f(J) = \begin{pmatrix} f(z) & f'(z) & \frac{f''(z)}{2} & \cdots & \frac{f^{(n-1)}}{(n-1)!} \\ 0 & f(z) & f'(z) \cdots & \frac{f^{(n-2)}}{(n-2)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & f(z) \end{pmatrix}$$

d) From the above deduce that the value of f(J) is not given just by $f|_{\sigma(J)}$.

2. (not suitable for a credit, but interesting) a) Let f be a holomorphic function on \mathbb{C} and let $f(\lambda) =$ $\sum_{n=0}^{\infty} a_n \lambda^n$, $\lambda \in \mathbb{C}$ be its Taylor expansion. Prove that for every Banach algebra A and every $x \in A$ we have $f(x) = \sum_{n=0}^{\infty} a_n x^n$.

b) Consider the Banach algebra A = C(K) and $q \in A$. Prove that whenever F is a holomorphic function on a neighborhood of $\sigma(g) = \operatorname{Rng} g$, then $F(g) = F \circ g$.

3. Consider the Banach algebra $A = \mathcal{L}(X)$ (X is infinite-dimensional Banach space) and for $x_0 \in X \setminus \{0\}$ and $x^* \in X^*$ with $x^*(x_0) \neq 0$ consider $T \in A$ given by the formula $Tx := x^*(x)x_0, x \in X$. a) Prove that $\sigma(T) = \{0, x^*(x_0)\}$ and for $\lambda \notin \{0, x^*(x_0)\}$ find a formula for $R_T(\lambda)$. (*Hint: the solution is* $R_T(\lambda) = \frac{1}{\lambda}I + \frac{1}{\lambda(\lambda - x^*(x_0))}T$).

b) Given a function f holomorphic on a neighborhood of $\sigma(T)$ compute the value of f(T).

(Solution: $f(T) = I \cdot f(0) + T \cdot \frac{f(x^*(x_0)) - f(0)}{x^*(x_0)}$; Hint: first using the formula for $R_T(\lambda)$ observe that it suffices to compute the curve integrals of functions $\frac{f(\lambda)}{\lambda}$ and $\frac{f(\lambda)}{\lambda(\lambda - x^*(x_0))}$, when computing the integral of the second function observe that decomposition using partial fractions we have $\frac{f(\lambda)}{\lambda(\lambda - x^*(x_0))} = \frac{1}{x^*(x_0)} (\frac{f(\lambda)}{\lambda - x^*(x_0)} - \frac{f(\lambda)}{\lambda})$

EXERCISES 5 (14.3.2023)

1. Let K be a compact Hausdorff space and for closed $F \subset K$ denote $I(F) := \{f \in C(K) : f|_F \equiv 0\}$. Prove that all the closed ideals of C(K) are $\{I(F) : F \subset K \text{ closed}\}$. (*Hint: each* I(F) *is a closed ideal; if* $I \subset C(K)$ *is an ideal, put* $F := \bigcap_{f \in I} f^{-1}(0)$ *and prove that* $I(F) = \overline{I}$.)

2. a) Let (G, +) be a commutative group and $A = \ell_1(G)$. Prove that $\varphi \in \ell_{\infty}(G) = A^*$ belongs to $\Delta(A)$ if and only if $\varphi : G \to \mathbb{T} := \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ is a group homomorphism. (*Hint: Note that* $e_{g+h} = e_g * e_h$.)

b) For $A = \ell_1(\mathbb{Z})$ use a) to describe $\Delta(A)$ and explain how to understand the equality $\Delta(A) = \mathbb{T}$.

c) Consider the commutative group $G = (\mathbb{Z}_n, +)$, where $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ and addition is modulo n. For $A = \ell_1(\mathbb{Z}_n)$ use a) to describe $\Delta(A)$ and prove that it consists of exactly n elements.

EXERCISES 6 (21.3.2023)

1. Consider the commutative Banach algebra $A = \ell_1(\mathbb{Z})$.

a) Using the identification $\Delta(A) = \mathbb{T}$ from one Exercise 5.2b) above, describe the Gelfand transform of A and (using it) express the spectrum of a general element of A.

b) Is the Gelfand transform one-to-one? If yes, what is its inverse? (*Hint: use knowledge of Fourier series*)

c) Consider the mapping $*: A \to A$ given by $x^*(n) := \overline{x(-n)}$, $n \in \mathbb{Z}$ for every $x \in A$. Prove that * is an involution on A and that for $x = e_0 - e_1 - e_2$ we have $||x^*x|| = 5$ and $||x||^2 = 9$ (therefore, (A, *) is not a C^* -algebra).

2. Consider the commutative Banach algebra $A = L_1(\mathbb{R})$ and representation of its dual $A^* = L_{\infty}(\mathbb{R})$.

a) For $x \in \mathbb{R}$, consider the function $\phi_x \in L_\infty$ defined as $\phi_x(t) := e^{itx}$, $t \in \mathbb{R}$. Prove that $\{\phi_x : x \in \mathbb{R}\} \subset \Delta(A)$.

b) Let us mention the (nontrivial) known fact that

$$\Delta(A) \subset \{ f \in C(\mathbb{R}) \colon |f(t)| = 1 \text{ and } f(t+s) = f(t)f(s) \text{ for every } t, s \in \mathbb{R} \}$$

(proof is e.g. on page 288 here: https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf). Using the above mentioned fact, prove that $\{\phi_x : x \in \mathbb{R}\} = \Delta(A)$.

(*Hint: pick* $f \in C(\mathbb{R})$ satisfying f(t+s) = f(t)f(s) for $t, s \in \mathbb{R}$, prove equality $f(t) \int_0^{t_0} f(s) ds = \int_t^{t+t_0} f(s) ds$ for ever y t and deduce that f is differentiable, then observe that f satisfies differential equation f'(t) = f'(0)f(t) for every t) c) Using the identification of $\Delta(A)$ with \mathbb{R} from part b), show that the Gelfand transform on $L_1(\mathbb{R})$ and the Fourier transform on $L_1(\mathbb{R})$ are up to a constant identical.

d) Consider the mapping $*: A \to A$ given by $f^*(x) := \overline{f(x)}, x \in \mathbb{R}$ for every $f \in A$. Prove that * is an involution on A and that for $f = i(\chi_{(0,1)} - \chi_{(-1,0)})$ we have $||f * f^*|| = \frac{8}{3}$ and $||f||^2 = 4$ (therefore, (A, *) is not a C^* -algebra).

EXERCISES 7 (28.3.2023)

1. Let *H* be a Hilbert space and $A \subset \mathcal{L}(H)$ be a closed *-subalgebra. Consider the set $M_n(A)$ consisting of $n \times n$ matrices with entries belonging to *A*.

a) Define natural algebraic operations on $M_n(A)$ and a norm on $M_n(A)$ in such a way that $M_n(A)$ is isometric to a *-subalgebra of $\mathcal{L}(H^n) = \mathcal{L}(H \oplus_2 \ldots \oplus_2 H)$. Prove that then $M_n(A)$ is a C*-algebra.

b) For a Hausdorff compact space K consider the C^* -algebra $C(K, A) := \{f : K \to A : f \text{ is continuous}\}$ (on C(K, A) we consider the supremum norm and the algebraic operations are defined pointwise). Prove that if $A = M_n(\mathbb{C})$, then the C^* -algebras C(K, A) and $M_n(C(K))$ are isometrically *-isomorphic.

2. a) Let A be a C^{*}-algebra with a unit. Let $a, b \in A$ be normal elements which are unitarily equivalent (that is, there exists $u \in A$ with $u^* = u^{-1}$ and $u^*au = b$). Prove that the C^{*}-algebras $\overline{alg}\{e, a, a^*\}$ and $\overline{alg}\{e, b, b^*\}$ are isometrically *-isomorphic.

(*Hint: prove that* $\sigma(a) = \sigma(b)$ *and use continuous calculus*)

b) Let A be a C*-algebra with a unit, $a \in A$ be self-adjoint with $\sigma(a) \subset [0, \varepsilon] \cup [1 - \varepsilon, 1]$ for some $\varepsilon \in (0, \frac{1}{4})$. Prove that there exists a projection $p \in A$ (that is, some $p \in A$ satisfying $p = p^* = p^2$) such that $||p - a|| \leq \varepsilon$.

(*Hint: using the continuous calculus, define* p = g(a) *for a suitable* $g \in C(\sigma(a))$ *with* $\operatorname{Rng}(g) \subset \{0,1\}$)

c) Let $i : (0,1) \to \mathbb{R}$ be the inclusion map. Then *i* is continuous. Show that $\varphi : C_0(\mathbb{R}) \to C_0((0,1))$ defined by $\varphi(f) := f \circ i$ is not a *-homomorphism. What goes wrong?

EXERCISES 8 (4.4.2023)

1. Consider the operator $T: L_2([0,1]) \to L_2([0,1])$ given by the formula $Tf(x) := \int_0^x f(t) \, dt, x \in [0,1]$. a) Prove that T is a compact operator. (*Hint: consider operators* $A: L_2([0,1]) \to C([0,1])$ and $B: C([0,1]) \to L_2([0,1])$, where A is given by the same formula as T and B is the "identity"; prove that both A and B are continuous linear and using Arzela-Ascoli theorem show that A is compact; then use the identity $T = B \circ A$.) b) Prove that if $T^*Tf = \lambda f$ for some $\lambda > 0$ and $f \in L_2([0,1])$, then $f \in C^2([0,1])$ and $\lambda f'' + f = 0$.

2. Consider the operator $T : L_2([0,1]) \to L_2([0,1])$ given by the formula $Tf(x) := \int_0^x f(t) dt$, $x \in [0,1]$. In this exercise you may use both **1.a** and **1.b** from the exercise above. Using the proof of the Schmidt theorem, find positive numbers $(\lambda_n)_{n \in \mathbb{N}}$ and orthogonal systems of functions $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ in $L_2([0,1])$ such that

$$Tf = \sum_{n=0}^{\infty} \lambda_n \Big(\int_0^1 f(t) f_n(t) \, \mathrm{d}t \Big) g_n.$$

(Recall: in what sense is the sum above convergent?)

1. Let $H = \ell_2$. For $z \in \ell_\infty$ consider the operator $M_z \in \mathcal{L}(\ell_2)$ defined as $M_z(x) = (z_n x_n)_{n=1}^\infty$ (recall that $||M_z|| =$ $||z||_{\infty}$ and $\sigma(M_z) = \{z_n : n \in \mathbb{N}\}$, see e.g. Příklad 8 here: https://www2.karlin.mff.cuni.cz/~spurny/doc/fa2/ fa-priklady.pdf). Fix some $z \in \ell_{\infty}$.

a) Prove that M_z is normal operator.

Further, by $\phi : \operatorname{Bor}_b(\sigma(M_z)) \to \mathcal{L}(H)$ denote the borel calculus from Theorem 89 and by $\mu_{x,y}$ the measures from Definition 86. Prove that the following holds.

b) For $f \in C(\sigma(M_z))$ we have $\phi(f) = M_{f \circ z}$, where $f \circ z = (f(z_n))_{n=1}^{\infty}$.

c) For every $n, m \in \mathbb{N}$ we have $\mu_{e_n, e_n} = \delta_{z_n}$ and $\mu_{e_n, e_m} = 0$ if $n \neq m$. d) For $x, y \in H$ we have $\mu_{x,y} = \sum_{n=1}^{\infty} x_n \overline{y_n} \delta_{z_n}$.

(Hint: for finitely supported vectors use the already proven part and Remark 87; for the general case consider $a_N =$ $\sum_{i=1}^{N} x_i e_i, \ b_N = \sum_{i=1}^{N} y_i e_i, \ note \ that \ for \ any \ T \in \mathcal{L}(H) \ we \ have \ \langle Ta_N, b_N \rangle \rightarrow \langle Tx, y \rangle \ and \ apply \ it \ for \ T = \phi(f))$ e) For $g \in Bor_b(\sigma(M_z))$ we have $\phi(g) = M_{g \circ z}$.

f) Every $A \subset \sigma(M_z)$ is $\mu_{x,y}$ -measurable and if A is moreover Borel, then $\phi(\chi_A)x = \sum_{n, z_n \in A} x_n e_n$ for every $x \in H$. (*Hint: use the well-known fact that given* $\mu \in M(\sigma(M_z))$ *with* $\mu \ge 0$ *, a set* $A \subset \sigma(M_z)$ *is* μ *-measurable if and only if* there are Borel sets $B \subset A \subset C$ such that $\mu(C \setminus B) = 0$.)

2. Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space with the property that given $A \subset \Omega$ with $\mu(A) > 0$, there exists $B \subset A$ with $\mu(B) \in (0,\infty)$. Let $H = L_2(\mu)$ and $g \in L_{\infty}(\mu)$ and consider the operator $M_q \in \mathcal{L}(H)$ given as $M_q(f) = g \cdot f$. a) Prove that $||M_q|| = ||g||_{\infty}$ and that M_q is normal operator. b) Prove that

$$\sigma(M_g) = \operatorname{essRng} g := \{\lambda \in \mathbb{K} \colon \mu(g^{-1}(U(\lambda,\varepsilon))) > 0 \text{ for every } \varepsilon > 0\}.$$

c) If ϕ : Bor_b($\sigma(M_g)$) $\rightarrow \mathcal{L}(H)$ is the borel calculus from Theorem 89, then for any $f \in \text{Bor}_b(\sigma(M_g))$ we have $\phi(f) = M_{f \circ q}.$

d) Given a borel set $A \subset (\sigma(M_g))$, we have $\phi(\chi_A) = M_{\chi_{g^{-1}(A)}}$.

(*Hint: for a sketch of the solution see page 229 here:*

https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf)

1. Let H be a Hilbert space and $T \in \mathcal{L}(H) \setminus \{0\}$ compact normal operator. Let $\{\lambda_n\}_{n=1}^M$, $M \in \mathbb{N} \cup \{\infty\}$ be one-to-one sequence of all the eigenvalues of the operator T and P_n orthogonal projection onto $\operatorname{Ker}(\lambda_n I - T)$. Using Corollary 97 prove that

- $T = \sum_{n=1}^{M} \lambda_n P_n$, where the series converges in the SOT topology on the space $\mathcal{L}(H)$;
- the mapping $\sigma(T) \supset A \mapsto E(A) := \sum_{\{n:\lambda_n \in A\}} P_n$ is spectral measure satisfying that $T = \int \operatorname{id} dE$;
- if $f : \sigma(T) \to \mathbb{C}$ is a bounded function and E is as above, then $\int f dE = \sum_{n=1}^{M} f(\lambda_n) P_n$, where the series converges in the SOT topology on the space $\mathcal{L}(H)$.

2. a) Let H, K be Hilbert spaces, $T \in \mathcal{L}(H) \setminus \{0\}$ normal operator and $U : H \to K$ unitary operator (that is, surjective isometry). Let E be the spectral measure satisfying $T = \int \operatorname{id} dE$. Consider now the operator $T_U := U^*TU \in \mathcal{L}(K)$. Prove that T_U is normal operator and if E_U is defined as $E_U(A) := U^*E(A)U$, then E_U is the spectral measure satisfying $T_U = \int \operatorname{id} dE_U$.

b) Consider now the Hilbert space $H = \ell_2(\mathbb{Z})$ and the unique operator $T \in \mathcal{L}(H)$ satisfying $T(e_k) = e_{k-1}, k \in \mathbb{Z}$. Further, consider the Hilbert space $K = L_2(\mathbb{T}, \mu)$, where μ is the normalized Lebesgue measure on the circle (that is, $\int_{\mathbb{T}} f(t) d\mu = \frac{1}{2\pi} \int f(e^{ix}) dx$) and the unique operator $U : \ell_2 \to L_2(\mathbb{T}, \mu)$ given by $Ue_k = t^k$. Prove that then T is normal, U is unitary and that for the function $g \in L_{\infty}(\mu)$ satisfying $g(t) = t^{-1}, t \in \mathbb{T}$ we have $T = U^*M_gU$, where M_g is the operator from Exercises 9.2. As a corollary, find spectral decomposition of the operator T (that is, a formula for the spectral measure E such that $T = \int \operatorname{id} dE$).

(*Hint: for a sketch of the solution see page 113 here:*

https://www2.karlin.mff.cuni.cz/~spurny/doc/fa2/fa-priklady.pdf)

EXERCISES 11 (25.4.2023)

1. a) Let $X = \ell_p$, $p \in [1, \infty)$ and $z = (z_n)$ be a sequence of (real or complex) numbers. Let

$$D(M_z) := \{ x \in X \colon (x_n z_n) \in X \}.$$

Prove that $D(M_z) \subset X$ is dense subspace. Consider now the operator $M_z : D(M_z) \to X$ defined as $M_z(x) := (x_n z_n)$, $x \in D(M_z)$. Prove that M_z is densely defined, closed and that it is bounded (hence everywhere defined) if and only if the sequence z is bounded.

b) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space with μ semifinite (that is, if $A \in \mathcal{A}$ is such that $\mu(A) > 0$, then there exists $B \subset A$ with $\mu(B) \in (0, \infty)$). Let $X = L_p(\mu), p \in [1, \infty)$ and $g : \Omega \to \mathbb{K}$ be a measurable function. Consider

$$D(M_g) := \{ f \in X \colon gf \in X \}$$

Prove that $D(M_g)$ is dense subspace of X. Consider now the operator $M_g : D(M_g) \to X$ defined as $M_g(f) = gf$, $f \in D(M_g)$. Prove that M_g is densely defined, closed and that it is bounded (hence everywhere defined) if and only if the function g is essentially bounded.

2. a) Let $X = \ell_p, p \in (1, \infty)$ and

$$Y := \{ x \in X : (nx_n) \in X \& \sum_{n=1}^{\infty} x_n = 0 \}.$$

Prove that Y is a dense subspace. Consider now the operator $T: Y \to X$ defined as $Tx := (nx_n), x \in Y$. Prove that T is densely defined and closed.

(Hint: using Hölder inequality prove that if $(nx_n) \in X$ implies $x \in \ell_1$, this will prove that Y is well-defined and a linear subspace; in order to prove that Y is dense prove that $c_{00} \subset \overline{Y}$ and in order to prove that T is closed use definitions and Hölder inequality)

b) Let $X = L_p((1, \infty)), p \in (1, \infty)$ and

$$Y := \{ f \in X \colon (t \mapsto tf(t)) \in X \& \int_1^\infty f = 0 \}.$$

Prove that Y is a dense subspace. Consider now the operator $T: Y \to X$ defined as $Tf(t) := tf(t), f \in Y, t \in (1, \infty)$. Prove that T is densely defined and closed.

(Hint: using Hölder inequality prove that if $(t \mapsto tf(t)) \in X$ implies $x \in L_1$, this will prove that Y is well-defined and a linear subspace; in order to prove that Y is dense prove that $\chi_A \in \overline{Y}$ for $A \subset (1, \infty)$ bounded and in order to prove that T is closed use definitions and Hölder inequality)

3. Let $X = L_p((0, 1)), p \in [1, \infty)$ and

$$Y := \{ f \in AC([0,1]) \colon f' \in X \} \subset X.$$

Define the operators T_j , j = 1, ..., 6 by the same formula $T_j(f) := f'$ with domains

$$D(T_1) := Y, \quad D(T_2) := \{ f \in Y : f(0) = 0 \},$$

$$D(T_3) := \{ f \in Y : f(1) = 0 \}, \quad D(T_4) := \{ f \in Y : f(0) = f(1) = 0 \},$$

$$D(T_5) := \{ f \in Y : f(0) = f(1) \}, \quad D(T_6) := \{ f \in Y : f(0) = -f(1) \}.$$

Show that all those operators are densely defined and closed.

(To prove density use that test functions are dense in L_p ; to prove they are closed pick $(f_n, f'_n) \to (f, g)$ and show e.g. that $h_n(x) := f_n(x) - f_n(0) = \int_0^x f'_n$ is a cauchy sequence in C([0,1]), further show that $f_n(0)$ has a convergent subsequence and deduce that $f(x) = \int_0^x g'_n + const.$)

EXERCISES 12 (2.5.2023)

In the following exercises, given an operator T on a Banach space X, we put $\sigma_p(T) := \{\lambda \in \mathbb{K} : \lambda I - T \text{ is not one-to-one}\}$. **1.** Let M_z and M_q be the operators from Exercises 11.1. Find $\sigma_p(M_z)$, $\sigma_p(M_q)$ and show that

$$\sigma(M_z) = \overline{\{z_n \colon n \in \mathbb{N}\}}$$

and

$$\sigma(M_g) = \operatorname{essRng} g := \{\lambda \in \mathbb{K} \colon \mu(g^{-1}(U(\lambda,\varepsilon))) > 0 \text{ for every } \varepsilon > 0\}.$$

2. Find $\sigma_p(T)$ and $\sigma(T)$ for the operators T from Exercises 11.2. **3.** Find $\sigma_p(T)$ and $\sigma(T)$ for the operators $T \in \{T_i : i = 1, ..., 6\}$ from Exercises 11.3.

(*Hint: note that given* $g \in X$, the function $f(t) := -e^{\lambda t} \int_0^t g(s) e^{-\lambda s} ds$ solves the equation $\lambda f - f' = g$)

EXERCISES 13 (9.5.2023)

1. Consider the operators T_i , $i \in \{1, \ldots, 6\}$ from Exercises 11.2 in the space $L_2((0, 1))$. Prove that

a) we have $T_1^{\star} = -T_4, T_2^{\star} = -T_3, T_3^{\star} = -T_2, T_4^{\star} = -T_1, T_5^{\star} = -T_5, T_6^{\star} = -T_6.$

(Hint: To prove the inclusions ' \supset ' use integration by parts. To prove ' \subset ' proceed as follows: Let $g \in D(T_i^*)$. Then there is $h \in L_2((0,1))$ such that $\langle T_i f, g \rangle = \langle f, h \rangle$ for any $f \in D(T_i)$. Set $H(t) := \int_0^t h(s) \, ds$, $t \in [0,1]$. Apply integration by parts. Note that $\mathcal{D}((0,1)) \subset D(T_i)$ and deduce that the distributive derivative of g + H on (0,1) is zero, thus g + H is almost everywhere equal to a constant. So, $g \in AC([0,1])$ and H = g(0) - g. Plug this to the computation and conclude.)

b) iT_5 and iT_6 are self-adjoint and iT_4 is symmetric.

2. a) Consider the operator T from Exercises 11.2a in the space ℓ_2 . Prove that

 $D(T^{\star}) = \{x \in \ell_2 : \lim nx_n \text{ exists and is finite, and } (kx_k - \lim nx_n)_{k=1}^{\infty} \in \ell_2\}$

and $T^{\star}x = (kx_k - \lim nx_n)_{k=1}^{\infty}, x \in D(T^{\star}).$

(Hint: " \supset " is easy using definitions; for " \subset " proceed as follows: Let $y \in D(T^*)$, then there exists $z \in \ell_2$ such that $\langle Tx, y \rangle = \langle x, z \rangle$ for $x \in D(T)$, apply it for $x = e_1 - e_n$, $n \ge 2$ and deduce that $ny_n = y_1 - z_1 + z_n$. Using that $z_n \to 0$ compute $\lim ny_n$ and conclude.)

b) Consider the operator T from Exercises 11.2b in the space $X = L_2((1,\infty))$. Set

 $D(\psi) = \{ f \in X \colon \exists C \in \mathbb{C} \text{ such that the function } t \mapsto C + tf(t) \text{ is in } X \}.$

Show that $D(\psi)$ is a dense linear subspace of X, that for $f \in D(\psi)$ the constant C from the definition is uniquely determined and the mapping $\psi : D(\psi) \to \mathbb{C}$ mapping f to the respective C (that is, such that $(t \mapsto \psi(f) + tf(t)) \in X$) is a linear functional defined on $D(\psi)$.

Show that $D(T^*) = D(\psi)$ and $T^*f(t) = \psi(f) + tf(t), t \in (1, \infty)$ for $f \in D(T)$.

(Hint: " \supset " is easy using definitions; for " \subset " proceed as follows: Let $g \in D(T^*)$, then there exists $h \in X$ such that $\langle Tf,g \rangle = \langle f,h \rangle$ for $f \in D(T)$, apply it for $f = (r-1)\chi_{(1,2)} - \chi_{(r,1)}$. Differentiate the resulting equality with respect to r and deduce that $h(r) = \int_{1}^{2} (h(t) - tg(t)) dt + rg(r)$ almost everywhere. Then complete the argument.)

EXERCISES 14 (16.5.2023)

1. Let $(\Omega, \mathcal{A}, \mu)$ be as in Exercises 11.1b and for $g : \Omega \to \mathbb{C}$ measurable let M_g be the operator as in Exercises 11.1b. a) Prove that for every $g : \Omega \to \mathbb{C}$ measurable we have $(M_g)^* = M_{\overline{g}}$.

b) For a measurable $g: \Omega \to \mathbb{R}$ find $h: \Omega \to \mathbb{C}$ measurable such that M_h is the Cayley transformation of M_g . (*Hint: you may use without proof the fact used in the solution of Exercises 12.1 that if* $\lambda \notin \operatorname{essRng} g$ then $(\lambda I - M_g)^{-1} = M_{\frac{1}{\lambda - g}}$.)

c) Find a characterization of measurable functions $g: \Omega \to \mathbb{C}$ such that $M_g \in \mathcal{L}(\mu)$ is a unitary operator and $I - M_g$ is one-to-one. Further, for those functions g find $h: \Omega \to \mathbb{C}$ measurable such that Cayley transformation of M_h is M_g . (*Hint: you may use without proof the fact used in the solution of Exercises 12.1 that* $\lambda I - M_g$ *is one-to-one if and only* $if \mu(g^{-1}(\lambda)) = 0.$)

2. a) Compute the Cayley transform of the self-adjoint operators iT_5 and iT_6 from Exercises 13.1b. *Hint: you may without proof use the fact used in the solution of Exercises 12.3 that* $\sigma(T_5) = \sigma_p(T_5) = \{2\pi i n : n \in \mathbb{Z}\}, \sigma(T_6) = \sigma_p(T_6) = \{-i\frac{\pi}{2} + 2\pi i n : n \in \mathbb{Z}\}, \text{ for } \lambda \notin \sigma(T_5) \text{ we have}$

$$(\lambda I - T_5)^{-1}g(t) = -e^{-\lambda t} \left(\int_0^t g(s)e^{-\lambda s} \,\mathrm{d}s + \frac{e^{\lambda}}{1 - e^{\lambda}} \int_0^1 g(s)e^{-\lambda s} \,\mathrm{d}s \right)$$

and for $\lambda \notin \sigma(T_6)$ we have

$$(\lambda I - T_6)^{-1}g(t) = -e^{-\lambda t} \left(\int_0^t g(s)e^{-\lambda s} \,\mathrm{d}s - \frac{e^{\lambda}}{1 + e^{\lambda}} \int_0^1 g(s)e^{-\lambda s} \,\mathrm{d}s \right).$$

b) Compute the Cayley transform of the symmetric operator iT_4 from Exercises 13.1b.

Hint: you may without proof use the fact used in the solution of Exercises 12.3 that $\sigma(T_4) = \emptyset$ and for $\lambda I - T_4$ and $g \in L_2((0,1))$ the equation $(\lambda I - T)f = g$, $f \in D(T_4)$ has a solution if and only if $g \in \{e^t\}^{\perp}$ and in this case the solution is

$$f(t) := -e^{\lambda t} \int_0^t g(s) e^{-\lambda s} \,\mathrm{d}s.$$

FURTHER EXERCISE

Not covered during semester, may be used during oral Exam.

1. Let $(\Omega, \mathcal{A}, \mu)$, $g : \Omega \to \mathbb{C}$ and M_g be as in Exercises 11.1b. For a Borel set $A \subset \mathbb{C}$ and $f \in L_2(\mu)$ put $E(A)f := M_{\chi_{g^{-1}(A)}}f$. Prove that E is spectral measure for $(\mathbb{C}, \operatorname{Bor}(\mathbb{C}), L_2(\mu))$ satisfying $M_g = \int \operatorname{id} dE$. (*Hint: see Příklad 69 here https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf*)