1. Given a Hausdorff topological space T, prove that
a)

$$
C_{b}(T):=\{f \in C(T): f \text { is bounded }\}
$$

is a closed subalgebra of $\ell_{\infty}(T)$, so it is a commutative Banach algebra with a unit.
b) If T is locally compact and not compact, then consider

$$
C_{0}(T):=\{f \in C(T): \text { for any } \varepsilon>0 \text { the set }\{t \in T:|f(t)| \geq \varepsilon\} \text { is compact }\} .
$$

First, consider the one point compactification $K:=T \cup\{\infty\}$ of T.
(recall that topology τ on $T \cup\{\infty\}$ consist of open subsets of T and sets of the from $G=\{\infty\} \cup\left(L \backslash K_{0}\right)$, where $K_{0} \subset L$ is a compact set; it is a known fact from the course on general topology that then $(T \cup\{\infty\}, \tau)$ is a compact Hausdorff space and T is dense subset of $T \cup\{\infty\})$
Prove that the mapping

$$
\left.C(K) \supset\{f \in C(K): f(\infty)=0\} \ni f \mapsto f\right|_{T} \in C_{0}(T)
$$

is a surjective linear isometry. Deduce that $C_{0}(T)$ is a Banach space and that $C_{0}(T)$ is a closed subalgebra of $C_{b}(T)$, so it is a commutative Banach algebra. Finally, prove that $C_{0}(T)$ does not have a unit. (Hint: prove that if the unit exists, then is has to be constant one function)
2. Let X be a Banach space with $\operatorname{dim} X>1$.
a) $\mathcal{L}(X)$ is a Banach algebra (where multiplication is given by composition of operators) with a unit. Prove that $\mathcal{L}(X)$ is not commutative. (Hint: if $y, z \in X$ are linearly independent, then the operators which do no commute may be taken of the from $x \mapsto x^{*}(x) y$ and $x \mapsto x^{*}(x) z$ for some $\left.x^{*} \in X^{*}\right)$
b) The space of compact operators $\mathcal{K}(X) \subset \mathcal{L}(X)$ is a closed subalgebra. Prove that $\mathcal{K}(X)$ is a Banach algebra, which is not commutative and that it does not have a unit if $\operatorname{dim} X=+\infty$. (Hint: prove that if the unit exists, then is has to be the identity operator)
3. a) Prove that $L_{1}\left(\mathbb{R}^{d}\right)$ with multiplication given by convolution (that is, $\left.f * g(x):=\int f(y) g(x-y) \mathrm{d} y\right)$ is a commutative Banach algebra without a unit. (Hint: in order to see that it does not have a unit, pick $g=\frac{\chi_{B(0,1)}}{\left\|\chi_{B(0,1)}\right\|_{1}} \in S_{L_{1}}$ put $g_{n}(x):=n^{d} g(n x)$ and try to use the fact that if $e \in L_{1}\left(\mathbb{R}^{d}\right)$ was a unit, we would have $g_{n}=e * g_{n} \rightarrow e$) b) Let G be a commutative group. Prove that $\ell_{1}(G)$ with multiplication $*$ given by

$$
(x * y)(g):=\sum_{h \in G} x(h) y(g-h), \quad x, y \in \ell_{1}(G)
$$

is a commutative Banach algebra with a unit.

1. Let us consider operators $S, T \in \mathcal{L}\left(\ell_{2}\right)$ given by

$$
T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right), \quad S\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right), \quad x \in \ell_{2} .
$$

a) Prove that T does not have right inverse, but it has left inverse (and describe all the left inverses of T).
b) Prove that S does not have left inverse, but it has right inverse (and describe all the right inverses of S).
2. Consider the commutative group $G=\left(\mathbb{Z}_{n},+\right)$, where $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ and addition is modulo n.
a) Find explicit formula for an isomorphism from the Banach algebra $\ell_{1}(G)$ into the Banach algebra M_{n}.
(Hint: use Theorem 8 from the lecture).
b) For $n=2$ and $n=3$ give an explicit characterization of invertible elements in $\ell_{1}(G)$.
(Hint: use the representation by matrices from the previous item)

EXERCISES 3 (28.2.2023)

1. a) Prove that given a Hausdorff compact space K and $f \in C(K)$, we have $\sigma(f)=\operatorname{Rng} f$.
b) Prove that given a Hausdorff locally compact space T which is not compact and $f \in C_{0}(T)$, we have $\sigma(f)=$ $\operatorname{Rng} f \cup\{0\}$.
c) Find two examples of Hausdorff locally compact spaces T_{1}, T_{2} which are not compact such that: for every $f \in C_{0}\left(T_{1}\right)$ we have $\sigma(f)=\operatorname{Rng} f$; there exists $f \in C_{0}\left(T_{2}\right)$ such that $\sigma(f) \neq \operatorname{Rng} f$. (Hint: T_{1} may be any non σ-compact space; T_{2} may be e.g. the real line)
2. Let us consider the commutative Banach algebra $A=\left(\ell_{1}(\mathbb{Z}), *\right)$ and pick any $n \in \mathbb{Z} \backslash\{0\}$. Prove that $\sigma\left(e_{n}\right)=\{\lambda \in$ $\mathbb{K}:|\lambda|=1\}$ and that

$$
R_{e_{n}}(\lambda)= \begin{cases}\sum_{k=0}^{\infty} \frac{e_{k n}}{\lambda^{k+1}}, & |\lambda|>1, \\ \sum_{k=1}^{\infty}-\lambda^{k-1} e_{-k n}, & |\lambda|<1 .\end{cases}
$$

In this series of exercises, given a Banach algebra $A, x \in A$ and a function f holomorphic on a neighborhood of $\sigma(x)$, we denote $f(x):=\phi(x) f$ (that is, the value of f under the holomorphic calculus corresponding to the element x).

1. Consider the Banach algebra $A=M_{n}, n \geq 2$. Pick some $z \in \mathcal{C}$ and consider the matrix

$$
J=\left(\begin{array}{cccccc}
z & 1 & 0 & \cdots & 0 & 0 \\
0 & z & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & z & 1 \\
0 & 0 & 0 & \cdots & 0 & z
\end{array}\right)
$$

a) Prove that $\sigma(J)=\{z\}$.
b) Prove that for $\lambda \in \rho(J)$ we have

$$
(\lambda I-J)^{-1}=\left(\begin{array}{cccc}
\frac{1}{\lambda-z} & \frac{1}{(\lambda-z)^{2}} & \cdots \frac{1}{(\lambda-z)^{n}} & \\
0 & \frac{1}{\lambda-z} & \cdots & \frac{1}{(\lambda-z)^{n-1}} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\lambda-z}
\end{array}\right)
$$

c) Let f be a holomorphic function on a neighborhood of z. Prove that

$$
f(J)=\left(\begin{array}{ccccc}
f(z) & f^{\prime}(z) & \frac{f^{\prime \prime}(z)}{2} & \cdots \frac{f^{(n-1)}}{(n-1)!} & \\
0 & f(z) & f^{\prime}(z) \cdots & \frac{f^{(n-2)}}{(n-2)!} & \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & f(z)
\end{array}\right)
$$

d) From the above deduce that the value of $f(J)$ is not given just by $\left.f\right|_{\sigma(J)}$.
2. (not suitable for a credit, but interesting) a) Let f be a holomorphic function on \mathbb{C} and let $f(\lambda)=$ $\sum_{n=0}^{\infty} a_{n} \lambda^{n}, \lambda \in \mathbb{C}$ be its Taylor expansion. Prove that for every Banach algebra A and every $x \in A$ we have $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
b) Consider the Banach algebra $A=C(K)$ and $g \in A$. Prove that whenever F is a holomorphic function on a neighborhood of $\sigma(g)=\operatorname{Rng} g$, then $F(g)=F \circ g$.
3. Consider the Banach algebra $A=\mathcal{L}(X)$ (X is infinite-dimensional Banach space) and for $x_{0} \in X \backslash\{0\}$ and $x^{*} \in X^{*}$ with $x^{*}\left(x_{0}\right) \neq 0$ consider $T \in A$ given by the formula $T x:=x^{*}(x) x_{0}, x \in X$.
a) Prove that $\sigma(T)=\left\{0, x^{*}\left(x_{0}\right)\right\}$ and for $\lambda \notin\left\{0, x^{*}\left(x_{0}\right)\right\}$ find a formula for $R_{T}(\lambda)$.
(Hint: the solution is $R_{T}(\lambda)=\frac{1}{\lambda} I+\frac{1}{\lambda\left(\lambda-x^{*}\left(x_{0}\right)\right)} T$).
b) Given a function f holomorphic on a neighborhood of $\sigma(T)$ compute the value of $f(T)$.
(Solution: $f(T)=I \cdot f(0)+T \cdot \frac{f\left(x^{*}\left(x_{0}\right)\right)-f(0)}{x^{*}\left(x_{0}\right)}$; Hint: first using the formula for $R_{T}(\lambda)$ observe that it suffices to compute the curve integrals of functions $\frac{f(\lambda)}{\lambda}$ and $\frac{f(\lambda)}{\lambda\left(\lambda-x^{*}\left(x_{0}\right)\right)}$, when computing the integral of the second function observe that decomposition using partial fractions we have $\left.\frac{f(\lambda)}{\lambda\left(\lambda-x^{*}\left(x_{0}\right)\right)}=\frac{1}{x^{*}\left(x_{0}\right)}\left(\frac{f(\lambda)}{\lambda-x^{*}\left(x_{0}\right)}-\frac{f(\lambda)}{\lambda}\right)\right)$

1. Let K be a compact Hausdorff space and for closed $F \subset K$ denote $I(F):=\left\{f \in C(K):\left.f\right|_{F} \equiv 0\right\}$. Prove that all the closed ideals of $C(K)$ are $\{I(F): F \subset K$ closed $\}$.
(Hint: each $I(F)$ is a closed ideal; if $I \subset C(K)$ is an ideal, put $F:=\bigcap_{f \in I} f^{-1}(0)$ and prove that $I(F)=\bar{I}$.)
2. a) Let $(G,+)$ be a commutative group and $A=\ell_{1}(G)$. Prove that $\varphi \in \ell_{\infty}(G)=A^{*}$ belongs to $\Delta(A)$ if and only if $\varphi: G \rightarrow \mathbb{T}:=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ is a group homomorphism.
(Hint: Note that $e_{g+h}=e_{g} * e_{h}$.)
b) For $A=\ell_{1}(\mathbb{Z})$ use a) to describe $\Delta(A)$ and explain how to understand the equality $\Delta(A)=\mathbb{T}$.
c) Consider the commutative group $G=\left(\mathbb{Z}_{n},+\right)$, where $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ and addition is modulo n. For $A=\ell_{1}\left(\mathbb{Z}_{n}\right)$ use a) to describe $\Delta(A)$ and prove that it consists of exactly n elements.

EXERCISES 6 (21.3.2023)

1. Consider the commutative Banach algebra $A=\ell_{1}(\mathbb{Z})$.
a) Using the identification $\Delta(A)=\mathbb{T}$ from one Exercise 5.2b) above, describe the Gelfand transform of A and (using it) express the spectrum of a general element of A.
b) Is the Gelfand transform one-to-one? If yes, what is its inverse? (Hint: use knowledge of Fourier series)
c) Consider the mapping $*: A \rightarrow A$ given by $x^{*}(n):=\overline{x(-n)}, n \in \mathbb{Z}$ for every $x \in A$. Prove that $*$ is an involution on A and that for $x=e_{0}-e_{1}-e_{2}$ we have $\left\|x^{*} x\right\|=5$ and $\|x\|^{2}=9$ (therefore, $(A, *)$ is not a C^{*}-algebra).
2. Consider the commutative Banach algebra $A=L_{1}(\mathbb{R})$ and representation of its dual $A^{*}=L_{\infty}(\mathbb{R})$.
a) For $x \in \mathbb{R}$, consider the function $\phi_{x} \in L_{\infty}$ defined as $\phi_{x}(t):=e^{i t x}, t \in \mathbb{R}$. Prove that $\left\{\phi_{x}: x \in \mathbb{R}\right\} \subset \Delta(A)$.
b) Let us mention the (nontrivial) known fact that

$$
\Delta(A) \subset\{f \in C(\mathbb{R}):|f(t)|=1 \text { and } f(t+s)=f(t) f(s) \text { for every } t, s \in \mathbb{R}\}
$$

(proof is e.g. on page 288 here: https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf).
Using the above mentioned fact, prove that $\left\{\phi_{x}: x \in \mathbb{R}\right\}=\Delta(A)$.
(Hint: pick $f \in C(\mathbb{R})$ satisfying $f(t+s)=f(t) f(s)$ for $t, s \in \mathbb{R}$, prove equality $f(t) \int_{0}^{t_{0}} f(s) \mathrm{d} s=\int_{t}^{t+t_{0}} f(s) \mathrm{d}$ for ever $y t$ and deduce that f is differentiable, then observe that f satisfies differential equation $f^{\prime}(t)=f^{\prime}(0) f(t)$ for every $\left.t\right)$
c) Using the identification of $\Delta(A)$ with \mathbb{R} from part b), show that the Gelfand transform on $L_{1}(\mathbb{R})$ and the Fourier transform on $L_{1}(\mathbb{R})$ are up to a constant identical.
d) Consider the mapping $*: A \rightarrow A$ given by $f^{*}(x):=\overline{f(x)}, x \in \mathbb{R}$ for every $f \in A$. Prove that $*$ is an involution on A and that for $f=i\left(\chi_{(0,1)}-\chi_{(-1,0)}\right)$ we have $\left\|f * f^{*}\right\|=\frac{8}{3}$ and $\|f\|^{2}=4$ (therefore, $(A, *)$ is not a C^{*}-algebra).

EXERCISES 7 (28.3.2023)

1. Let H be a Hilbert space and $A \subset \mathcal{L}(H)$ be a closed $*$-subalgebra. Consider the set $M_{n}(A)$ consisting of $n \times n$ matrices with entries belonging to A.
a) Define natural algebraic operations on $M_{n}(A)$ and a norm on $M_{n}(A)$ in such a way that $M_{n}(A)$ is isometric to a *-subalgebra of $\mathcal{L}\left(H^{n}\right)=\mathcal{L}\left(H \oplus_{2} \ldots \oplus_{2} H\right)$. Prove that then $M_{n}(A)$ is a C^{*}-algebra.
b) For a Hausdorff compact space K consider the C^{*}-algebra $C(K, A):=\{f: K \rightarrow A: f$ is continuous $\}$ (on $C(K, A)$ we consider the supremum norm and the algebraic operations are defined pointwise). Prove that if $A=M_{n}(\mathbb{C})$, then the C^{*}-algebras $C(K, A)$ and $M_{n}(C(K))$ are isometrically $*$-isomorphic.
2. a) Let A be a C^{*}-algebra with a unit. Let $a, b \in A$ be normal elements which are unitarily equivalent (that is, there exists $u \in A$ with $u^{*}=u^{-1}$ and $u^{*} a u=b$). Prove that the C^{*}-algebras $\overline{\operatorname{alg}}\left\{e, a, a^{*}\right\}$ and $\overline{\operatorname{alg}}\left\{e, b, b^{*}\right\}$ are isometrically $*$-isomorphic.
(Hint: prove that $\sigma(a)=\sigma(b)$ and use continuous calculus)
b) Let A be a C^{*}-algebra with a unit, $a \in A$ be self-adjoint with $\sigma(a) \subset[0, \varepsilon] \cup[1-\varepsilon, 1]$ for some $\varepsilon \in\left(0, \frac{1}{4}\right)$. Prove that there exists a projection $p \in A$ (that is, some $p \in A$ satisfying $p=p^{*}=p^{2}$) such that $\|p-a\| \leq \varepsilon$.
(Hint: using the continuous calculus, define $p=g(a)$ for a suitable $g \in C(\sigma(a))$ with $\operatorname{Rng}(g) \subset\{0,1\})$
c) Let $i:(0,1) \rightarrow \mathbb{R}$ be the inclusion map. Then i is continuous. Show that $\varphi: C_{0}(\mathbb{R}) \rightarrow C_{0}((0,1))$ defined by $\varphi(f):=f \circ i$ is not a $*$-homomorphism. What goes wrong?

EXERCISES 8 (4.4.2023)

1. Consider the operator $T: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ given by the formula $T f(x):=\int_{0}^{x} f(t) \mathrm{d} t, x \in[0,1]$.
a) Prove that T is a compact operator. (Hint: consider operators $A: L_{2}([0,1]) \rightarrow C([0,1])$ and $B: C([0,1]) \rightarrow$ $L_{2}([0,1])$, where A is given by the same formula as T and B is the "identity"; prove that both A and B are continuous linear and using Arzela-Ascoli theorem show that A is compact; then use the identity $T=B \circ A$.)
b) Prove that if $T^{*} T f=\lambda f$ for some $\lambda>0$ and $f \in L_{2}([0,1])$, then $f \in C^{2}([0,1])$ and $\lambda f^{\prime \prime}+f=0$.
2. Consider the operator $T: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ given by the formula $T f(x):=\int_{0}^{x} f(t) \mathrm{d} t, x \in[0,1]$. In this exercise you may use both 1.a and 1.b from the exercise above. Using the proof of the Schmidt theorem, find positive numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ and orthogonal systems of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ and $\left(g_{n}\right)_{n \in \mathbb{N}}$ in $L_{2}([0,1])$ such that

$$
T f=\sum_{n=0}^{\infty} \lambda_{n}\left(\int_{0}^{1} f(t) f_{n}(t) \mathrm{d} t\right) g_{n}
$$

(Recall: in what sense is the sum above convergent?)

1. Let $H=\ell_{2}$. For $z \in \ell_{\infty}$ consider the operator $M_{z} \in \mathcal{L}\left(\ell_{2}\right)$ defined as $M_{z}(x)=\left(z_{n} x_{n}\right)_{n=1}^{\infty}$ (recall that $\left\|M_{z}\right\|=$ $\|z\|_{\infty}$ and $\sigma\left(M_{z}\right)=\overline{\left\{z_{n}: n \in \mathbb{N}\right\}}$, see e.g. Příklad 8 here: https://www2.karlin.mff.cuni.cz/~spurny/doc/fa2/ fa-priklady.pdf). Fix some $z \in \ell_{\infty}$.
a) Prove that M_{z} is normal operator.

Further, by $\phi: \operatorname{Bor}_{b}\left(\sigma\left(M_{z}\right)\right) \rightarrow \mathcal{L}(H)$ denote the borel calculus from Theorem 89 and by $\mu_{x, y}$ the measures from Definition 86. Prove that the following holds.
b) For $f \in C\left(\sigma\left(M_{z}\right)\right)$ we have $\phi(f)=M_{f \circ z}$, where $f \circ z=\left(f\left(z_{n}\right)\right)_{n=1}^{\infty}$.
c) For every $n, m \in \mathbb{N}$ we have $\mu_{e_{n}, e_{n}}=\delta_{z_{n}}$ and $\mu_{e_{n}, e_{m}}=0$ if $n \neq m$.
d) For $x, y \in H$ we have $\mu_{x, y}=\sum_{n=1}^{\infty} x_{n} \overline{y_{n}} \delta_{z_{n}}$.
(Hint: for finitely supported vectors use the already proven part and Remark 87; for the general case consider $a_{N}=$ $\sum_{i=1}^{N} x_{i} e_{i}, b_{N}=\sum_{i=1}^{N} y_{i} e_{i}$, note that for any $T \in \mathcal{L}(H)$ we have $\left\langle T a_{N}, b_{N}\right\rangle \rightarrow\langle T x, y\rangle$ and apply it for $\left.T=\phi(f)\right)$
e) For $g \in \operatorname{Bor}_{b}\left(\sigma\left(M_{z}\right)\right)$ we have $\phi(g)=M_{g \circ z}$.
f) Every $A \subset \sigma\left(M_{z}\right)$ is $\mu_{x, y}$-measurable and if A is moreover Borel, then $\phi\left(\chi_{A}\right) x=\sum_{n, z_{n} \in A} x_{n} e_{n}$ for every $x \in H$. (Hint: use the well-known fact that given $\mu \in M\left(\sigma\left(M_{z}\right)\right)$ with $\mu \geq 0$, a set $A \subset \sigma\left(M_{z}\right)$ is μ-measurable if and only if there are Borel sets $B \subset A \subset C$ such that $\mu(C \backslash B)=0$.)
2. Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space with the property that given $A \subset \Omega$ with $\mu(A)>0$, there exists $B \subset A$ with $\mu(B) \in(0, \infty)$. Let $H=L_{2}(\mu)$ and $g \in L_{\infty}(\mu)$ and consider the operator $M_{g} \in \mathcal{L}(H)$ given as $M_{g}(f)=g \cdot f$.
a) Prove that $\left\|M_{g}\right\|=\|g\|_{\infty}$ and that M_{g} is normal operator.
b) Prove that

$$
\sigma\left(M_{g}\right)=\operatorname{essRng} g:=\left\{\lambda \in \mathbb{K}: \mu\left(g^{-1}(U(\lambda, \varepsilon))\right)>0 \text { for every } \varepsilon>0\right\} .
$$

c) If $\phi: \operatorname{Bor}_{b}\left(\sigma\left(M_{g}\right)\right) \rightarrow \mathcal{L}(H)$ is the borel calculus from Theorem 89 , then for any $f \in \operatorname{Bor}_{b}\left(\sigma\left(M_{g}\right)\right)$ we have $\phi(f)=M_{f \circ g}$.
d) Given a borel set $A \subset\left(\sigma\left(M_{g}\right)\right)$, we have $\phi\left(\chi_{A}\right)=M_{\chi_{g^{-1}(A)}}$.
(Hint: for a sketch of the solution see page 229 here:
https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf)

1. Let H be a Hilbert space and $T \in \mathcal{L}(H) \backslash\{0\}$ compact normal operator. Let $\left\{\lambda_{n}\right\}_{n=1}^{M}, M \in \mathbb{N} \cup\{\infty\}$ be one-to-one sequence of all the eigenvalues of the operator T and P_{n} orthogonal projection onto $\operatorname{Ker}\left(\lambda_{n} I-T\right)$. Using Corollary 97 prove that

- $T=\sum_{n=1}^{M} \lambda_{n} P_{n}$, where the series converges in the SOT topology on the space $\mathcal{L}(H)$;
- the mapping $\sigma(T) \supset A \mapsto E(A):=\sum_{\left\{n: \lambda_{n} \in A\right\}} P_{n}$ is spectral measure satisfying that $T=\int \mathrm{id} \mathrm{d} E$;
- if $f: \sigma(T) \rightarrow \mathbb{C}$ is a bounded function and E is as above, then $\int f \mathrm{~d} E=\sum_{n=1}^{M} f\left(\lambda_{n}\right) P_{n}$, where the series converges in the SOT topology on the space $\mathcal{L}(H)$.

2. a) Let H, K be Hilbert spaces, $T \in \mathcal{L}(H) \backslash\{0\}$ normal operator and $U: H \rightarrow K$ unitary operator (that is, surjective isometry). Let E be the spectral measure satisfying $T=\int \mathrm{id} \mathrm{d} E$. Consider now the operator $T_{U}:=U^{*} T U \in$ $\mathcal{L}(K)$. Prove that T_{U} is normal operator and if E_{U} is defined as $E_{U}(A):=U^{*} E(A) U$, then E_{U} is the spectral measure satisfying $T_{U}=\int$ id $\mathrm{d} E_{U}$.
b) Consider now the Hilbert space $H=\ell_{2}(\mathbb{Z})$ and the unique operator $T \in \mathcal{L}(H)$ satisfying $T\left(e_{k}\right)=e_{k-1}, k \in \mathbb{Z}$. Further, consider the Hilbert space $K=L_{2}(\mathbb{T}, \mu)$, where μ is the normalized Lebesgue measure on the circle (that is, $\left.\int_{\mathbb{T}} f(t) \mathrm{d} \mu=\frac{1}{2 \pi} \int f\left(e^{i x}\right) \mathrm{d} x\right)$ and the unique operator $U: \ell_{2} \rightarrow L_{2}(\mathbb{T}, \mu)$ given by $U e_{k}=t^{k}$. Prove that then T is normal, U is unitary and that for the function $g \in L_{\infty}(\mu)$ satisfying $g(t)=t^{-1}, t \in \mathbb{T}$ we have $T=U^{*} M_{g} U$, where M_{g} is the operator from Exercises 9.2. As a corollary, find spectral decomposition of the operator T (that is, a formula for the spectral measure E such that $\left.T=\int \mathrm{id} \mathrm{d} E\right)$.
(Hint: for a sketch of the solution see page 113 here:
https://www2.karlin.mff.cuni.cz/~spurny/doc/fa2/fa-priklady.pdf)
3. a) Let $X=\ell_{p}, p \in[1, \infty)$ and $z=\left(z_{n}\right)$ be a sequence of (real or complex) numbers. Let

$$
D\left(M_{z}\right):=\left\{x \in X:\left(x_{n} z_{n}\right) \in X\right\} .
$$

Prove that $D\left(M_{z}\right) \subset X$ is dense subspace. Consider now the operator $M_{z}: D\left(M_{z}\right) \rightarrow X$ defined as $M_{z}(x):=\left(x_{n} z_{n}\right)$, $x \in D\left(M_{z}\right)$. Prove that M_{z} is densely defined, closed and that it is bounded (hence everywhere defined) if and only if the sequence z is bounded.
b) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space with μ semifinite (that is, if $A \in \mathcal{A}$ is such that $\mu(A)>0$, then there exists $B \subset A$ with $\mu(B) \in(0, \infty))$. Let $X=L_{p}(\mu), p \in[1, \infty)$ and $g: \Omega \rightarrow \mathbb{K}$ be a measurable function. Consider

$$
D\left(M_{g}\right):=\{f \in X: g f \in X\} .
$$

Prove that $D\left(M_{g}\right)$ is dense subspace of X. Consider now the operator $M_{g}: D\left(M_{g}\right) \rightarrow X$ defined as $M_{g}(f)=g f$, $f \in D\left(M_{g}\right)$. Prove that M_{g} is densely defined, closed and that it is bounded (hence everywhere defined) if and only if the function g is essentially bounded.
2. a) Let $X=\ell_{p}, p \in(1, \infty)$ and

$$
Y:=\left\{x \in X:\left(n x_{n}\right) \in X \& \sum_{n=1}^{\infty} x_{n}=0\right\} .
$$

Prove that Y is a dense subspace. Consider now the operator $T: Y \rightarrow X$ defined as $T x:=\left(n x_{n}\right), x \in Y$. Prove that T is densely defined and closed.
(Hint: using Hölder inequality prove that if $\left(n x_{n}\right) \in X$ implies $x \in \ell_{1}$, this will prove that Y is well-defined and a linear subspace; in order to prove that Y is dense prove that $c_{00} \subset \bar{Y}$ and in order to prove that T is closed use definitions and Hölder inequality)
b) Let $X=L_{p}((1, \infty)), p \in(1, \infty)$ and

$$
Y:=\left\{f \in X:(t \mapsto t f(t)) \in X \& \int_{1}^{\infty} f=0\right\} .
$$

Prove that Y is a dense subspace. Consider now the operator $T: Y \rightarrow X$ defined as $T f(t):=t f(t), f \in Y, t \in(1, \infty)$. Prove that T is densely defined and closed.
(Hint: using Hölder inequality prove that if $(t \mapsto t f(t)) \in X$ implies $x \in L_{1}$, this will prove that Y is well-defined and a linear subspace; in order to prove that Y is dense prove that $\chi_{A} \in \bar{Y}$ for $A \subset(1, \infty)$ bounded and in order to prove that T is closed use definitions and Hölder inequality)
3. Let $X=L_{p}((0,1)), p \in[1, \infty)$ and

$$
Y:=\left\{f \in A C([0,1]): f^{\prime} \in X\right\} \subset X .
$$

Define the operators $T_{j}, j=1, \ldots, 6$ by the same formula $T_{j}(f):=f^{\prime}$ with domains

$$
\begin{aligned}
D\left(T_{1}\right):=Y, & D\left(T_{2}\right):=\{f \in Y: f(0)=0\}, \\
D\left(T_{3}\right):=\{f \in Y: f(1)=0\}, & D\left(T_{4}\right):=\{f \in Y: f(0)=f(1)=0\}, \\
D\left(T_{5}\right):=\{f \in Y: f(0)=f(1)\}, & D\left(T_{6}\right):=\{f \in Y: f(0)=-f(1)\} .
\end{aligned}
$$

Show that all those operators are densely defined and closed.
(To prove density use that test functions are dense in L_{p}; to prove they are closed pick $\left(f_{n}, f_{n}^{\prime}\right) \rightarrow(f, g)$ and show e.g. that $h_{n}(x):=f_{n}(x)-f_{n}(0)=\int_{0}^{x} f_{n}^{\prime}$ is a cauchy sequence in $C([0,1])$, further show that $f_{n}(0)$ has a convergent subsequence and deduce that $f(x)=\int_{0}^{x} g+$ const.)

In the following exercises, given an operator T on a Banach space X, we put $\sigma_{p}(T):=\{\lambda \in \mathbb{K}: \lambda I-T$ is not one-to-one $\}$. 1. Let M_{z} and M_{g} be the operators from Exercises 11.1. Find $\sigma_{p}\left(M_{z}\right), \sigma_{p}\left(M_{g}\right)$ and show that

$$
\sigma\left(M_{z}\right)=\overline{\left\{z_{n}: n \in \mathbb{N}\right\}}
$$

and

$$
\sigma\left(M_{g}\right)=\operatorname{essRng} g:=\left\{\lambda \in \mathbb{K}: \mu\left(g^{-1}(U(\lambda, \varepsilon))\right)>0 \text { for every } \varepsilon>0\right\} .
$$

2. Find $\sigma_{p}(T)$ and $\sigma(T)$ for the operators T from Exercises 11.2.
3. Find $\sigma_{p}(T)$ and $\sigma(T)$ for the operators $T \in\left\{T_{i}: i=1, \ldots, 6\right\}$ from Exercises 11.3.
(Hint: note that given $g \in X$, the function $f(t):=-e^{\lambda t} \int_{0}^{t} g(s) e^{-\lambda s} \mathrm{~d}$ s solves the equation $\lambda f-f^{\prime}=g$)

EXERCISES 13 (9.5.2023)

1. Consider the operators $T_{i}, i \in\{1, \ldots, 6\}$ from Exercises 11.2 in the space $L_{2}((0,1))$. Prove that
a) we have $T_{1}^{\star}=-T_{4}, T_{2}^{\star}=-T_{3}, T_{3}^{\star}=-T_{2}, T_{4}^{\star}=-T_{1}, T_{5}^{\star}=-T_{5}, T_{6}^{\star}=-T_{6}$.
(Hint: To prove the inclusions ' \supset ' use integration by parts. To prove ' C ' proceed as follows: Let $g \in D\left(T_{i}^{*}\right)$. Then there is $h \in L_{2}((0,1))$ such that $\left\langle T_{i} f, g\right\rangle=\langle f, h\rangle$ for any $f \in D\left(T_{i}\right)$. Set $H(t):=\int_{0}^{t} h(s) \mathrm{d} s, t \in[0,1]$. Apply integration by parts. Note that $\mathcal{D}((0,1)) \subset D\left(T_{i}\right)$ and deduce that the distributive derivative of $g+H$ on $(0,1)$ is zero, thus $g+H$ is almost everywhere equal to a constant. So, $g \in A C([0,1])$ and $H=g(0)-g$. Plug this to the computation and conclude.)
b) $i T_{5}$ and $i T_{6}$ are self-adjoint and $i T_{4}$ is symmetric.
2. a) Consider the operator T from Exercises 11.2 a in the space ℓ_{2}. Prove that

$$
D\left(T^{\star}\right)=\left\{x \in \ell_{2}: \lim n x_{n} \text { exists and is finite, and }\left(k x_{k}-\lim n x_{n}\right)_{k=1}^{\infty} \in \ell_{2}\right\}
$$

and $T^{\star} x=\left(k x_{k}-\lim n x_{n}\right)_{k=1}^{\infty}, x \in D\left(T^{\star}\right)$.
(Hint: " \supset " is easy using definitions; for " \subset " proceed as follows: Let $y \in D\left(T^{\star}\right)$, then there exists $z \in \ell_{2}$ such that $\langle T x, y\rangle=\langle x, z\rangle$ for $x \in D(T)$, apply it for $x=e_{1}-e_{n}, n \geq 2$ and deduce that $n y_{n}=y_{1}-z_{1}+z_{n}$. Using that $z_{n} \rightarrow 0$ compute $\lim n y_{n}$ and conclude.)
b) Consider the operator T from Exercises 11.2 b in the space $X=L_{2}((1, \infty))$. Set

$$
D(\psi)=\{f \in X: \exists C \in \mathbb{C} \text { such that the function } t \mapsto C+t f(t) \text { is in } X\} .
$$

Show that $D(\psi)$ is a dense linear subspace of X, that for $f \in D(\psi)$ the constant C from the definition is uniquely determined and the mapping $\psi: D(\psi) \rightarrow \mathbb{C}$ mapping f to the respective C (that is, such that $(t \mapsto \psi(f)+t f(t)) \in X)$ is a linear functional defined on $D(\psi)$.

Show that $D\left(T^{\star}\right)=D(\psi)$ and $T^{\star} f(t)=\psi(f)+t f(t), t \in(1, \infty)$ for $f \in D(T)$.
(Hint: " \supset " is easy using definitions; for " \subset " proceed as follows: Let $g \in D\left(T^{*}\right)$, then there exists $h \in X$ such that $\langle T f, g\rangle=\langle f, h\rangle$ for $f \in D(T)$, apply it for $f=(r-1) \chi_{(1,2)}-\chi_{(r, 1)}$. Differentiate the resulting equality with respect to r and deduce that $h(r)=\int_{1}^{2}(h(t)-t g(t)) \mathrm{d} t+r g(r)$ almost everywhere. Then complete the argument.)

1. Let $(\Omega, \mathcal{A}, \mu)$ be as in Exercises 11.1 b and for $g: \Omega \rightarrow \mathbb{C}$ measurable let M_{g} be the operator as in Exercises 11.1b.
a) Prove that for every $g: \Omega \rightarrow \mathbb{C}$ measurable we have $\left(M_{g}\right)^{\star}=M_{\bar{g}}$.
b) For a measurable $g: \Omega \rightarrow \mathbb{R}$ find $h: \Omega \rightarrow \mathbb{C}$ measurable such that M_{h} is the Cayley transformation of M_{g}.
(Hint: you may use without proof the fact used in the solution of Exercises 12.1 that if $\lambda \notin \operatorname{essRng} g$ then $\left(\lambda I-M_{g}\right)^{-1}=$ $M_{\frac{1}{\lambda-g}}$.)
c) Find a characterization of measurable functions $g: \Omega \rightarrow \mathbb{C}$ such that $M_{g} \in \mathcal{L}(\mu)$ is a unitary operator and $I-M_{g}$ is one-to-one. Further, for those functions g find $h: \Omega \rightarrow \mathbb{C}$ measurable such that Cayley transformation of M_{h} is M_{g}. (Hint: you may use without proof the fact used in the solution of Exercises 12.1 that $\lambda I-M_{g}$ is one-to-one if and only if $\mu\left(g^{-1}(\lambda)\right)=0$.)
2. a) Compute the Cayley transform of the self-adjoint operators $i T_{5}$ and $i T_{6}$ from Exercises 13.1b.

Hint: you may without proof use the fact used in the solution of Exercises 12.3 that $\sigma\left(T_{5}\right)=\sigma_{p}\left(T_{5}\right)=\{2 \pi i n: n \in \mathbb{Z}\}$, $\sigma\left(T_{6}\right)=\sigma_{p}\left(T_{6}\right)=\left\{-i \frac{\pi}{2}+2 \pi i n: n \in \mathbb{Z}\right\}$, for $\lambda \notin \sigma\left(T_{5}\right)$ we have

$$
\left(\lambda I-T_{5}\right)^{-1} g(t)=-e^{-\lambda t}\left(\int_{0}^{t} g(s) e^{-\lambda s} \mathrm{~d} s+\frac{e^{\lambda}}{1-e^{\lambda}} \int_{0}^{1} g(s) e^{-\lambda s} \mathrm{~d} s\right)
$$

and for $\lambda \notin \sigma\left(T_{6}\right)$ we have

$$
\left(\lambda I-T_{6}\right)^{-1} g(t)=-e^{-\lambda t}\left(\int_{0}^{t} g(s) e^{-\lambda s} \mathrm{~d} s-\frac{e^{\lambda}}{1+e^{\lambda}} \int_{0}^{1} g(s) e^{-\lambda s} \mathrm{~d} s\right)
$$

b) Compute the Cayley transform of the symmetric operator $i T_{4}$ from Exercises 13.1b.

Hint: you may without proof use the fact used in the solution of Exercises 12.3 that $\sigma\left(T_{4}\right)=\emptyset$ and for $\lambda I-T_{4}$ and $g \in L_{2}((0,1))$ the equation $(\lambda I-T) f=g, f \in D\left(T_{4}\right)$ has a solution if and only if $g \in\left\{e^{t}\right\}^{\perp}$ and in this case the solution is

$$
f(t):=-e^{\lambda t} \int_{0}^{t} g(s) e^{-\lambda s} \mathrm{~d} s
$$

FURTHER EXERCISE

Not covered during semester, may be used during oral Exam.

1. Let $(\Omega, \mathcal{A}, \mu), g: \Omega \rightarrow \mathbb{C}$ and M_{g} be as in Exercises 11.1b. For a Borel set $A \subset \mathbb{C}$ and $f \in L_{2}(\mu)$ put $E(A) f:=M_{\chi_{g^{-1}(A)}} f$. Prove that E is spectral measure for $\left(\mathbb{C}, \operatorname{Bor}(\mathbb{C}), L_{2}(\mu)\right)$ satisfying $M_{g}=\int \operatorname{id} \mathrm{d} E$.
(Hint: see Přiklad 69 here https: //www2. karlin.mff. cuni.cz/~spurny/doc/ufa/funkcionalka.pdf)
