
I. Banach algebras

1. Basic properties

Definition 1. We say that pA,`,´, 0, ¨s, ¨q is algebra over K, if pA,`,´, 0, ¨sq is a vector spaceover K, pA,`,´, ¨, 0q is a ring
(that is, multiplication ¨ is associative and distributive with respect to addition from left and right), and moreover it holds that
pα ¨s aq ¨ b “ a ¨ pα ¨s bq “ α ¨s pa ¨ bq for every a, b P A and α P K. Algebra over K is said to be commutative, if the multiplication
¨ is commutative.

Let A, B be algebras over K. (Algebra) homomorphism Φ: A Ñ B is mapping, which is a homomorphism between the
corresponding vector spaces (that is, it is linear) and moreover it is homomorphism between the corresponding rings (that is, it is
multiplicative, so Φpabq “ ΦpaqΦpbq).

Φ is (algebraic) isomorphism of algebras A and B, if Φ is bijection.

Proposition 2. Let A be algebra over K. Put Ae “ A ˆ K and define vector operations on Ae in the usual way (that is,
coordinate-wise) a moreover multiplication of elements from Ae are given by the formula

pa, αqpb, βq “ pab ` αb ` βa, αβq for a, b P A, α, β P K.

Then Ae is algebra with unit p0, 1q and A may be identified with its subalgebra A ˆ t0u. If A is commutative, then Ae is also
commutative.

Definition 3. Tuple pA, }¨}q is called norm algebra, if A is algebra, pA, }¨}q is normed linear space, and for every a, b P A we
have }ab} ď }a}}b}. If pA, }¨}q is a Banach space, then pA, }¨}q is called Banach algebra.

Example 4. Examples of Banach algebras:

• commutative with unit: ℓ8pIq, CbpT q, CpKq, pℓ1pZq, ˚q;

• commutative without unit: C0pT q, pL1pRdq, ˚q;

• noncommutative with unit: LpXq (in particular Mn, n ě 2);

• noncommutative without unit: KpXq.

Proposition 5. Let pA, }¨}q be normed algebra. Multiplication of elements from A is lipschitz on bounded sets (and therefore
continuous) as a mapping from A ˆ A to A.

Proposition 6. Let pA, }¨}q be a Banach algebra. If we define on Ae norm by the formula }pa, αq}Ae
“ }a} ` |α| (tj. Ae “

A ‘1 K), then Ae with this norm is a Banach algebra.

Definition 7. Let A and B be normed algebras and Φ: A Ñ B be (algebra) homomorphism. We say that Φ is isomorphism of
normed algebras A and B (or just isomorphism), if Φ is homeomorphism A onto B; we say Φ is isomorphism from A into B (or
just isomorphism into), if Φ is isomorphism A onto RngΦ.

Theorem 8. Let A be Banach algebra. For any a P A we define the left translation La : A Ñ A by the formula Lapxq “ ax.
Then La P LpAq and the mapping I : A Ñ LpAq, Ipaq “ La is continuous algebra homomorfism with }I} ď 1. If A has a unit
e, then I is isomorphism into and Ipeq “ Id. If }x2} “ }x}2 for every x P A (e.g. if A is subalgebra of ℓ8pΓq), then I is isometry
into.

Corollary 9. Let pA, }¨}q be nontrivial Banach algebra with a unit. Then on A there exists an equivalent norm |||¨||| such that
pA, |||¨|||q is Banach algebra and |||e||| “ 1.

Recall, that in a monoid inverse elements of invertible elements are unique and that invertible elements form a group; if
x, y P A are invertible, then xy is invertible and pxyq´1 “ y´1x´1. We denote the group of invertible elements as Aˆ.

Fact 10. Let pA, ¨, eq be monoid and let x1, . . . , xn P A commute. Then x1 ¨ ¨ ¨xn P Aˆ if and only if tx1, . . . , xnu Ă Aˆ.

Lemma 11 (Neumann series). Let A be a Banach algebra with a unit.

(a) If x P UA, then e ´ x P Aˆ and moreover
ř8

n“0 x
n “ pe ´ xq´1.

(b) Let x P Aˆ a let h P A be such that }h} ă 1
}x´1}

. Then x ` h P Aˆ and morevoer
›

›px ` hq´1 ´ x´1
›

› ď
}x´1

}
2

}h}

1´}x´1}}h}
.

Theorem 12. Let A be a Banach algebra with a unit. Then Aˆ is open subset of A and it is a topological group.
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2. Spectral theory
Definition 13. Let A be a Banach algebra with a unit and x P A. For x P A we define resolvent set of a point x as

pρApxq “q ρpxq “ tλ P K; λe ´ x P Aˆu,

and spectrum of x as
pσApxq “q σpxq “ Kzρpxq.

On ρpxq we define resolvent (or resolvent mapping) of x by the formula

Rxpλq “ pλe ´ xq´1, λ P ρpxq.

If A does not have a unit, then for x P A we define the above notions with respect to Banach algebra Ae.

Proposition 14. Let A be a Banach algebra.

(a) For every x P A we have 0 P σAe

`

px, 0q
˘

. If A does not have a unit, then 0 P σpxq for every x P A.

(b) If A has a unit, then σAe
ppx, 0q

˘

“ σApxq Y t0u for every x P A.

The end of the lectures of week 1

Theorem 15. Let A be a nontrivial complex Banach algebra and x P A. Then σpxq Ă BCp0, }x}q is nonempty compact set.

Definition 16. Let Y be a Banach space over K, Ω Ă K, f : Ω Ñ Y and a P Ω. If there exists the limit lim
xÑa

fpxq´fpaq

x´a P Y , then

we say this limit is the derivative of the mappint f at the point a and we denote it by f 1paq.

Fact 17. Let Y be a Banach space over K, Ω Ă K, f : Ω Ñ Y and a P Ω. If there exists f 1paq, then f is continuous at a and for
every x˚ P Y ˚ we have px˚ ◦ fq1paq “ x˚pf 1paqq.

Proposition 18. Let A be a Banach algebra with a unit and x P A.

(a) ρpxq is open,

(b) For |λ| ą }x} we have λ P ρpxq and Rxpλq “
ř8

n“0
xn

λn`1 ,

(c) Resolvent mapping λ ÞÑ Rxpλq has derivative at every point of the set ρpxq.

(d) For every µ, ν P ρpxq we have RxpµqRxpνq “ RxpνqRxpµq.

(e) For every µ, ν P ρpxq we have Rxpµq ´ Rxpνq “ pν ´ µqRxpµqRxpνq (so-called resolvent identity).

Fact. Let G be a group. Given u, v P G satisfying uv “ vu, we have u´1v´1 “ v´1u´1, uv´1 “ v´1u and u´1v “ vu´1.

Theorem 19 (Liouville theorem). Let Y be a complex Banach space and f : C Ñ Y be a bounded function which has derivative
at each point. Then f is constant.

Convention 20. In the remainder of this chapter (I. Banach algebras) we will consider all the Banach spaces over the field of
complex numbers (if not said explicitly otherwise).

Theorem 21 (S. Mazur (1938), I. M. Gelfand (1941)). Let A be a nontrivial Banach algebra with a unit. If Aˆ “ Azt0u, then
A is isomorphic to C. If moreover }e} “ 1, then A is isometrically isomorphic to C.

Definition 22. Let A be a Banach algebra. For x P A we define spectral radius of x as

rpxq “ supt|λ|; λ P σpxqu.

Theorem 23 (Beurling-Gelfand formula). Let A be a Banach algebra and x P A. Then

rpxq “ inf
nPN

n
a

}xn} “ lim
nÑ8

n
a

}xn}.

Lemma 24 (spectrum and polynom). Let A be a Banach algebra with a unit and x P A. If ppzq “
řn

j“1 αjz
j is a polynom with

complex coefficients, we define ppxq “
řn

j“1 αjx
j . Then we have σpppxqq “ ppσpxqq.

Corollary 25. If A is a Banach algebra, x P A and λ P C, |λ| ą rpxq, then the series
ř8

n“1
xn

λn converges absolutely. If A has
a unit, then Rxpλq “

ř8

n“0
xn

λn`1 .

Theorem 26. Let A be a Banach algebra with a unit, B its closed subalgebra containing e and x P B. Then the following holds:
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(a) If C is a component of ρApxq, then either C Ă σBpxq, or C X σBpxq “ H.

(b) BσBpxq Ă σApxq Ă σBpxq.

(c) If CzσApxq is connected, then σBpxq “ σApxq.

(d) If σBpxq has an empty interior, then σBpxq “ σApxq.

Corollary 27. Let A be a Banach algebra, B its closed subalgebra and x P B. Then (a)-(d) in Theorem 26 holds, if we replace
σApxq and σBpxq by σApxq Y t0u and σBpxq Y t0u, respectively.

Remark: proof of Corollary 27 was omitted
The end of the lectures of week 2

3. Holomorphic calculus
Let X be a Banach space, γ : ra, bs Ñ C path and f : xγy Ñ X continuous mapping. Integral of f along γ is defined by the
formula

ż

γ

f “

ż

ra,bs

γ1ptqfpγptqqdλptq.

Integral along the chain Γ “ γ1 ` ¨ ¨ ¨ ` γn in C from the continuous mapping f : xΓy Ñ X is defined by the formula
ż

Γ

f “

ż

γ1

f ` ¨ ¨ ¨ `

ż

γn

f.

Lemma 28. Let Γ be a chain in C, X a Banach space, f : xΓy Ñ X be continuous and x P X . Then x “
ş

Γ
f if and only if for

every x˚ P X˚ we have x˚pxq “
ş

Γ
x˚ ◦ f .

If Ω Ă C is open and K Ă Ω compact, we say that a cycle Γ circulates K in Ω if xΓy Ă ΩzK, indΓ z “ 1 for z P K and
indΓ z “ 0 for z P CzΩ.

Definition 29. Let A be a Banach algebra with a unit and x P A. If f P HpΩq, where Ω Ă C is open neighborhood of σpxq,
then we define

fpxq “
1

2πi

ż

Γ

fRx “
1

2πi

ż

Γ

fpαqpαe ´ xq´1 dα,

where Γ is an arbitrary cycle that circulates σpxq in Ω.

Remark 30. Integral in the definition fpxq above exists and its value does not depend on the choice of Γ.

Theorem 31 (holomorphic calculus). Let A be a Banach algebra with a unit, x P A, Ω Ă C be an open neighborhood of σpxq

and f P HpΩq. The mapping Φ: HpΩq Ñ A, where Φpgq “ gpxq from Definition 29, has the following properties:

(a) Φ is algebra homomorphism, for which moreover we have Φp1q “ e and ΦpIdq “ x.

(b) If fn Ñ f locally uniformly in HpΩq, then fnpxq Ñ fpxq.

(c) fpxq P Aˆ if and only if fpλq ‰ 0 for every λ P σpxq. In this case we have fpxq´1 “ 1
f pxq.

(d) σpfpxqq “ fpσpxqq.

(e) If g P HpΩ1q, where Ω1 is open neighborhood of fpσpxqq, then pg ◦ fqpxq “ gpfpxqq.

(f) If y P A commutes with x, then y commutes with fpxq.

Morevoer, if a mapping Ψ: HpΩq Ñ A satisfies (a) and (b), then Ψ “ Φ.

Remark: The proof of properties (d)-(f) was omitted.

Lemma 32. Let pΩ, µq be a complete measure space, A a Banach algebra and f P L1pµ,Aq. Then for every x P A and every
measurable E Ă Ω we have

x

ˆ
ż

E

fdµ

˙

“

ż

E

xfptqdµptq a
ˆ

ż

E

f dµ

˙

x “

ż

E

fptqxdµptq.

Remark: The proof of was omitted.
The end of the lectures of week 3

3



4. Multiplicative linear functionals
Definition 33. Let A be a Banach algebra. Homomorphism φ : A Ñ C is said to be multiplicative linear functional (that is φ is
linear and φpxyq “ φpxqφpyq for every x, y P A). The set of all the nonzero multiplicative linear functionals on A is denoted by
∆pAq.

Proposition 34. Let A be a Banach algebra and φ multiplicative linear functional.

(a) There exists a unique extension φ̃ P ∆pAeq given by the formula φ̃px, λq “ φpxq ` λ and ∆pAeq “ tφ̃; φ P ∆pAq Y t0uu.

(b) For every x P A we have φpxq P σpxq whenever φ ‰ 0.

(c) ∆pAq Ă BA˚ (in particular, every multiplicative linear functional on A is automatically continuous).

(d) If A has a unit and φ ‰ 0, then }φ} ě 1
}e}

for every φ P ∆pAq. In particular, if }e} “ 1, then ∆pAq Ă SA˚ .

Theorem 35. Let A be a Banach algebra and M “ ∆pAq Y t0u Ă pBA˚ , w˚q be the set of all the multiplicative linear
functionals on A. Then M is compact, ∆pAq is locally compact and if A has a unit, then ∆pAq is compact.

The mapping Φ: M Ñ ∆pAeq, where Φpφq “ φ̃ is the unique extension φ on an element of ∆pAeq, is a homeomorfism.

Example 36. (a) For K compact we have ∆pCpKqq “ tδx : x P Ku.

(b) For n ě 2 we have ∆pMnq “ H.

Definition 37. Let A be a Banach algebra. Ideal in A is a vector subspace I Ă A such that whenever x P I and y P A, then
xy P I a yx P I . Maximal ideal in A is a proper ideal in A, which is maximal with respect to the ordering of all the proper ideals
in A with respect to the inclusion.

Proposition 38. Let A be a Banach algebra with a unit.

(a) Every proper ideal in A is contained in a maximal ideal in A.

(b) If I is proper ideal in A, then I is proper ideal. In particular, every maximal ideal in A is closed.

Proposition 39. Let A be a Banach algebra and I Ă A closed ideal. Then the quotient A{I is Banach algebra with multiplication
qpxqqpyq “ qpxyq, where q : A Ñ A{I is the quotient mapping.

If A is commutative, then A{I is commutative. If A has a unit, then A{I has a unit.

Theorem 40. Let A be a commutative Banachova algebra with a unit. Then the mapping Φ: φ ÞÑ Kerφ is bijection between
∆pAq and the set of all the maximal ideals in A.

Lemma 41. Let A be a commutative Banach algebra with a unit and x P A not invertible. Then xA is proper ideal.

Corollary 42. Let A be a commutative Banach algebra with a unit and I be a proper ideal in A. Then there exists φ P ∆pAq

such that φæI “ 0.

Proposition 43. Let A, B be Banach algebras and Φ: A Ñ B an algebra isomorphism. The the mapping Φ# : ∆pBq Ñ ∆pAq

defined by the formula Φ#pφq :“ φ ˝ Φ, φ P ∆pBq is homeomorphism.

Proposition 44. Let L be locally compact Hausdorff topological space. Then the mapping δ : L Ñ ∆pC0pLqq defined by the
formula δpxq “ δx, x P L is homeomorphism.

Theorem 45. Let K, L be locally compact Hausdorff topological spaces. Then the following assertions are equivalent:

(i) Banach algebras C0pKq and C0pLq are isometrically izomorphic.

(ii) Algebras C0pKq and C0pLq are algebraically isomorphic.

(iii) Topological spaces K and L are homeomorphic.

The end of the lectures of week 4

Definition 46. Commutative Banachova algebra A is semi-simple, if ∆pAq separates the points of A, that is if
Ş

tKerφ; φ P

∆pAqu “ t0u.

Theorem 47. Let A, B be Banach algebras. If B is commutative and semi-simple, then every homomorphism from A to B is
automatically continuous.

Corollary 48. Let A be a commutative and semi-simple Banach algebra. Then all the norms on A, in which A is a Banach
algebra, are equivalent.
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5. Gelfand transform
Definition 49. Let A be a Banach algebra. For x P A we define px : ∆pAq Ñ C by the formula pxpφq “ φpxq, that is, px “

εxæ∆pAq. Function px is called the Gelfand transform of x.

Theorem 50. Let A be a commutative Banach algebra and x P A.

(a) If A has a unit, then σpxq “ Rng px.

(b) If A does not have a unit, then σpxq “ Rng px Y t0u.

(c) }px} “ rpxq.

Definition 51. Let A be a Banach algebra. The mapping Γ: A Ñ C0p∆pAqq, Γpxq “ px is called the Gelfand transform of the
algebra A.

Theorem 52. Let A be a commutative Banach algebra and Γ its Gelfand transform. The the following assertions hold:

(a) Γ is continuous homomorphism and }Γ} ď 1.

(b) Subalgebra ΓpAq Ă C0p∆pAqq separates the points of ∆pAq.

(c) Γ is one-to-one if and only if ∆pAq separates the points of A, that is, if and only if A is semi-simple.

(d) Γ is isomorphism into if and only if Γ is one-to-one and ΓpAq Ă C0p∆pAqq is closed if and only if there exists K ą 0 such
that }x2} ě K}x}2 for every x P A.

(e) Γ is isometry into if and only if }x2} “ }x}2 for every x P A.

II. C‹-algebras

1. Basic properties
In this chapter all the Banach spaces will be over the field of complex numbers (if not said explicitly otherwise).

Definition 53. Let A be a Banach algebra.

• Mapping ‹ : A Ñ A is an involution if for every x, y P A and λ P C we have:

px ` yq‹ “ x‹ ` y‹, pλxq‹ “ λx‹, pxyq‹ “ y‹x‹, px‹q‹ “ x.

• Banach algebra A with an involution is C‹-algebra if for every x P A we have

}x‹x} “ }x}2.

• If A is a Banach algebra with an involution, then x P A is said to be self-adjoint (resp. normal), if x‹ “ x (resp.
x‹x “ xx‹).

Proposition 54. Let A be a Banach algebra with involution and x P A. Then the following assertions hold:

(a) If e is left or right unit in A, then e is a unit and e‹ “ e.

(b) A is C‹-algebra if and only if for every x P A we have }x‹x} ě }x}2. In this case we have }x} “ }x˚} for every x P A.

(c) Let A have a unit. Then x P Aˆ if and only if x‹ P Aˆ. In this case px‹q´1 “ px´1q‹.

(d) λ P σpxq if and only if λ P σpx‹q.

(e) Points x ` x‹, x‹x, xx‹ and ipx ´ x‹q are self-adjoint.

(f) There are unique self-adjoint elements u, v P A such that x “ u ` iv. For those we then have that x‹ “ u ´ iv and x is
normal if and only if uv “ vu.

Remark: proof of item (d) was given only for the case A has a unit

Theorem 55. Let A be a C‹-algebra and x P A be normal. Then rpxq “ }x}.

Corollary 56. Let A be an algebra with an involution. Then on A there exists at most one norm } ¨ } such that pA, } ¨ }q is
C‹-algebra.
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Proposition 57. Let A be a Banach algebra with an involution.

(a) Ae is Banachova algebra with involution given by the formula pa, αq‹ “ pa‹, αq for pa, αq P Ae.

(b) If A is C‹-algebra, then there exists a norm |||¨||| on Ae extending the original norm on A (and equivalent to the norm from
Proposition 6) such that Ae is C‹-algebra.

Remark: proof of Proposition 57 was omitted

Proposition 58. Let A be a C‹-algebra and x P A.

(a) If x is self-adjoint, then σpxq Ă R.

(b) If A has a unit and x is unitary (that is, x˚ “ x´1), then σpxq Ă tλ P C : |λ| “ 1u.

The end of the lectures of week 5

Definition 59. Let A and B be algebras with involution. The algebra homomorphism Φ: A Ñ B is said to be ‹-homomorphism,
if it preserves the operation ‹, that is Φpx‹q “ Φpxq‹ for every x P A.

Corollary 60. Let A be a C‹-algebra. Then every multiplicative linear funkctional on A is ‹-homomorphism.

Proposition 61. Let A, B be C‹-algebras and Φ: A Ñ B be ‹-homomorphism. Then Φ is automatically continuous and
moreover }Φ} ď 1.

Lemma 62. Let A, B be Banach algebras and Φ: A Ñ B is algebra homomorphism. Then for every x P A we have σBpΦpxqq Ă

σApxq Y t0u.

Theorem 63 (I. M. Gelfand a M. A. Najmark (1943)). Let A be a commutative C‹-algebra. Then Gelfand transformation is
isometric ‹-isomorphism A onto C0p∆pAqq.

Corollary 64. Let A and B be commutative C‹-algebras. Then the following assertions are equivalent:

(i) A and B are isometrically ‹-isomorphic.

(ii) A and B are algebraically isomorphic.

(iii) Locally compact spaces ∆pAq and ∆pBq are homeomorphic.

Definition 65. Let A be a Banach algebra and M Ă A. Algebraic hull of M is the set

algM “
č

tB Ą M ; B is a subalgebra of Au.

Closed algebraic hull of M is the set

algM “
č

tB Ą M ; B is closed subalgebra of Au.

Fact 66. Let A be a C‹-algebra and let M Ă A commute and be closed under involution. Then algM is commutative C‹-
subalgebra of A.

Theorem 67. Let A and B be C‹-algebras and h : A Ñ B be one-to-one ‹-homomorphis. Then h is isometry into.

Lemma 68. Let K, L be Hausdorff compact spaces and φ : CpKq Ñ CpLq be ˚-homomorphism satisfying φp1q “ 1. Then
there exists a continuous mapping α : L Ñ K such that φpfq “ f ˝ α for every f P CpKq. If moreover φ is one-to-one, then
αpLq “ K and so φ is isometry into.

7. Continous calculus for normal elements of C‹-algebras
Lemma 69. Let A be C‹-algebra and B its C‹-subalgebra. If A and B have common unit, then Bˆ “ Aˆ X B. Moreover, let
x P B. If B has a unit which is not a unit in A, then σApxq “ σBpxq Y t0u, in all the other cases we have σApxq “ σBpxq.

Let A be a C‹-algebra with a unit and x P A be normal. Put B “ algte, x, x‹u. Then for f P CpσApxqq we define

fpxq “ Γ´1
B pf ◦ ΓBpxqq. (1)

Theorem 70 (continuous calculus). Let A be a C‹-algebra with a unit, x P A be normal and f P Cpσpxqq. The mapping
Φ: Cpσpxqq Ñ A, where Φpgq “ gpxq is defined by the formula (1), has the following properties:

(a) Φ is isometric ‹-isomorphism Cpσpxqq onto B “ algte, x, x‹u satisfying Φp1q “ e and ΦpIdq “ x.
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(b) If Ψ: Cpσpxqq Ñ A is ‹-homomorphism, for which Ψp1q “ e and ΨpIdq “ x, then Ψ “ Φ.

(c) If g P HpΩq, where Ω Ă C is open neighborhood of σpxq, then Φpgæσpxqq “ Ψpgq, where Ψ is the holomorphic calculus
from Theorem 31.

(d) fpxq P Aˆ if and only if fpλq ‰ 0 for every λ P σpxq. In this case we have fpxq´1 “ 1
f pxq.

(e) σpfpxqq “ fpσpxqq.

(f) If g P C
`

fpσpxqq
˘

, then pg ◦ fqpxq “ gpfpxqq.

Remark: proofs of items (c) and (f) were omitted

The end of the lectures of week 6

(g) If y P A commutes with x, then y commutes also with fpxq.

If A does not have a unit, we provide the whole construction in Ae. If for f P Cpσpxqq it is true that fp0q “ 0, then fpxq P A.

Theorem 71 (Bent Fuglede (1950), Calvin R. Putnam (1951)). Let A be a C‹-algebra, x P A, and let a, b P A be normal
elements satisfying ax “ xb. Then a‹x “ xb‹.

Remark: proof of Theorem 71 was omitted

III. Operators on Hilbert spaces

1. Basic properties
In this chapter (III. Operators on Hilbert spaces) all the Banach spaces will be over the field of complex numbers (if not said
explicitly otherwise).

Definition 72. Let X , Y be vector spaces over C. Mapping S : X ˆ X Ñ Y is said to be sesquilinear, if it is linear in the first
coordinate and conjugate-linear in the second coordinate. In the case Y “ C, we say S is sesquilinear form.

Proposition 73 (polarization identity). Let X , Y be vector spaces over C and S : X ˆ X Ñ Y be sesquilinear mapping. Then
for every x, y P X we have

Spx, yq “
1

4

`

Spx ` y, x ` yq ´ Spx ´ y, x ´ yq ` iSpx ` iy, x ` iyq ´ iSpx ´ iy, x ´ iyq
˘

.

Corollary 74. Let H be a nontrivial Hilbert space and T, S P LpHq. Then T “ S if and only if xTx, xy “ xSx, xy for every
x P H .

Theorem 75. Let H be a nontrivial Hilbert space and T P LpHq. Pak

(a) T is self-adjoint if and only if xTx, xy P R for every x P H .

(b) T is normal if and only if }Tx} “ }T ‹x} for every x P H .

(c) xTx, xy ě 0 for every x P H if and only if T is self-adjoint and σpT q Ă r0,8q.

Definition 76. Let A be a C‹-algebra and x P A. We say x is nonnegative (we write x ě 0) if pokud it is self-adjoint and
σpxq Ă r0,`8q.

Theorem 77. Let H be a Hilbert space and let T P LpHq be normaln. Then the following assertions hold:

(a) KerT “ KerT ‹ a KerT “ pRng T qK.

(b) Rng T is dense in H if and only if T is one-to-one.

(c) λ P σppT q if and only if λ P σppT ‹q. Eigenspace of T corresponding to the eigenvalue λ is equal to the proper eigenspace
T ‹ corresponding to the eigenvalue λ.

(d) If λ1, λ2 are two different eigenvalues of T , then Kerpλ1I ´ T q K Kerpλ2I ´ T q.

Theorem 78 (Hilbert-Schmidt). Let H be a Hilbert space and T P KpHq be nonzero and normal. Then there exists an ortho-
normal basis B of the space H formed by eigenvectors of T . There are countably many vectors from B corresponding to nonzero
eigenvalues of T , and if we order those in an arbitrary one-to-one sequence tenuNn“1, N P N Y t8u, then tenu is orthonormal
basis of Rng T and for every x P H we have

Tx “

N
ÿ

n“1

λnxx, enyen,

where λn is the eigenvalue corresponding to the eigenvector en.
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Remark: proof of Theorem 78 was omitted (it is verbatim the same as the one presented in the course “Úvod do funkcionální
analýzy”)

Theorem 79 (Schmidt). Let H be a Hilbert space and T P LpHq be nonzero compact. Then there exists N P N0 Y t8u,
sequence of positive numbers tλnuNn“1 and orthonormal systems tunuNn“1 Ă H a tvnuNn“1 Ă H such that for every x P H we
have

Tx “

N
ÿ

n“1

λnxx, unyvn.

Theorem 80. Let H be a Hilbert space and P P LpHq a projection. Then the following assertions are equivalent:

(i) P is orthogonal, that is, RngP K KerP .

(ii) P ě 0.

(iii) P is self-adjoint.

(iv) P is normal.

Moreover, if P,Q P LpHq are two orthogonal projections, then RngpP q K RngpQq if and only if PQ “ 0.

Definition 81. Let H , K be Hilbert spaces. Operator T P LpH,Kq is said to be unitary, if T´1 “ T ‹, that is, T ‹ ◦ T “ IH
and T ◦ T ‹ “ IK .

Proposition 82. Let H , K be Hilbert spaces and T P LpH,Kq. Consider the following conditions:

(i) T is unitary.

(ii) T is isometry onto.

(iii) T is isometry into.

(iv) xTx, Tyy “ xx, yy for every x, y P H .

Then (i)ô(ii)ñ(iii)ô(iv). Moreover, if T is onto, then all the conditions are equivalent.

Definition 83. Let H be a Hilbert space. Operator U P LpHq is said to be partial isometry, if there exists a closed subspace
K Ă H (we say it is the initial subspace of U ) satisfying that U |K is isometry into and U |KK ” 0.

Theorem 84 (polar decomposition). Let H be a Hilbert space and T P LpHq.

1. There are unique operators P,U P LpHq satisfying that P ě 0, U is partial isometry with the initial subspace RngP and
T “ UP . Moreover, then we have P “

?
T ‹T “ U‹T .

2. If T is invertible, then there are unique operators P,U P LpHq satisfying that P ě 0 is invertible, U is unitary and
T “ UP .

The end of the lectures of week 7

2. Borel measurable calculus for normal operators
Lemma 85 (Lax-Milgram). Let H be a Hilbert space. If S is a sesquilinear form on H satisfying }S} :“ supx,yPBH

|Spx, yq| ă

8, then there exists a unique operator T P LpHq such that Spx, yq “ xTx, yy for every x, y P H . Moreover, for this operator
we have }S} “ }T }.

Definition 86. Let H be a Hilbert space, T P LpHq be normal and Φ: CpσpT qq Ñ LpHq is continuous calculus from Theo-
rem 70. Then for every x, y P H we denote by µx,y the unique regular borel complex measure on σpT q satisfying

ż

σpT q

f dµx,y “ xΦpfqx, yy, f P CpσpT qq.

For every f P BorbpσpT qq we moreover define Φpfq P LpHq as the (unique) operator satisfying

xΦpfqx, yy “

ż

σpT q

f dµx,y, x, y P H.

Instead of ϕpfq we write also fpT q.

Remark 87. Let H be a Hilbert space and T P LpHq be normal.

8



1. The mapping H ˆ H Q px, yq ÞÑ µx,y P MpσpT qq from Definition 86 is sesquilinear and therefore we have

µx,y “
1

4

3
ÿ

k“0

ikµx`iky,x`iky, x, y P H.

2. For every x P H we have µx,x ě 0.

3. BorbpσpT qq Ă ℓ8pσpT qq is C‹-algebra.

4. The mapping Φ: BorbpσpT qq Ñ LpHq from Definition 86 is the extension of the continuous calculus Φ: CpσpT qq Ñ

LpHq from Theorem 70.

Theorem 88. Let P be a metric space. Let Φ Ą CbpP q be a system of functions on P , which is closed under taking pointwise
limits of bounded sequences of functions. Then Φ “ BorbpP q.

Remark: proof of Theorem 88 was omitted

Definition 89. Let X,Y be normed linear spaces. On the space LpX,Y q we define the following locally convex topologies:

• strong operator topology τSOT generated by the system of pseudonorms tpxpT q “ }Tx}; x P Xu,

• weak operator topology τWOT generated by the system of pseudonorms tpx,f pT q “ |fpTxq|; x P X, f P Y ˚u.

Theorem 90 (borel calculus). Let H be a Hilbert space, T P LpHq be nonzero normal operator and f P BorbpσpT qq. The
mapping Φ: BorbpσpT qq Ñ LpHq from Definition 86 has the following properties:

(a) Φ is continuous ‹-homomorphism and }Φ} “ 1.

(b) If tfnu Ă BorbpσpT qq is a bounded sequence converging pointwise to f , then Φpfnq Ñ Φpfq in the topology τSOT.

(c) If a compact set K Ă C contains σpT q and Ψ: BorbpKq Ñ LpHq is continuous ‹-homomorphism, for which we have
Ψp1q “ I , ΨpIdq “ T and it satisfies the property (b) with τWOT topology, then Ψpgq “ ΦpgæσpT qq for every g P BorbpKq.

(d) fpT q is normal. If f is real, then fpT q is self-adjoint.

(e) σpfpT qq Ă fpσpT qq.

(f) If g P Borb
`

Rng f
˘

, then pg ◦ fqpT q “ gpfpT qq.

(g) If S P LpHq commutes with T , then S commutes with fpT q.

Remark: proofs of items (c)-(g) were omitted
The end of the lectures of week 8

3. Integral with respect to spectral measure, spectral decomposition of normal operator
Definition 91. Let H be a Hilbert space and pX,Aq a measurable space. We say that E : A Ñ LpHq is spectral measure for
pX,A, Hq, if the following conditions hold

(a) EpAq is orthogonal projection for every A P A,

(b) EpXq “ I and EpHq “ 0,

(c) Whenever tAn : n P Nu Ă A are pairwise disjoint, then we have

Ep
ď

nPN
Anqx “

8
ÿ

n“1

EpAnqx, x P H.

Proposition 92 (basic properties of spectral measure). Let H be a Hilbert space, pX,Aq a measurable space and E spectral
measure for pX,A, Hq. Then the following conditions hold.

(a) Whenever A,B P A and A Ă B, then EpAq ď EpBq,

(b) Whenever A,B P A, then EpA X Bq “ EpAqEpBq,

(c) For every x, y P H the mapping Ex,y : A Ñ C defined by the formula Ex,ypAq “ xEpAqx, yy, A P A is a complex measure
with total variation }Ex,y} ď }x}}y}.

(d) The mapping H ˆ H Q px, yq ÞÑ Ex,y is sesquilinear.

9



(e) For every x, y P H and A P A we have |Ex,ypAq| ď 1
2 pEx,xpAq ` Ey,ypAqq.

(f) For every x, y P H we have Ex`y,x`y ď 2pEx,x ` Ey,yq.

Definition 93. Let H be a Hilbert space, pX,Aq a measurable space, E a spectral measure for pX,A, Hq and f : X Ñ C
a bounded A-measurable function. Then the integral of f with respect to the measure E, is (the unique) operator T P LpHq

satisfying

xTx, yy “

ż

X

f dEx,y, x, y P H.

This operator is denoted by the symbol T “
ş

f dE.

The end of the lectures of week 9

Proposition 94. Let H be a Hilbert space, pX,Aq a measurable space, E a spectral measure for pX,A, Hq and f : X Ñ

C a bounded A-measurable function. Then for every ε ą 0, disjoint partition A1, . . . , An P A of the set X satisfying
maxtdiam fpAiq : i “ 1, . . . , nu ă ε and points xi P Ai, i “ 1, . . . , n we have

›

›

›

›

›

ż

f dE ´

n
ÿ

i“1

fpxiqEpAiq

›

›

›

›

›

ă ε.

Definition 95. Let pX,Aq be measurable space. Then the symbol BpX,Aq Ă ℓ8pXq denotes the C‹-algebra of all the bounded
A-measurable functions f : X Ñ C.

Theorem 96 (properties of the integral with respect to spectral measure). Let H be a Hilbert space, pX,Aq measurable space,
E spectral measure for pX,A, Hq and let ρ : BpXAq Ñ LpHq be the mapping defined by the formula ρpfq “

ş

f dE,
f P BpX,Aq. Then the following holds:

(a) ρ is continuous ‹-homomorphism, }ρ} “ 1 and ρp1q “ I .

(b) For f P BpX,Aq the operator ρpfq P LpHq is normal, if f is real then ρpfq is self-adjoint and f ě 0 implies ρpfq ě 0.

(c) If tfnu Ă BpX,Aq s a bounded sequence converging pointwise to f , then ρpfnq Ñ ρpfq in the topology τWOT.

(d) For f P BpX,Aq and x P H we have }ρpfqx} “

b

ş

|f |2 dEx,x.

Corollary 97 (spectral decomposition of normal operator). Let H be a Hilbert space and T P LpHq be normal. Then there
exists a unique spectral measure E for pσpT q,BorpσpT qq, Hq satisfying

ş

iddE “ T . Moreover, then we have EpAq “ ΦpχAq

for every A P BorpσpT qq, where Φ : BorbpσpT qq Ñ LpHq is the borel calculus from Definition 86.

IV. Unbounded operators

1. Unbounded operators on Banach spaces
Definition 98. Let X , Y be Banach spaces, operator from X to Y will denote a linear mapping T , which is defined on a linear
space DpT q Ă X whose range RpT q is a subset of Y . If Y “ X , we say also that T is operator in X .

Graph of T is the set GpT q :“ tpx, Txq : x P DpT qu Ă X ˆ Y .
Finally, let T be an operator from X to Y . Then

(a) T is densely defined, if DpT q is dense in X;

(b) T is closed, if GpT q Ă X ˆ Y is closed;

(c) operator S from X to Y is extension of operator T , if GpT q Ă GpSq (then we write T Ă S);

(d) if S is an operator from X to Y , then S `T is operator with DpS `T q “ DpSq XDpT q defined by the formula pS `T qx “

Sx ` Tx, x P DpS ` T q;

(e) if S is an operator from Y to a Banach space Z, then ST is operator with DpST q “ tx P DpT q : Tx P DpSqu defined by
the formula pST qx “ SpTxq, x P DpST q;

(f) for α P K we define the operator αT as follows: is α “ 0, then DpαT q “ X and αT ” 0; otherwise DpαT q “ DpT q and
pαT qx “ αpTxq for x P DpT q.

Remark 99. It is easy to check that for operators S, T, V we have pS`T q`V “ S`pT `V q, SpTV q “ pST qV and pS`T qV “

SV `TV whenever the corresponding operators are well-defined. However, in general it is not true that V pS `T q “ V S `V T
(in general only the inclusion “Ą” holds and equality holds e.g. if V is defined everywhere).
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Lemma 100. Let X , Y be Banach spaces and L Ă X ˆ Y . Then L is graph of an operatorfrom X to Y , if and only if L is a
subspace satisfying tpx, yq P L : x “ 0u “ tp0, 0qu.

Proposition 101. Let X , Y be Banach spaces and T be an operator from X to Y .

(a) If DpT q “ X and T is closed, then T P LpX,Y q.

(b) The following assertions are equivalent:

(i) Operator T has closed extension.

(ii) If pxn, Txnq Ñ p0, yq in DpT q ˆ Y , then y “ 0.

(iii) The set GpT q Ă X ˆ Y is graph of an operator from X to Y .

(c) If T is one-to-one and closed, then T´1 is closed.

Definition 102. Let X , Y be Banach spaces and T be operator from X to Y . If T has closed extension, then T is its minimal
closed extension, that is, operator from X to Y satisfying GpT q “ GpT q.

Proposition 103. Let X,Y, Z be Banach spaces and T be closed operator from X to Y .

(a) If S P LpX,Y q, then S ` T is closed and DpS ` T q “ DpT q.

(b) If S P LpY, Zq, then DpST q “ DpT q. If S is isomorphism into, then ST is closed.

(c) If S P LpZ,Xq, then TS is closed.

The end of the lectures of week 10
Remark 104. Addition of closed densely defined operators in X does not have to admit closed extension. Composition of closed
densely defined operator in X with an operator from LpXq does not have to admit closed extension.

Proposition 105. Let X,Y be Banach space and T be one-to-one closed operator from X to Y . Then the following assertions
are equivalent.

(i) Rng T “ Y and T´1 P LpY,Xq.

(ii) Rng T “ Y .

(iii) Rng T is dense in Y and T´1 P LpRng T,Xq.

Definition 106. Let X be a Banach space and T a linear opeartor in X . Resolvent set of the operator T is defined as

ρpT q “ tλ P K; λI ´ T has inverse which is from LpXqu,

resolvent (also resolvent mapping) of T is defined by the formula

RT pλq “ pλI ´ T q´1, λ P ρpT q

and spectrum of T as σpT q “ KzρpT q.

Theorem 107. Let X be a Banach space and T a linear opeartor in X . The set ρpT q is open and σpT q is closed. Resolvent
mapping RT has derivation at each point of the set ρpT q. In particular, if X is complex, then RT is holomorphic on ρpT q.

Lemma 108. Let X be a Banach space and T a linear opeartor in X such that 0 R σpT q. Then for every nonzero λ P K we
have λ P σpT q if and only if 1

λ P σpT´1q.

Corollary 109. Let X be a complex Banach space and T be an operator in X such that σpT q “ H. Then T´1 P LpXq and
σpT´1q “ t0u.

2. Unbounded operators on Hilbert spaces - basic notions
Convention 110. In the remainder of this chapter (IV. Unbounded operators) we will consider all the Banach spaces over the field
of complex numbers (if not said explicitly otherwise).

Definition 111. Let H be a Hilbert space and T be densely defined operator on H . Hilbert adjoint operator for T , denoted as
T ‹, defined on the set

DpT ‹q “ ty P H; x ÞÑ xTx, yy is continuous functional on DpT qu.

For every y P DpT ‹q we define T ‹y as the unique point from H , which satisfies xx, T ‹yy “ xTx, yy for every x P DpT q.

11



Remark 112. DpT ‹q Ă H is subspace and T ‹ an operator on H .

Proposition 113. Let S, T be densely defined operators in a Hilbert space H .

(a) If S Ă T , then T ‹ Ă S‹.

(b) If S ` T is densely defined, then S‹ ` T ‹ Ă pS ` T q‹. If moreover S P LpHq, then S‹ ` T ‹ “ pS ` T q‹.

(c) If ST is densely defined, then T ‹S‹ Ă pST q‹. If moreover S P LpHq, then T ‹S‹ “ pST q‹.

The end of the lectures of week 11

Proposition 114. Let T be densely defined operator on a Hilbert space H .

(a) T ‹ is closed.

(b) T has closed extension if and only if T ‹ is densely defined. In this case we have T “ T ‹‹.

(c) T is closed if and only if T ‹ is densely defined and T “ T ‹‹.

Lemma 115. Let T be densely defined operator on a Hilbert space H and V P LpH ‘2 Hq is defined by th formula V px, yq “

p´y, xq, px, yq P H ‘2 H . Then V is unitary operator and GpT ‹q “ pV pGpT qqqK.

Proposition 116. Let T be densely defined operator on a Hilbert space H .

(a) KerT ‹ “ pRpT qqK,

(b) If moreover T is closed, then KerT “ pRpT ‹qqK.

Proposition 117. If T is one-to-one densely defined operator on a Hilbert space H and RpT q is dense in H , then T ‹ is one-to-one
and pT ‹q´1 “ pT´1q‹.

Remark: proof of Proposition 117 was omitted.

Definition 118. Let T be an operator on a Hilbert space. We say T is self-adjoint, if T ‹ “ T . We say T is symmetric, if
xTx, yy “ xx, Tyy for every x, y P DpT q. Moreover, we say T is maximally symmetric, if it is symmetric and there does not
exist a proper symmetric extension of T .

Proposition 119. Let T be densely defined, symmetric operator on a Hilbert space H .

(a) T has closed extension and T is symmetric.

(b) If DpT q “ H , then T P LpHq and it is self-adjoint.

(c) If RpT q is dense, then T is one-to-one.

(d) If RpT q “ H , then T is one-to-one, self-adjoint and T´1 P LpHq.

(e) If T is self-adjoint, then it is maximally symmetic. Moreover, T is then one-to-one if and only if RpT q is dense and in this
case T´1 is self-adjoint.

Remark: proof of Proposition 119 was omitted.

Theorem 120. Let T be a self-adjoint operator in a nontrivial Hilbert space H . Then H ‰ σpT q Ă R.

Lemma 121. Let T be a symmetric operator on a Hilbert space H and λ P CzR. Then λI ´ T is one-to-one and pλI ´ T q´1 is
continuous on RpλI ´ T q. Moreover RpλI ´ T q is closed if and only if T is closed.

The end of the lectures of week 12

Corollary 122. Let T be an operator on a Hilbert space. H . Then the following assertions are equivalent:

(i) T is self-adjoint.

(ii) T is densely defined, symmetric and σpT q Ă R.

(iii) T is densely defined, symmetric and there exists λ P CzR such that λ, λ P ρpT q.

12



3. Cayley transform
Definition 123. Let T be a symmetric operator on a Hilbert space H . Cayley transform of the operator T is defined by the
formula CpT q “ pT ´ iIq ◦ pT ` iIq´1.

Theorem 124. Let T be a symmetric operator in a Hilbert space H and CpT q its Cayley transform.

(a) CpT q is linear isometry DpCpT qq “ RpT ` iIq onto RpCpT qq “ RpT ´ iIq.

(b) I ´ CpT q “ 2ipT ` iIq´1, and so I ´ CpT q is one-to-one and RpI ´ CpT qq “ DpT q. The end of lectures of week 13

(c) T “ ipI ` CpT qqpI ´ CpT qq´1.

(d) CpT q is closed ô T is closed ô DpCpT qq is closed ô RpCpT qq is closed.

Remark: proof of part (d) in Theorem 124 was omitted.

Theorem 125. Let H be a Hilbert space and U isometry from DpUq onto RpUq. Let I ´ U be one-to-one. Then T “ ipI `

UqpI ´ Uq´1 is symmetric and CpT q “ U . Moreover, T is densely defined if and only if RpI ´ Uq is dense.

Theorem 126. Let H be a Hilbert space.

(a) Let T be a symmetric operator in H and CpT q its Cayley transform. Then T is self-adjoint if and only if CpT q is unitary.

(b) Let U be a unitary operator on H such that I ´U is one-to-one. Then T “ ipI `UqpI ´Uq´1 is self-adjoint and CpT q “ U .

Definition 127. Let T be a symmetric closed operator in a Hilbert space H . Then numbers

n`pT q “ dim pRngpT ` iIqq
K and n´pT q “ dim pRngpT ´ iIqq

K

are called deifiency indices of the operator T .

Theorem 128. Let T be a symmetric closed densely defined operator in a separable Hilbert space H . Then the following
assertions hold.

(a) Operator T is self-adjoint if and only if n`pT q “ n´pT q “ 0.

(b) Operator T is maximally symmetric if and only if mintn`pT q, n´pT qu “ 0.

(c) Operator T has self-adjoint extension if and only if n`pT q “ n´pT q.

Remark: proof of part (b) in Theorem 128 was omitted.

4. Integral of unbounded function with respect to a spectral measure
Theorem 129. Let H be a Hilbert space, pX,Aq measurable space, E spectral measure for pX,A, Hq and f : X Ñ C be
A-measurable function. Then

D “ tx P H;

ż

X

|f |2 dEx,x ă `8u.

is dense subspace of H and there exists a unique operator T defined on D such that

xTx, yy “

ż

X

fpλqdEx,ypλq, x, y P D. (2)

Moreover, we have

}Tx} “

d

ż

X

|fpλq|2 dEx,xpλq, x P D (3)

and if f is bounded, then T “
ş

f dE.

Definition 130. Let H be a Hilbert space, pX,Aq measurable space, E spectral measure for pX,A, Hq and f : X Ñ C be
A-measurable function. Then the integral of f with respect to the spectral measure E, is (the unique) operator T in H satisfying

DpT q “ tx P H :

ż

|f |2 dEx,x ă 8u,

xTx, yy “

ż

X

f dEx,y, x, y P DpT q.

Then we denote this operator by the symbol T “
ş

f dE.
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Theorem 131. Let H be a Hilbert space, pX,Aq measurable space, E spectral measure for pX,A, Hq and f, g : X Ñ C be
A-measurable functions. Then the following assertions hold.

(a)
ş

f dE `
ş

g dE Ă
ş

f ` g dE.

(b)
` ş

f dE
˘` ş

g dE
˘

Ă
ş

fg dE and D
`` ş

f dE
˘` ş

g dE
˘˘

“ D
` ş

g dE
˘

X D
` ş

fg dE
˘

.

(c)
` ş

f dE
˘‹

“
ş

f dE and
ş

f dE
` ş

f dE
˘‹

“
ş

|f |2 dE “
` ş

f dE
˘‹ ş

f dE. That is,
ş

f dE is normal.

(d)
ş

f dE is closed.

(e)
ş

f dE P LpHq if and only if there exists A P A satisfying EpXzAq “ 0 and f is bounded on A.

Remark: proofs of parts (a)-(c) in Theorem 131 were omitted.

Theorem 132. Let H be a Hilbert space, pX,Aq measurable space, E spectral measure for pX,A, Hq and f : X Ñ C be
A-measurable function. Then

σp

ż

f dEq “ essRng f :“ tλ P C; @r ą 0: Epf´1pUpλ, rqqq ‰ 0u.

Morevoer, for λ P C we have KerpλI ´
ş

f dEq “ RngpEpf´1ptλuqqq. Thus, λ P σpp
ş

f dEq if and only if Epf´1ptλuqq ‰ 0.

Remark: proof of Theorem 132 was omitted.
The end of the lectures of week 14

5. Spectral decomposition of self-adjoint operators
Lemma 133. Let H be a Hilbert space, pX,Aq and pY,Bq be measurable spaces, E spectral measure for pX,A, Hq and
φ : X Ñ Y measurable function. Then the mapping φpEq : B Ñ LpHq defined as

φpEqpAq “ Epφ´1pAqq, A P B

is spectral measure for pY,B, Hq such that for every A-measurable g : Y Ñ C we have
ż

g dφpEq “

ż

g ˝ φdE.

Moreover,
ş

φdE “
ş

IddφpEq.

Theorem 134. Let T be self-adjoint operator in a nontrivial Hilbert space H . Then there exists unique spectral measure E for
pC,BorpCq, Hq such that T “

ş

IddE.
For this spectral measure E we have EpCzσpT qq “ 0.

Remark: proof of uniqueness in Theorem 134 is not required for the oral exam.

Corollary 135. Let T be self-adjoint operator on a Hilbert space. Then T is continuous if and only if σpT q is bounded.

The end of the lectures of week 15
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