EXERCISES 1 (14.2.2023)

1. Given a Hausdorff topological space T', prove that

a)
Cy(T) :={f € C(T): f is bounded}

is a closed subalgebra of £ (T"), so it is a commutative Banach algebra with a unit.
b) If T' is locally compact and not compact, then consider

Co(T) :={f € C(T): for any £ > 0 the set {t € T': |f(t)| > €} is compact}.

First, consider the one point compactification K := T U {oco} of T
(recall that topology T on T'U {oo} consist of open subsets of T" and sets of the from G = {oco} U (L \ Ko), where Ko C L is a compact set; it is a known
fact from the course on general topology that then (7T'U {co}, 7) is a compact Hausdorff space and T is dense subset of T'U {oo})
Prove that the mapping
C(K)D{feC(K): f(co)=0}3 fr flr € Co(T)

is a surjective linear isometry. Deduce that Cy(7") is a Banach space and that Cy(T") is a closed subalgebra of Cy(T),
so it is a commutative Banach algebra. Finally, prove that Co(7T) does not have a unit. (Hint: prove that if the unit
exists, then is has to be constant one function)

2. Let X be a Banach space with dim X > 1.

a) L(X) is a Banach algebra (where multiplication is given by composition of operators) with a unit. Prove that £(X)
is not commutative. (Hint: if y, z € X are linearly independent, then the operators which do no commute may be taken
of the from x — x*(x)y and x — z*(x)z for some z* € X*)

b) The space of compact operators C(X) C £(X) is a closed subalgebra. Prove that (X)) is a Banach algebra, which
is not commutative and that it does not have a unit if dim X = 4o00. (Hint: prove that if the unit exists, then is has
to be the identity operator)

3. a) Prove that L;(R?) with multiplication given by convolution (that is, f * g(x) := [ f(y)g(z — y) dy) is a com-

XB(0,1)
ool € S

put gn(z) := ng(nx) and try to use the fact that if e € L1(R?) was a unit, we would have g, = e * g, — €)
b) Let G be a commutative group. Prove that ¢;(G) with multiplication * given by

mutative Banach algebra without a unit. (Hint: in order to see that it does not have a unit, pick g =

(@*y)(g) ==Y x(hylg—h), =zy€hH(G)
heG

is a commutative Banach algebra with a unit.



EXERCISES 2 (21.2.2023)

1. Let us consider operators S,T € L({3) given by
T(z1,22,...) = (0,21, 29,...), S(x1,22,...) = (2, 23,...), T € Lo.

a) Prove that T does not have right inverse, but it has left inverse (and describe all the left inverses of T').
b) Prove that S does not have left inverse, but it has right inverse (and describe all the right inverses of 5).

2. Consider the commutative group G = (Zy, +), where Z, = {0,1,...,n — 1} and addition is modulo n.
a) Find explicit formula for an isomorphism from the Banach algebra ¢;(G) into the Banach algebra M,,.
(Hint: use Theorem 8 from the lecture).

b) For n = 2 and n = 3 give an explicit characterization of invertible elements in ¢;(G).

(Hint: use the representation by matrices from the previous item)

EXERCISES 3 (28.2.2023)

1. a) Prove that given a Hausdorff compact space K and f € C(K), we have o(f) = Rng f.

b) Prove that given a Hausdorff locally compact space T" which is not compact and f € Cy(T), we have o(f) =
Rng f U {0}.

¢) Find two examples of Hausdorff locally compact spaces 17, T» which are not compact such that: for every f € Cy(T1)
we have o(f) = Rng f; there exists f € Cy(T2) such that o(f) # Rng f. (Hint: Ty may be any non o-compact space;
T5 may be e.g. the real line)

2. Let us consider the commutative Banach algebra A = (¢1(Z), %) and pick any n € Z\ {0}. Prove that o(e,) = {\ €
K: |[A| =1} and that
Re, () = { 0 W i
Yooy A T e, A <L



EXERCISES 4 (7.3.2023)

In this series of exercises, given a Banach algebra A, x € A and a function f holomorphic on a neighborhood of o(x),
we denote f(x) := ¢(x)f (that is, the value of f under the holomorphic calculus corresponding to the element z).

1. Consider the Banach algebra A = M,,, n > 2. Pick some z € C and consider the matrix

z 1.0 --- 0 0
0 z1 -~ 00
J— L o
000 - z 1
000 - 0 z
a) Prove that o(J) = {z}.
b) Prove that for A € p(J) we have
1 1 1
A—z  (A=2)? (A—z)"
0 1 D S
()\[ _ J)_l _ A—z (A—z)n—1
0 0 =
c) Let f be a holomorphic function on a neighborhood of z. Prove that
(5 (n—1)
O ORI S =
(n—2)
-| 0 0 e i
0 0 0 f(2)

d) From the above deduce that the value of f(J) is not given just by f|, ().

2. (not suitable for a credit, but interesting) a)Let f be a holomorphic function on C and let f(\) =
Y2 o anA™, A € C be its Taylor expansion. Prove that for every Banach algebra A and every z € A we have
[(o) = 352 g ana™

b) Consider the Banach algebra A = C(K) and g € A. Prove that whenever F' is a holomorphic function on a neigh-
borhood of o(g) = Rng g, then F(g) = F og.

3. Consider the Banach algebra A = £(X) (X is infinite-dimensional Banach space) and for zp € X \ {0} and
x* € X* with x*(zo) # 0 consider T' € A given by the formula Tz := 2*(z)zo, z € X.

a) Prove that o(T") = {0, 2*(x0)} and for A\ ¢ {0,z2*(zo)} find a formula for Rr(\).

(Hint: the solution is Rp(\) = 31 + WT)

b) Given a function f holomorphic on a neighborhood of ¢(T") compute the value of f(T').

(Solution: f(T)=1-f(0)+T- w; Hint: first using the formula for Rp(\) observe that it suffices to compute

*(z0)

the curve integrals of functions @ and %, when computing the integral of the second function observe that
decomposition using partial fractions we have /\()\_fg(ci\)(m)) - x*(lxo) (A—J;(*)\()wo) - @))



EXERCISES 5 (14.3.2023)

1. Let K be a compact Hausdorff space and for closed F' C K denote I(F) := {f € C(K): f|r = 0}. Prove that all
the closed ideals of C(K) are {I(F): F C K closed}.
(Hint: each I(F) is a closed ideal; if I C C(K) is an ideal, put F:= (¢, f71(0) and prove that I(F) =1.)

2. a)Let (G,+) be a commutative group and A = ¢1(G). Prove that ¢ € lo(G) = A* belongs to A(A) if and
only if ¢ : G — T :={X € C: |A\| = 1} is a group homomorphism.

(Hint: Note that eqip, = eg * €p,.)

b) For A = ¢1(Z) use a) to describe A(A) and explain how to understand the equality A(A) =T.

c¢) Consider the commutative group G = (Zy,, +), where Z,, = {0,1,...,n—1} and addition is modulo n. For A = ¢,(Z,,)
use a) to describe A(A) and prove that it consists of exactly n elements.

EXERCISES 6 (21.3.2023)

1. Consider the commutative Banach algebra A = ¢1(Z).

a) Using the identification A(A) = T from one Exercise 5.2b) above, describe the Gelfand transform of A and (using
it) express the spectrum of a general element of A.

b) Is the Gelfand transform one-to-one? If yes, what is its inverse? (Hint: use knowledge of Fourier series)

c¢) Consider the mapping * : A — A given by z*(n) := z(—n), n € Z for every x € A. Prove that * is an involution on
A and that for z = eg — e; — ez we have ||2*z| = 5 and ||z||? = 9 (therefore, (4, ) is not a C*-algebra).

2. Consider the commutative Banach algebra A = L;(R) and representation of its dual A* = L (R).
a) For = € R, consider the function ¢, € Lo, defined as ¢,(t) := €®*, t € R. Prove that {¢,: z € R} C A(A).
b) Let us mention the (nontrivial) known fact that

A(A) C{f € CMR): |f(t)|=1and f(t+s) = f(t)f(s) for every t,s € R}

(proof is e.g. on page 288 here: https://www2.karlin.mff.cuni.cz/ spurny/doc/ufa/funkcionalka.pdf).

Using the above mentioned fact, prove that {¢,: z € R} = A(A).

(Hint: pick f € C(R) satisfying f(t+s) = f(t)f(s) fort,s € R, prove equality f(t) (;fo f(s)ds = fttHO f(s)ds for ever
y t and deduce that f is differentiable, then observe that f satisfies differential equation f'(t) = f'(0)f(t) for every t)
c) Using the identification of A(A) with R from part b), show that the Gelfand transform on L;(R) and the Fourier
transform on L (R) are up to a constant identical.

d) Consider the mapping * : A — A given by f*(z) := f(z), z € R for every f € A. Prove that * is an involution on
A and that for f = i(x(0,1) — X(=1,0)) we have ||f * f*| = 8 and [|f||? = 4 (therefore, (4, *) is not a C*-algebra).



EXERCISES 7 (28.3.2023)

1. Let H be a Hilbert space and A C L(H) be a closed *-subalgebra. Consider the set M, (A) consisting of n X n
matrices with entries belonging to A.

a) Define natural algebraic operations on M, (A4) and a norm on M, (A) in such a way that M, (A) is isometric to a
x-subalgebra of L(H") = L(H @2 ... ®2 H). Prove that then M, (A) is a C*-algebra.

b) For a Hausdorff compact space K consider the C*-algebra C(K, A) := {f : K — A: f is continuous} (on C(K, A)
we consider the supremum norm and the algebraic operations are defined pointwise). Prove that if A = M,,(C), then
the C*-algebras C(K, A) and M, (C(K)) are isometrically *-isomorphic.

2. a) Let A be a C*-algebra with a unit. Let a,b € A be normal elements which are unitarily equivalent (that
is, there exists u € A with u* = u™! and u*au = b). Prove that the C*-algebras alg{e,a,a*} and alg{e,b,b*} are
isometrically *-isomorphic.

(Hint: prove that o(a) = o(b) and use continuous calculus)

b) Let A be a C*-algebra with a unit, a € A be self-adjoint with o(a) C [0,e] U [1 —¢,1] for some € € (0,1). Prove
that there exists a projection p € A (that is, some p € A satisfying p = p* = p?) such that ||p — al| < e.

(Hint: using the continuous calculus, define p = g(a) for a suitable g € C(o(a)) with Rng(g) C {0,1})

c) Let ¢ : (0,1) — R be the inclusion map. Then 7 is continuous. Show that ¢ : Co(R) — Cp((0,1)) defined by
©(f) := f ot is not a *-homomorphism. What goes wrong?

EXERCISES 8 (4.4.2023)
1. Consider the operator T : Ly([0, 1]) — La([0, 1]) given by the formula T f(x) := [; f(¢)dt, = € [0, 1].
a) Prove that T is a compact operator. (Hint: consider operators A : Ls([0,1]) — C([0,1]) and B : C([0,1]) —
Ls([0,1]), where A is given by the same formula as T and B is the “identity”; prove that both A and B are continuous
linear and using Arzela-Ascoli theorem show that A is compact; then use the identity T = B o A.)

b) Prove that if T*T'f = Af for some A > 0 and f € Ly([0,1]), then f € C%([0,1]) and A\f” + f = 0.
2. Consider the operator T' : Ly([0,1]) — L2([0,1]) given by the formula Tf(z) := [; f(t)dt, = € [0,1]. In this

exercise you may use both 1.a and 1.b from the exercise above. Using the proof of the Schmidt theorem, find positive
numbers (A, )nen and orthogonal systems of functions (f,)nen and (gn)nen in Lo([0,1]) such that

00 1
Tf:nz:%)‘n(/o f(t)fn(t)dt)gn-

(Recall: in what sense is the sum above convergent?)



EXERCISES 9 (11.4.2023)

1. Let H = {l3. For z € { consider the operator M, € L({3) defined as M.(z) = (z,x,)5>; (recall that ||M.| =
|z|lcc and o(M,) = {z,: n € N}, see e.g. Priklad 8 here: https://www2.karlin.mff.cuni.cz/“spurny/doc/fa2/
fa-priklady.pdf). Fix some z € (.
a) Prove that M, is normal operator.

Further, by ¢ : Bory(0(M.)) — L(H) denote the borel calculus from Theorem 89 and by i, the measures from
Definition 86. Prove that the following holds.
b) For f € C(o(M,)) we have ¢(f) = Mjyo., where foz = (f(zn))52;.
c) For every n,m € N we have fe,, ¢, = 0z, and fie,, ,, = 0 if n # m.
d) For z,y € H we have iz y = > 07 | ZpnYn0s,.
(Hint: for finitely supported vectors use the already proven part and Remark 87; for the general case consider ay =
Zi]\il zie;, by = Zfil yie;, note that for any T € L(H) we have (Tan,by) — (Tx,y) and apply it for T = ¢(f))
e) For g € Bory(o(M;)) we have ¢(g) = Myo..
f) Every A C 0(M.) is iz y-measurable and if A is moreover Borel, then ¢(xa)z =3, . 4 Znen for every x € H.
(Hint: use the well-known fact that given u € M(o(M,)) with > 0, a set A C (M) is p-measurable if and only if
there are Borel sets B C A C C such that u(C \ B) =0.)

2. Let (92, A, 1) be a measurable space with the property that given A C  with u(A) > 0, there exists B C A
with u(B) € (0,00). Let H = La(p) and g € Loo(p) and consider the operator My € L(H) given as My(f) =g - f.
a) Prove that || M| = ||g||c and that M, is normal operator.
b) Prove that
o(My) = essRngg := {A € K: u(g~'(U(\,¢€))) > 0 for every € > 0}.

c) If ¢ : Bory(o(My)) — L(H) is the borel calculus from Theorem 89, then for any f € Bory(c(My)) we have
o(f) = Mog.
d) Given a borel set A C (o(My)), we have ¢p(xa) = My
(Hint: for a sketch of the solution see page 229 here:
https://www2.karlin.mff.cuni.cz/ spurny/doc/ufa/funkcionalka.pdf)

g1’



EXERCISES 10 (18.4.2023)

1. Let H be a Hilbert space and 7' € L£(H)\ {0} compact normal operator. Let {\,}. ;) M € NU{oo} be one-to-one
sequence of all the eigenvalues of the operator T' and P, orthogonal projection onto Ker(A,I —T'). Using Corollary 97
prove that

o T = 27];/[:1 An Py, where the series converges in the SOT topology on the space L(H);

e the mapping o(T) D A— E(A) := Z{n:)\neA} P, is spectral measure satisfying that 7' = [id dE;

o if f:0(T') — Cis a bounded function and E is as above, then [ fdE = Eanl f(A\n) Py, where the series
converges in the SOT topology on the space L(H ).

2. a)Let H, K be Hilbert spaces, T € L(H) \ {0} normal operator and U : H — K unitary operator (that is,
surjective isometry). Let E be the spectral measure satisfying T' = [ id dE. Consider now the operator Ty := U*TU €
L(K). Prove that Ty is normal operator and if Ey is defined as Ey(A) := U*E(A)U, then Ey is the spectral measure
satisfying Ty = [id dEy.

b) Consider now the Hilbert space H = {3(Z) and the unique operator T" € L(H) satisfying T'(ex) = ex_1, k € Z.
Further, consider the Hilbert space K = Lo(T, ), where p is the normalized Lebesgue measure on the circle (that
is, [p f(t)dp = % [ f(e*)dz) and the unique operator U : fo — Lo(T, i) given by Uey = t*. Prove that then 7T is
normal, U is unitary and that for the function g € Lo (p) satisfying g(t) = ¢~1, ¢t € T we have T = U*M,U, where M,
is the operator from Exercises 9.2. As a corollary, find spectral decomposition of the operator T' (that is, a formula for
the spectral measure E such that T = [id dE).

(Hint: for a sketch of the solution see page 113 here:

https://www2.karlin.mff.cuni.cz/ spurny/doc/fa2/fa-priklady.pdf)



EXERCISES 11 (25.4.2023)

1. a)Let X =4, pe€[l,00) and z = (2,) be a sequence of (real or complex) numbers. Let
D(M,) :={x € X: (znzn) € X}.

Prove that D(M,) C X is dense subspace. Consider now the operator M, : D(M,) — X defined as M,(x) := (zp2n),
x € D(M,). Prove that M, is densely defined, closed and that it is bounded (hence everywhere defined) if and only if
the sequence z is bounded.

b) Let (€2, A, 1) be a measure space with p semifinite (that is, if A € A is such that p(A) > 0, then there exists B C A
with pu(B) € (0,00)). Let X = Ly(n), p € [1,00) and g : @ — K be a measurable function. Consider

D(My) ={feX:gf € X}.

Prove that D(M,) is dense subspace of X. Consider now the operator My : D(My) — X defined as My(f) = gf,
f € D(M,). Prove that M, is densely defined, closed and that it is bounded (hence everywhere defined) if and only if
the function g is essentially bounded.

2. a)Let X =4, pe(1,00) and

o0
Yi={zeX: (nz,) € X&an = 0}.
n=1
Prove that Y is a dense subspace. Consider now the operator 7' : Y — X defined as Tx := (nz,), v € Y. Prove that
T is densely defined and closed.
(Hint: using Hélder inequality prove that if (nxy) € X implies x € ¢y, this will prove that Y is well-defined and a linear
subspace; in order to prove that'Y is dense prove that coo C Y and in order to prove that T is closed use definitions

and Hélder inequality)
b) Let X = L,((1,00)), p € (1,00) and

Y::{feX:(thf(t))eX&/loofzo}.

Prove that Y is a dense subspace. Consider now the operator T': Y — X defined as T'f(t) :=tf(t), f €Y, t € (1,00).
Prove that T is densely defined and closed.

(Hint: using Holder inequality prove that if (t — tf(t)) € X implies x € Ly, this will prove that Y is well-defined and
a linear subspace; in order to prove thatY is dense prove that x4 € Y for A C (1,00) bounded and in order to prove
that T' is closed use definitions and Holder inequality)

3. Let X = L,((0,1)), p € [1,00) and
Y :={f e AC([0,1]): f € X} C X.
Define the operators T}, j = 1,...,6 by the same formula T};(f) := f’ with domains
D(T):=Y, D(I):={feY: f(0)=0},
D(Ts):={feY: f(1) =0}, D(Ty):={f€Y: f(0)=f(1) =0},
D(Ts) :={f €Y: f(0) = f(1)}, D(Te) :={feY: f(0) =—f(1)}.

Show that all those operators are densely defined and closed.

(To prove density use that test functions are dense in Ly; to prove they are closed pick (fn, f},) — (f,g) and show
e.g. that hy(x) := fu(z) — fn(0) = [y fh is a cauchy sequence in C([0,1]), further show that f,(0) has a convergent
subsequence and deduce that f(x) = [ g+ const.)



EXERCISES 12 (2.5.2023)

In the following exercises, given an operator 7" on a Banach space X, we put 0,,(T") := {\ € K: AI-T is not one-to-one}.
1. Let M, and M, be the operators from Exercises 11.1. Find o,(M;), 0,(My) and show that

o(M,) ={z,: n € N}

and
o(My) =essRngg := {\ € K: u(g_l(U()\,e))) > 0 for every € > 0}.

2. Find 0,(T") and o(T") for the operators T from Exercises 11.2.
3. Find 0,(T') and o(T') for the operators T' € {T;: i =1,...,6} from Exercises 11.3.
(Hint: note that given g € X, the function f(t) := —eM fg g(s)e ™ ds solves the equation \f — f' = g)

EXERCISES 13 (9.5.2023)

1. Consider the operators T;, i € {1,...,6} from Exercises 11.2 in the space L2((0,1)). Prove that

a) we have Tl* = —7117 TQ* = —Tg, Tg = —TQ, T;f = —Tl, Tg = —T5, Tg = —T6.

(Hint: To prove the inclusions O’ use integration by parts. To prove ‘C’ proceed as follows: Let g € D(T}). Then there
is h € La((0,1)) such that (T;f,g) = (f,h) for any f € D(T;). Set H(t) := fot h(s)ds, t € [0,1]. Apply integration by
parts. Note that D((0,1)) C D(T;) and deduce that the distributive derivative of g + H on (0,1) is zero, thus g + H
is almost everywhere equal to a constant. So, g € AC([0,1]) and H = ¢(0) — g. Plug this to the computation and
conclude.)

b) iTs and iT§ are self-adjoint and iT) is symmetric.

2. a) Consider the operator T' from Exercises 11.2a in the space f2. Prove that
D(T*) = {z € {y: limna, exists and is finite, and (kzy — limnx,)je, € la}

and T*x = (kxy, — limnx, )32, x € D(T™).

(Hint: “D” is easy using definitions; for “C” proceed as follows: Let y € D(T*), then there exists z € ly such that
(Tx,y) = (x,z) for x € D(T), apply it for x = e; — ey, n > 2 and deduce that ny, = y1 — 21 + zn. Using that z, — 0
compute lim ny, and conclude.)

b) Consider the operator T from Exercises 11.2b in the space X = Ly((1,00)). Set

D(¢) = {f € X: 3C € C such that the function t — C + tf(t) is in X }.

Show that D(1) is a dense linear subspace of X, that for f € D(1) the constant C' from the definition is uniquely
determined and the mapping ¢ : D(v)) — C mapping f to the respective C' (that is, such that (t — (f)+tf(t)) € X)
is a linear functional defined on D(%)).

Show that D(T™*) = D(v) and T*f(t) = ¢ (f) + tf(t), t € (1,00) for f € D(T).
(Hint: “D7 is easy using definitions; for “C” proceed as follows: Let g € D(T*), then there exists h € X such that
(Tf,g) = (f,h) for f € D(T), apply it for f = (r —1)x(1,2) — X(r,1)- Differentiate the resulting equality with respect to
r and deduce that h(r) = flz(h(t) —tg(t))dt + rg(r) almost everywhere. Then complete the argument.)



EXERCISES 14 (16.5.2023)

1. Let (2, A, 1) be as in Exercises 11.1b and for g : 2 — C measurable let M, be the operator as in Exercises 11.1b.
a) Prove that for every g : 2 — C measurable we have (My)* = Mj.

b) For a measurable g : 2 — R find & :  — C measurable such that M, is the Cayley transformation of M.

(Hint: you may use without proof the fact used in the solution of Exercises 12.1 that if X ¢ essRng g then (A\[—My)~1 =

1)
A—g
c) Find a characterization of measurable functions g : @ — C such that M, € £(u) is a unitary operator and I — M,
is one-to-one. Further, for those functions g find i : 2 — C measurable such that Cayley transformation of M}, is M.

(Hint: %ou may use without proof the fact used in the solution of Exercises 12.1 that \I — My is one-to-one if and only
if p(g= (X)) =0.)

S

2. a) Compute the Cayley transform of the self-adjoint operators iT5 and Ty from Exercises 13.1b.
Hint: you may without proof use the fact used in the solution of Exercises 12.3 that o(T5) = op(T5) = {2min: n € Z},
o(Ts) = 0p(Ts) = {—i5 + 2min: n € Z}, for A ¢ o(T5) we have

(M —T5) Lg(t) = —e_)‘t(/otg(s)e_)‘s ds + 1?@% /01 g(s)e s ds>

and for X\ ¢ o(Ts) we have

(N —Tg)g(t) = —e)‘t</tg(s)e)‘s ds — lfr% /01 g(s)e™ ds).

0

b) Compute the Cayley transform of the symmetric operator Ty from Exercises 13.1b.
Hint: you may without proof use the fact used in the solution of Exercises 12.3 that o(Ty) = 0 and for \XI — Ty and
g € L2((0,1)) the equation (N[ — T)f = g, f € D(Ty) has a solution if and only if g € {e'}* and in this case the
solution is

ft) = —e/\t/o g(s)e™* ds.

FURTHER EXERCISE
Not covered during semester, may be used during oral Exam.

1. Let (Q, A1), g : & — C and M, be as in Exercises 11.1b. For a Borel set A C C and f € La(u) put
EA)f = My ;[ Prove that E is spectral measure for (C,Bor(C), La(y)) satistying M, = [id dE.
(Hint: see Priklad 69 here https: //www2. karlin. mff. cuni. cz/ “spurny/ doc/ ufa/ funkcionalka. pdf)



