1. Easier and essential exercises: Prove the following assertions (once you prove those, we will use those as "known facts")
Fact 1. Let X be a vector space and $A \subset X$. Then A is absolutely convex if and only if $\alpha x+\beta y \in A$ for every $x, y \in A$ and $\alpha, \beta \in \mathbb{K}$ with $|\alpha|+|\beta| \leq 1$. Moreover, we have

$$
\text { aconv } A=\left\{\sum_{i=1}^{n} \lambda_{i} x_{i}: x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{K}, \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq 1, n \in \mathbb{N}\right\}
$$

Fact 2. Let X be TVS, $a \in X$ and $\lambda \in \mathbb{K} \backslash\{0\}$. Then the operations $x \mapsto x+a$ and $x \mapsto \lambda x$ are homeomorphisms of X onto X. Moreover, for every $x \in X$ we have $\tau(x)=x+\tau(0)$.
Fact 3. Let X be TVS.
(a) If $G \subset X$ is open and $A \subset X$ arbitrary, then $A+G$ is open.
(b) If $F \subset X$ is closed and $K \subset X$ compcat, then $F+K$ is closed.
(c) If $K, L \subset X$ are compact, then $K+L$ is compact.

Fact 4. Let X be TVS and $A, B \subset X$. Then $\bar{A}=\bigcap\{A+U: U \in \tau(0)\}$.
Fact 5. Let X be TVS and $A, B \subset X$. Then
(a) $\bar{A}+\bar{B} \subset \overline{A+B}$ and $\operatorname{Int} A+\operatorname{Int} B \subset \operatorname{Int}(A+B)$.
(b) $\lambda \bar{A}=\overline{\lambda A}$ for every $\lambda \in \mathbb{K} \backslash\{0\}$ and if A is subspace, then \bar{A} is subspace.

Fact 6. Let X be TVS and $A \subset X$. Then $\overline{\operatorname{span}} A=\overline{\operatorname{span} A}, \overline{\operatorname{conv}} A=\overline{\operatorname{conv} A}$ and $\overline{\operatorname{aconv}} A=\overline{\operatorname{aconv} A}$.
2. Further exercises: a) Let $X \neq\{0\}$ be a vector space and τ be the discrete topology on X. Prove that then addition is continuous, but multiplication is not continuous.
b) Prove that on \mathbb{R}^{2} there is a topology τ such that addition is separately continuous, but not continuous. (Hint: consider topology whose basis of neighborhoods of the origin is given by sets $\{(0,0)\} \cup\{(x, y):|y|<|x|<r\}, r>0)$. c) We say that $(X,\|\cdot\|)$ is a quasi-normed linear space, if X is a vector space and $\|\cdot\|: X \rightarrow[0, \infty)$ is a mapping satisfying all the axioms on the norm with the exception that triangle inequality is replaced by the following weaker condition

$$
\exists C \geq 0 \forall x, y \in X: \quad\|x+y\| \leq C(\|x\|+\|y\|)
$$

For $x \in X$ and $r>0$ put $U(x, r):=\{y \in X:\|x-y\|<r\}$. Prove that there is a unique topology τ on X such that (X, τ) is HTVS and $\{U(0, r): r>0\}$ is basis of neighborhoods of 0 .
d) Prove that ℓ_{p} for $0<p<1$ is HTVS with respect to topology given by the metric $d(x, y)=\|x-y\|_{p}^{p}:=$ $\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}$ (Hint: in order to check that d is indeed a metric, note that we have $a \leq a^{p}$ for $a \in(0,1)$ which implies $(t+s)^{p}=\frac{t}{t+s}(t+s)^{p}+\frac{s}{t+s}(t+s)^{p} \leq t^{p}+s^{p}$ for every $\left.t, s>0\right)$.
e) Prove that ℓ_{p} for $0<p<1$ is not locally convex. (Hint: realize that for small $\delta>0$ we have that $\left\|\delta e_{i}\right\|_{p}$ is small while for the natural convex combinations we obtain that $\left\|\sum_{i=1}^{n} \frac{1}{n} \delta e_{i}\right\|_{p}$ is big).
f) Prove that $\left.L_{p}([0,1])\right)$ for $0<p<1$ is HTVS with respect to topology given by the metric $d(f, g)=\|f-g\|_{p}^{p}:=$ $\int_{0}^{1}|f(t)-g(t)|^{p} \mathrm{~d} t$. Moreover, prove that $L_{p}([0,1])$ is not locally convex.
g) Consider the vector space $X=\{f:[0,1] \rightarrow \mathbb{K}: f$ measurable $\}$ with metric $\rho(f, g)=\int_{0}^{1} \min \{|f-g|, 1\} \mathrm{d} \lambda$ (we identify functions equal almost everywhere). Prove that X endowed with the topology given by the metric ρ is HTVS, which is not locally convex (Hint: show that conv $U(0, r)=X$ for every $r>0$). Moreover, prove that a sequence $\left\{f_{n}\right\} \subset X$ converges to $f \in X$ in metric ρ if and only if $f_{n} \rightarrow f$ in measure.

Suitable for credit: exercises 2.b, 2.f, 2.g

1. Easier and essential exercises:

a) Let $(X,\|\cdot\|)$ be a normed linear space. Prove that $\mu_{U(0,1)}(x)=\|x\|=\mu_{B(0,1)}(x)$ for every $x \in X$.
b) Let X be a vector space, $A \subset X$ such that span $A=X$ and consider the Minkowski functional $\mu_{\text {aconv } A}$. Prove that for every $x \in X$ we have

$$
\mu_{\text {aconv } A}(x)=\inf \left\{\sum_{i=1}^{n}\left|a_{i}\right|: \sum_{i=1}^{n} a_{i} x_{i}=x, a_{i} \in \mathbb{K}, x_{i} \in A, n \in \mathbb{N}\right\} .
$$

Now, put $N:=\left\{x \in X: \mu_{\text {aconv } A}(x)=0\right\}$ and consider the vector space $Z:=X / N$ (quotient of X by points for which $\left.\mu_{\text {aconv } A}(x)=0\right)$. Prove that $\|\cdot\|: Z \rightarrow[0, \infty)$ given by the formula $\|x+N\|:=\mu_{\text {aconv } A}(x), x \in X$ defines a norm on the vector space Z.
c) Prove that \mathbb{K}^{I} is metrizable if and only if I is countable.
2. Further exercises: a) Find an example of a quasi-norm $\|\cdot\|$ and a balanced neighborhood U of 0 in $\left(\mathbb{R}^{2},\|\cdot\|\right)$ such that the corresponding Minkowski functional μ_{U} is not continuous.
(Hint: Note that given a quasi-norm $\|\cdot\|$ on \mathbb{R}^{2}, we have $\mu_{U(0,1)}(\cdot)=\|\cdot\|$, so it suffices to find a discontinuous quasi-norm. Consider now the quasi-norm given by the fomula $\|(x, y)\|:=|x|+|y|$ if $y \neq 0$ and $\|(x, 0)\|:=2|x|)$
b) Using Theorem 7, prove that for any TVS X the following holds
(i) X is completely regular;
(ii) if X has countable basis of neighborhoods of 0 , then it is metrizable by a translation invariant metric.
c) Let X be TVS, $A \subset X$ balanced neighborhood of 0 . Prove that the following conditions are equivalent
(i) μ_{A} is continuous;
(ii) For every $x \in \bar{A}$ we have $\{t x: t \in[0,1)\} \subset \operatorname{Int} A$;
(iii) $\operatorname{Int} A=\left\{x: \mu_{A}(x)<1\right\}$ and $\bar{A}=\left\{x: \mu_{A}(x) \leq 1\right\}$.
3. Harder exercises (not intended for exams): a) Prove the following Theorem.

Theorem 7. Let X be TVS and $\left(V_{n}\right)_{n \in \mathbb{N}}$ a sequence of balanced neighborhoods of 0 satisfying $V_{n+1}+V_{n+1} \subset V_{n}$, $n \in \mathbb{N}$. Then there exists a continuous mapping $p: X \rightarrow[0, \infty)$ such that
(i) $p(x)=0$ if and only if $x \in \bigcap_{n \in \mathbb{N}} V_{n}$;
(ii) $p(\alpha x) \leq p(x)$ whenever $|\alpha| \leq 1$ and $x \in X$;
(iii) $p(x+y) \leq p(x)+p(y)$ for every $x, y \in X$;
(iv) for every $n \in \mathbb{N}$ we have $\left\{x \in X: p(x)<2^{-n}\right\} \subset V_{n} \subset\left\{x \in X: p(x) \leq 2^{-n}\right\}$.

Sketch of the proof. Given finite nonempty $F \subset \mathbb{N}$ we put $q_{F}:=\sum_{n \in F} 2^{-n}$ and $V_{F}:=\sum_{n \in F} V_{n}$ and define $p: X \rightarrow$ $[0, \infty)$ by the formula

$$
p(x):= \begin{cases}\inf \left\{q_{F}: x \in V_{F}\right\} & \text { if } x \in \bigcup_{\emptyset \neq F \subset \mathbb{N} \text { finite }} V_{F}, \\ 1 & \text { otherwise } .\end{cases}
$$

First, prove the property (ii). Next, prove that $q_{F_{1}}<q_{F_{2}}$ implies $V_{F_{1}} \subset V_{F_{2}}$ and deduce properties (i) and (iv). Finally, prove that $q_{F_{1}}+q_{F_{2}}=q_{F}$ implies $V_{F_{1}}+V_{F_{2}} \subset V_{F}$ (inductively with respect to $|F|$) and deduce property (iii) and continuity of p.
b) Let $0 \notin A \subset \mathbb{R}^{n}$ be a finite set satisfying span $A=\mathbb{R}^{n}$ such that no two elements of A are scalar multiples of each other. Let $p: \mathbb{R}^{n} \rightarrow[0, \infty)$ be a pseudonorm. Prove that for every $\varepsilon>0$ there exists a norm $\|\cdot\|$ on \mathbb{R}^{n} satisfying that $\max _{a \in A}|\|a\|-p(a)|<\varepsilon$ and $\|a\| \in \mathbb{Q}$ for every $a \in A$.

Suitable for credit: exercises 2.a, 2.b, 2.c, 3.b

1. Easier and essential exercises:

a) Let X be a normed linear space and $A \subset X$. Prove that A is bounded as a subset of TVS X, if and only if it is bounded with respect to the metric generated by the norm.
b) Prove that \mathbb{K}^{I} is normable if and only if I is finite.
c) Let X be a TVS and $A \subset X$. Prove that
(i) If A is compact, then it is bounded.
(ii) If A is bounded, then \bar{A} is bounded.
(iii) If A is bounded and X is LCS, then conv A and aconv A are bounded.
2. Further exercises: a) For $p \in(0,1)$ find a sequence $\left(c_{n}\right) \in \mathbb{R}^{\mathbb{N}}$ such that the set $\left\{c_{n} e_{n}\right\} \cup\{0\}=: K \subset \ell_{p}$ is compact (and therefore bounded), but conv K is not bounded (Hint: consider convex combinations $\sum_{n=1}^{m} \frac{1}{m} c_{n} e_{n}$).
b) Consider the vector space $X=C^{\infty}([0,1])$ endowed with the topology τ generated by pseudonorms

$$
\nu_{N}(f):=\max _{n \leq N}\left\|f^{(n)}\right\|_{\infty}, \quad N \in \mathbb{N} \cup\{0\}
$$

Prove that (X, τ) is metrizable LCS which is not normable.
c) Prove that $L_{p}([0,1])^{*}=\{0\}$ for every $p \in(0,1)$ (Hint: given $0 \neq \phi \in L_{p}([0,1])^{*}$, the set $\phi^{-1}(-1,1) \neq L_{p}([0,1])$ is convex open neighborhood of 0 ; so it suffices to prove that for any $r>0$ we have $\left.\operatorname{conv} U(0, r)=L_{p}([0,1])\right)$.
d) Fix $p \in(0,1)$. Consider the mapping $I: \ell_{\infty} \rightarrow\left(\ell_{p}\right)^{*}$ defined as $I(x)(y):=\sum_{n=1}^{\infty} x_{n} y_{n}$ for $x \in \ell_{\infty}$ and $y \in \ell_{p}$. Prove that I is isometry onto ℓ_{p} and show that $\left(\ell_{p}\right)^{*}$ separate the points of ℓ_{p}.
3. Bonus exercises (not intended for exams): a) Pick $p \in(0,1)$. We say that $(X,\|\cdot\|)$ is a p-normed linear space, if X is a vector space and $\|\cdot\|: X \rightarrow[0, \infty)$ is a mapping satisfying all the axioms on the norm with the exception that triangle inequality is replaced by the following weaker condition

$$
\forall x, y \in X: \quad\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p} .
$$

If $\left(X,\|\cdot\|^{p}\right)$ is complete metric space (where by $\|\cdot\|^{p}$ we denote the metric $\left.(x, y) \mapsto\|x-y\|^{p}\right)$, we say $(X,\|\cdot\|)$ is a p-Banach space. Prove that any p-normed linear space is quasi-normed space and that $\left(\ell_{p},\|\cdot\|_{p}\right)$ is p-Banach space, where $\|x\|_{p}:=\sqrt[p]{\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}}$.
b) Let $p \in(0,1)$ and $(X,\|\cdot\|)$ be a p-Banach space such that X^{*} separates the points of X. Let $|\cdot|$ be the Minkowski functional of the set aconv $U_{X}(0,1)$.
(i) Prove that $|\cdot|$ is a norm on X.
(ii) Let us denote by \widehat{X} the completion of $(X,|\cdot|)$. Prove that the mapping $I: X \rightarrow \widehat{X}$ defined by $I(x)=x, x \in X$ is continuous and $|I(x)| \leq\|x\|$.
(iii) Prove that whenever Y is a Banach space and $T: X \rightarrow Y$ is linear and continuous satisfying $\|T x\| \leq C\|x\|$ for $x \in X$, then there exists a unique $\widehat{T}: \widehat{X} \rightarrow Y$ satisfying $\widehat{T} \circ I=T$ and $\|\widehat{T}\| \leq C$.
(iv) Prove that the property (iii) characterizes the Banach space \widehat{X} up to isometry. That is, if \widetilde{X} is a Banach space for which there exists $\widetilde{I}: X \rightarrow \widehat{X}$ continuous onto dense subspace such that for any Y Banach and $T: X \rightarrow Y$ there is $T^{\prime}: \widetilde{X} \rightarrow Y$ satisfying $\left\|T^{\prime}\right\|=\|T\|$, then \widetilde{X} is linearly isometric to \widehat{X}.
We say that \widehat{X} is the Banach envelope of X.
c) Prove that the Banach envelope of the p-Banach space ℓ_{p} is the Banach space ℓ_{1}.

Suitable for credit: exercises 2.b, 2.a+d, 3.b, 3.c

1. Easier and essential exercises:

a) Prove that any cauchy net in a complete metric space is convergent.
b) Let X be TVS and $A, B \subset X$ totally bounded. Prove that $A \cup B, A+B, \bar{A}$ are totally bounded.
c) Let X be TVS. Prove that $A \subset X$ is totally bounded if and only if for every $U \in \tau(0)$ there exists a finite set $F \subset X$ such that $A \subset F+U$. Deduce that subsets of totally bounded sets are totally bounded.
d) Let X be LCS and $A \subset X$ totally bounded. Then conv A and aconv A are totally bounded.
2. Further exercises: In exercises below work only with spaces over \mathbb{R}.
a) Let X be an infinite-dimensional normed linear space. Find two disjoint convex sets $A, B \subset X$ which are both dense and deduce that there does not exist $x^{*} \in X^{*} \backslash\{0\}$ satisfying $\sup _{A} \operatorname{Re} x^{*} \leq \inf _{B} \operatorname{Re} x^{*}$. (Hint: use the existence of discontinuous linear forms)
b) Let $X=c_{0}$. Put $A=\left\{z \in c_{0}: z_{n} \geq 0\right.$ for every $\left.n\right\}$ and $B=\left\{\left(\frac{t}{n^{2}}-\frac{1}{n}\right)_{n=1}^{\infty}: t \in \mathbb{R}\right\}$. Prove that A, B are disjoint closed convex sets, but there does not exist $x^{*} \in X^{*} \backslash\{0\}$ satisfying $\sup _{B} x^{*} \leq \inf _{A} x^{*}$. (Hint: pick $f \in\left(c_{0}\right)^{*}=\ell_{1}$ satisfying $\sup _{B} f \leq \inf _{A} f$. Prove that $f \geq 0$ on A and so $\inf _{A} f=0$, deduce that $f(n) \geq 0$ for every n. Then show that $\sup _{B} f \leq 0$ implies $f\left(\left(\frac{1}{n^{2}}\right)_{n=1}^{\infty}\right)=0$ which in turn implies that $f(n)=0$ for every $\left.n\right)$
c) If D is a non-empty convex subset of a Banach space X so that $0 \notin \bar{D}$, then there is $x^{*} \in S_{X^{*}}$ such that

$$
\inf \left\{x^{*}(x): x \in D\right\}=\inf \{\|x\|: x \in D\} .
$$

(Hint: put $\eta=\inf \{\|x\|: x \in D\}$ and use Hahn-Banach to separate $U(0, \eta)$ from D)
d) Fix $p \in(0,1)$. Find a closed subspace $M \subset \ell_{p}$ and $x^{*} \in M^{*}$ such that there does not exist $\varphi \in\left(\ell_{p}\right)^{*}$ satisfying $\varphi \supset x^{*}$.
(Hint: pick a sequence $\left(x_{n}\right)$ in ℓ_{p} such that the points x_{n} have disjoint supports, $\left\|x_{n}\right\|_{p}=1$ and $\left\|x_{n}\right\|_{1} \rightarrow 0$. Then prove that $e_{n} \mapsto x_{n}$ induces isometry between ℓ_{p} and $M:=\overline{\operatorname{span}}\left\{e_{n}: n \in \mathbb{N}\right\}$. Pick $x^{*} \in M^{*}$ satisfying $x^{*}\left(e_{n}\right)=1$ for every $n \in \mathbb{N}$. Finally, show that for every $\varphi \in\left(\ell_{p}\right)^{*}$ we have $\varphi\left(x_{n}\right) \rightarrow 0$.)
e) Prove that the Schwartz space $\mathcal{S}\left(\mathbb{R}^{d}\right)$ is Fréchet space (for the purpose of this exercise, proof it just for $d=1$).
3. Bonus exercises (not intended for exams): a) Let (X, d) be a metric TVS with d being translation invariant. Prove that there exists a completion of X, that is, an F-space \widetilde{X} whose topology is generated by a translation invariant metric d^{\prime} and a linear isometry $I: X \rightarrow \widetilde{X}$ such that $\overline{I(X)}=\widetilde{X}$.
(Hint: consider

$$
Y:=\left\{\left(x_{n}\right):\left(x_{n}\right) \text { is cauchy sequence in } X\right\}
$$

and for $\left(x_{n}\right) \in Y$ put $\left[\left(x_{n}\right)\right]:=\left\{\left(y_{n}\right) \in Y: \lim d\left(x_{n}, y_{n}\right)=0\right\}$. Then put $\widetilde{X}:=\left\{\left[\left(x_{n}\right)\right]:\left(x_{n}\right) \in Y\right\}$, endow it with metric $d\left(\left[\left(x_{n}\right)\right],\left[\left(y_{n}\right)\right]\right):=\lim d\left(x_{n}, y_{n}\right)$ and natural vector operations + and \cdot. The mapping $I: X \rightarrow \widetilde{X}$ will be given by $I(x)=[(x, x, x, \ldots)]$.)
b) Let (X, τ) be a TVS metrizable by a complete metric. Prove that it is an F-space.
(Hint: pick a translation invariant metric ρ generating the topology τ. Prove that (X, ρ) is G_{δ} (and therefore comeager) in its completion (\widetilde{X}, ρ) and deduce that for any $x_{0} \in \widetilde{X}$ we have $\left(x_{0}+X\right) \cap X \neq \emptyset$.

In order to prove that (X, ρ) is G_{δ} in its completion, pick ρ^{\prime} generating τ such that $\left(X, \rho^{\prime}\right)$ is complete. For every $n \in \mathbb{N}$ and $x \in X$ pick $r_{n}(x)<\frac{1}{n}$ satisfying $U_{\rho}\left(x, r_{n}(x)\right) \subset U_{\rho^{\prime}}\left(x, \frac{1}{n}\right)$. Finally, show that $X=\bigcap G_{n}$, where $G_{n}=\bigcup_{x \in X} U_{\rho}\left(x, r_{n}(x)\right)$ are open sets in $\left.(\widetilde{X}, \rho).\right)$

Suitable for credit: exercises 2.b, 2.c, 2.d

1. Easier and essential exercises:

a) Let X be a Banach space. Prove that the canonical isometry $\varepsilon: X \rightarrow X^{* *}$ is homeomorphism from (X, w) into $\left(X^{* *}, w^{*}\right)$.
b) Let X, Y be Banach spaces, $\left(T_{i}\right)$ a bounded net of linear operators from $\mathcal{L}(X, Y), T \in \mathcal{L}(X, Y)$ and $D \subset X$ such that $\overline{\operatorname{span}} D=X$. Prove that then $T_{i} x \rightarrow T x$ for every $x \in X$ if and only if $T_{i} x \rightarrow T x$ for every $x \in D$.

As a corollary deduce the following:
(i) Pick $p \in[1, \infty]$ and consider $X=\ell_{p}(\Gamma)$ as a dual space with respect to the standard duality (that is, $\ell_{q}(\Gamma)^{*}=$ $\ell_{p}(\Gamma)$ for $p \in(1, \infty]$ and $\left.c_{0}(\Gamma)^{*}=\ell_{1}(\Gamma)\right)$. Then for a bounded net $\left(x_{i}\right)$ in X and $x \in X$ we have that $x_{i} \xrightarrow{w^{*}} x$ if and only if $x_{i}(\gamma) \rightarrow x(\gamma), \gamma \in \Gamma$.
(ii) Pick $p \in(1, \infty)$ and consider $X=\ell_{p}(\Gamma)$ or $X=c_{0}$. Then for a bounded net $\left(x_{i}\right)$ in X and $x \in X$ we have that $x_{i} \xrightarrow{w} x$ if and only if $x_{i}(\gamma) \rightarrow x(\gamma), \gamma \in \Gamma$.
c) Let $X=C([0,1])$ and consider three topologies on X - norm topology $\|\cdot\|$, weak topology w and the topology of pointwise convergence τ_{p}. Prove that
(i) There exists a sequence in X which is τ_{p}-convergent, but not bounded in norm.
(ii) A sequence in X is weak convergent if and only if it is norm bounded and τ_{p}-convergent.

2. Further exercises:

a) Let $p \in(1, \infty)$. Find an example of a sequence $\left(x_{n}\right)$ in ℓ_{p} such that $x_{n}(k) \rightarrow 0$ for every $k \in \mathbb{N}$, but x_{n} does not converge to 0 weakly. (Hint: consider $x_{n}=\exp (n) \cdot e_{n}$)
b) Let X, Y be Banach spaces and $T \in \mathcal{L}\left(Y^{*}, X^{*}\right)$. Prove that $T=S^{*}$ for some $S \in \mathcal{L}(X, Y)$ if and only if T is $w^{*}-w^{*}$ continuous.
c) Let X be an infinite-dimensional Banach space. Prove that any neighborhood of 0 in the weak topology contains a non-trivial subspace of X. Deduce that ${\overline{S_{X}}}^{w}=B_{X}$ and then deduce that $\overline{S_{X^{*}}} w^{*}=B_{X^{*}}$.
d) Let X be a Banach space. Prove that $\operatorname{dim} X<\infty$ if and only if weak topology on X coincides with the norm topology if and only if weak star topology on X^{*} coincides with the norm topology.
e) Let X be an infinite-dimensional Banach space. Find a net $\left(x_{i}\right)$ in X which is weakly convergent to 0 , but not bounded.
(Hint: let us denote the weak topology by τ_{w}. Using 2.c above, for any $U \in \tau_{w}(0)$ pick $f_{U} \in X^{*} \backslash\{0\}$ with $\mathbb{R} f \subset U$. Consider the partially ordered set $\mathcal{I}=\left\{(U, n): U \in \tau_{w}(0), n \in \mathbb{N}\right\}$ such that $(U, n) \leq\left(U^{\prime}, n^{\prime}\right)$ iff $U \supset U^{\prime}$ and $n \leq n^{\prime}$. Finally, consider the net $\left(n f_{U}\right)_{(U, n) \in \mathcal{I}}$.)

3. Bonus exercises (not intended for exams):

a) Let X be a Banach space, $C>0$ and $f, g \in S_{X^{*}}$. Suppose that $\left\|\left.f\right|_{\text {ker } g}\right\| \leq C$. Prove that there exists $\alpha \in \mathbb{K}$ with $|\alpha|=1$ such that $\|f-\alpha g\| \leq 2 C$.
(Hint: for $C \geq 1$ it is trivial, so suppose $C<1$. Pick the Hahn-Banach extension $x^{*} \in X^{*}$ of $\left.f\right|_{\operatorname{ker} g} \in(\operatorname{ker} g)^{*}$. Because $\operatorname{ker} g \subset \operatorname{ker}\left(f-x^{*}\right)$, there is $\beta \in \mathbb{K}$ satisfying $f-x^{*}=\beta g$. Show that it suffices to put $\alpha=\frac{\beta}{|\beta|}$.)
b) Let X be a Banach space and $f \in X^{* *}$. Prove that $f \in \varepsilon(X)$ if and only if $\left.f\right|_{B_{X^{*}}}$ is w^{*}-continuous.
(Hint: One implication follows directly from a theorem from the lecture. For the other one, assume that $\left.f\right|_{B_{X^{*}}}$ is w^{*}-continuous, without loss of generality assume that $\|f\|=1$. For $\eta \in(0,1)$ consider the sets $A_{\eta}:=\left\{x^{*} \in\right.$ $\left.B_{X^{*}}: \operatorname{Re} f\left(x^{*}\right) \geq \eta\right\}$ and $B_{\eta}:=\left\{x^{*} \in B_{X^{*}}: \operatorname{Re} f\left(x^{*}\right) \leq-\eta\right\}$, those sets are w^{*}-compact, disjoint and convex, so there is $x \in X$ such that for $g=\varepsilon(x)$ we have $\sup _{A_{\eta}} \operatorname{Re} g<\inf _{B_{\eta}} \operatorname{Re} g$. Deduce that $\left\|\left.f\right|_{\text {ker }^{g}}\right\| \leq \eta$ and use the previous exercise to show that f is in the closure of $\kappa(X)$, so it is in $\kappa(X)$.)

Suitable for credit: exercises $2 . \mathrm{c}+\mathrm{d}, 2 . \mathrm{a}+\mathrm{e}, 3 . \mathrm{a}+\mathrm{b}$

If not said otherwise, $\Omega \subset \mathbb{R}^{d}$ is a an open nonempty set and on $\mathcal{D}(\Omega)$ we consider the topology τ from Theorem 64 .
Definition. Say that a sequence $\left(x_{n}\right)$ in a TVS X is cauchy if for every $U \in \tau(0)$ there exists $n_{0} \in \mathbb{N}$ satisfying $x_{n}-x_{m} \in U$ for every $n, m \geq n_{0}$. We say X is sequentially complete if every cauchy sequence is convergent.

1. Easier and essential exercises:

a) Prove that τ is the biggest locally convex topology on $\mathscr{D}(\Omega)$ such that the inclusion $i_{K}:\left(\mathscr{D}(K), \tau_{K}\right) \rightarrow(\mathscr{D}(\Omega), \tau)$ is continuous mapping for any compact set $K \subset \Omega$.
b) Prove that the inclusion $i:\left(\mathscr{D}\left(\mathbb{R}^{d}\right), \tau\right) \rightarrow\left(C^{\infty}\left(\mathbb{R}^{d}\right), \tau_{C^{\infty}}\right)$ is continuous mapping.

2. Further exercises:

a) Find a sequence $\left(f_{n}\right)$ in $\mathscr{D}(\mathbb{R})$ such that $f_{n} \xrightarrow{\tau_{C \infty}} 0$, but f_{n} is not convergent in $\mathscr{D}(\mathbb{R})$.
(Hint: Pick some $\psi \in \mathscr{D}(\mathbb{R})$ with $\operatorname{supp} \psi \supset[-1,1]$ and put $\left.f_{n}(x):=\frac{1}{n} \psi\left(\frac{x}{n}\right)\right)$
b) Find a sequence $\left(f_{n}\right)$ in $\mathscr{D}(\mathbb{R})$ and $f \in C^{\infty}(\mathbb{R}) \backslash \mathscr{D}(\mathbb{R})$ such that $f_{n} \xrightarrow{\tau_{C}^{\infty}} f$. Deduce that $\left(\mathscr{D}(\mathbb{R}), \tau_{C^{\infty}}\right)$ is not sequentially complete.
(Hint: Pick $\psi \in \mathscr{D}(\mathbb{R})$ satisfying $\operatorname{supp} \psi=[0,1]$ and show that $f_{n}(x):=\sum_{i=1}^{n} \frac{\psi(x-i)}{i^{2}}$ is cauchy in $C^{\infty}(\mathbb{R})$ and let f be the limit of $\left(f_{n}\right)$ in $C^{\infty}(\mathbb{R})$)
c) Prove that $\mathscr{D}(\Omega)$ is sequentially complete.
d) Let $K \subset \Omega$ be compact with nonempty interior, $x \in \operatorname{Int} K, N \in \mathbb{N}, \varepsilon>0$ and $M>0$. Find $\varphi \in \mathscr{D}(K), \varphi \geq 0$ such that $\|\varphi\|_{N}<\varepsilon$ and $D^{(\alpha)} \varphi(x)=0$ whenever $|\alpha| \leq N$, but there is $\beta \in \mathbb{N}_{0}^{d},|\beta|=N+1$ with $\left|D^{(\beta)} \varphi(x)\right|>M$.
(Hint: show that it suffices to handle the case when $x=0$ and dimension $d=1$. In this special case use $\varphi(t)=t^{N+1} \phi(t)$ for a suitable function ϕ)
3. Bonus exercise (not intended for exams): Consider the set

$$
V:=\left\{f \in \mathscr{D}(\mathbb{R}):\left|f(k) f^{(k)}(0)\right|<1 \text { for every } k \in \mathbb{N}\right\}
$$

Prove that
(i) If $f \in V$ and $W \subset \mathscr{D}(\mathbb{R})$ is an absolutely convex set satisfying $W \cap \mathscr{D}(K) \in \tau_{K}(0)$ for every compact $K \subset \mathbb{R}$, then $(f+W) \backslash V \neq \emptyset$. In particular, the set $\mathscr{D}(\mathbb{R}) \backslash V$ is dense in $\mathscr{D}(\mathbb{R})$.
(Hint: By the assumption there are $N(n) \in \mathbb{N}$ and $\varepsilon(n)>0$ such that

$$
\left.U_{n}:=U_{\|\cdot\|_{N(n)}, \varepsilon(n)}=\left\{f \in \mathscr{D}([-n, n]):\|f\|_{N(n)}<\varepsilon(n)\right\} \subset W \cap \mathscr{D}([-n, n]]\right) .
$$

Put $N:=N(1)$ and find $g \in U_{N+1}$ satisfying $\left|f(N+1)+\frac{1}{2} g(N+1)\right|>0$ and $|g(N+1)|>0$. Observe that by 2.d for any $M>0$ there exists $\varphi \in U_{1}$ satisfying $\left|\varphi^{N+1}(0)\right|>M$. Use this observation to show that if M is big enough, we obtain $\left.f+\frac{\varphi+g}{2} \in(f+W) \backslash V.\right)$
(ii) $V \cap \mathscr{D}(K) \in \tau_{K}(0)$ for every compact $K \subset \mathbb{R}$, but V is not a neighborhood of zero in $\mathscr{D}(\mathbb{R})$.
(iii) The set $\mathscr{D}(\mathbb{R}) \backslash V$ is sequentially closed in $(\mathscr{D}(\mathbb{R}), \tau)$, that is, every convergent sequence of points from $\mathscr{D}(\mathbb{R}) \backslash V$ has the limit in the set $\mathscr{D}(\mathbb{R}) \backslash V$.

Deduce that there exists $f \in \overline{\mathscr{D}(\mathbb{R}) \backslash V}$, which is not a limit of a sequence of functions from $\mathscr{D}(\mathbb{R}) \backslash V$. In particular, $\mathscr{D}(\mathbb{R})$ is not metrizable.

Suitable for credit: exercises 2.a+b, 2.c, 2.d, 3.

1. Essential exercises:

a) Let $\Lambda_{\log |x|}$ be the regular distribution on \mathbb{R} corresponding to the locally integrable function $\log |x|$. Prove that its derivative $\left(\Lambda_{\log |x|}\right)^{\prime}$ is the distribution $\Lambda_{\frac{1}{x}}$ on \mathbb{R} given by the formula

$$
\Lambda_{\frac{1}{x}}(\varphi):=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R} \backslash(-\varepsilon, \varepsilon)} \frac{\varphi(x)}{x} \mathrm{~d} x, \quad \varphi \in \mathscr{D}(\mathbb{R})
$$

and moreover we have $x \Lambda_{\frac{1}{x}}=\Lambda_{1}$.

2. Further exercises:

a) Which of the following formulas define a distribution on \mathbb{R} and which define a distribution on ($0, \infty$)? If the formula defines a distribution find out whether it is of finite order.
(i) $\Lambda(\varphi)=\sum_{n=1}^{\infty} n \varphi^{(n)}(n)$.
(ii) $\Lambda(\varphi)=\sum_{n=1}^{\infty} \frac{1}{n} \varphi\left(\frac{1}{n}\right)$.
(iii) $\Lambda(\varphi)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \varphi^{(n)}\left(\frac{1}{n}\right)$.
(Hint: sometimes it helps to use 2.d from Exercises 6)
b) Let $(a, b) \subset \mathbb{R}$ and $x_{0} \in(a, b)$. Prove that $S \in \mathscr{D}((a, b))$ is a solution of the equation $\left(x-x_{0}\right) S=0$ if and only if there is $c \in \mathbb{K}$ satisfying $S=c \Lambda_{\delta_{x_{0}}}$. Then deduce that $\left(x-x_{0}\right)^{2} S=0$ if and only if $S \in \operatorname{span}\left\{\Lambda_{\delta_{x_{0}}},\left(\Lambda_{\delta_{x_{0}}}\right)^{\prime}\right\}$.
(Hint: For the nontrivial implication in the first part consider $Q: \mathscr{D}(\mathbb{R}) \rightarrow \mathscr{D}(\mathbb{R})$ given by the formula

$$
Q(\psi)(x):=\int_{0}^{1} \psi^{\prime}\left(x_{0}+t\left(x-x_{0}\right)\right) \mathrm{d} t
$$

Prove that Q is well-defined mapping satisfying $\left(x-x_{0}\right) Q(\psi)=\psi$ whenever $\psi\left(x_{0}\right)=0$. Deduce that if $\left(x-x_{0}\right) S=0$ then Ker $\Lambda_{\delta_{x_{0}}} \subset \operatorname{Ker} S$. For the second part, by the first part we have $\left(x-x_{0}\right) S=c \Lambda_{\delta_{x_{0}}}$, then notice that $\left(x-x_{0}\right)\left(\Lambda_{\delta_{x_{0}}}\right)^{\prime}=$ $-\Lambda_{\delta_{x_{0}}}$, and finally apply the already proven part to $S+c\left(\Lambda_{\delta_{x_{0}}}\right)^{\prime}$.)
c) Find all the solutions of the following equations for $S \in \mathscr{D}(\mathbb{R})^{*}$.
(i) $S^{\prime}=\Lambda_{\delta_{x_{0}}}\left(x_{0} \in \mathbb{R}\right)$.
(iii) $(1+x)^{2} S^{\prime \prime}=0$.
(ii) $S^{\prime \prime}=\Lambda_{\delta_{x_{0}}}\left(x_{0} \in \mathbb{R}\right)$.
(iv) $(x-1) S=\Lambda_{1}$.
(Hint: find one "particular solution" and prove that any solution is a particular solution plus general solution of a homogeneous equation .. for the solution of a homogeneous equation use Exercise 2.b) above or Theorem 72)
3. Bonus exercises (not intended for exams): a) Prove that given $f \in C^{\infty}(\mathbb{R})$, distribution $S \in \mathscr{D}(\mathbb{R})^{*}$ solves the equation $S^{\prime}+f S=0$ if and only if $S=c \Lambda_{e^{-F(x)}}$ for some constant $c \in \mathbb{K}$ and some function F satisfying $F^{\prime}=f$. (Hint: prove that we have $\left(e^{F(x)} S\right)^{\prime}=e^{F(x)}\left(S^{\prime}+f S\right)$ so S is the solution of our equation iff $\left(e^{F(x)} S\right)^{\prime}=0$)
b) Prove that for any $S \in \mathscr{D}(\mathbb{R})^{*}$ and $x_{0} \in \mathbb{R}$ there exists $\Lambda \in \mathscr{D}(\mathbb{R})^{*}$ satisfying $\left(x-x_{0}\right) \Lambda=S$.
(Hint: pick any $\phi \in \mathscr{D}(\mathbb{R})$ with $\phi\left(x_{0}\right)=1$ and consider $Q: \mathscr{D}(\mathbb{R}) \rightarrow \mathscr{D}(\mathbb{R})$ given by the formula

$$
Q(\psi)(x):=\int_{0}^{1} \psi^{\prime}\left(x_{0}+t\left(x-x_{0}\right)\right)-\psi\left(x_{0}\right) \phi\left(x_{0}+t\left(x-x_{0}\right)\right) \mathrm{d} t
$$

Prove that Q is well-defined sequentially continuous mapping satisfying $Q\left(\left(x-x_{0}\right) \varphi\right)=\varphi$. Finally, put $\Lambda(\psi):=S(Q(\psi))$ for $\psi \in \mathscr{D}(\mathbb{R})$)

Suitable for credit: exercises 2.a, 2.b, 2.c

1. Essential exercises:

a) Prove that

$$
\Lambda_{1} *\left(\left(\Lambda_{\delta_{0}}\right)^{\prime} * \Lambda_{\chi_{(0, \infty)}}\right) \neq\left(\Lambda_{1} *\left(\Lambda_{\delta_{0}}\right)^{\prime}\right) * \Lambda_{\chi_{(0, \infty)}} .
$$

(that is, prove that all the expressions are well-defined and that the inequality holds)
b) Prove that $\Lambda_{\chi_{(0, \infty)}} * \Lambda_{\chi_{(0, \infty)}}=\Lambda_{\text {id }}$.

2. Further exercises:

a) Given $c>0$, consider the function

$$
f(t, x):=\left\{\begin{array}{ll}
\frac{1}{2 c}, & |x|<c t, \\
0, & \text { otherwise },
\end{array} \quad(t, x) \in \mathbb{R}^{2}\right.
$$

Prove that
(i) Distribution Λ_{f} solves the equation $D^{(2,0)} \Lambda-c^{2} D^{(0,2)} \Lambda=\Lambda_{\delta_{(0,0)}}$.
(ii) Given $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$ satisfying $\operatorname{supp} \varphi \subset \mathbb{R} \times\left(t_{0}, \infty\right)$ for some $t_{0} \in \mathbb{R}$, there exists $g \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that supp $g \subset$ $\mathbb{R} \times\left(t_{0}, \infty\right)$ and $\partial_{t}^{2} g-c^{2} \partial_{x}^{2} g=\varphi$.
(iii) For every $\left(x_{0}, t_{0}\right) \in \mathbb{R}^{2}$ find a distribution Λ satisfying equation $D^{(2,0)} \Lambda-c^{2} D^{(0,2)} \Lambda=\Lambda_{\delta_{\left(x_{0}, y_{0}\right)}}$.
(Note: Λ_{f} is fundamental solution of the "Wave equation")
b) Consider the function

$$
f(t, x):=\left\{\begin{array}{ll}
\frac{1}{\sqrt{4 \pi t}} \exp \left(-\frac{|x|^{2}}{4 t}\right), & t>0, \\
0, & \text { otherwise },
\end{array} \quad(t, x) \in \mathbb{R}^{2}\right.
$$

Prove that
(i) f is locally integrable on \mathbb{R}^{2},
(ii) $\left(\partial_{t} f-\partial_{x}^{2} f\right)(x, t)=0$ whenever $t>0$,
(iii) $\int_{\mathbb{R}} f(t, x) \mathrm{d} x=1$ for every $t>0$,
(Hint: use the well-known value $\int_{-\infty}^{\infty} e^{-x^{2}}=\sqrt{\pi}$),
(iv) Distribution Λ_{f} solves the equation $\partial_{t} \Lambda-\partial_{x}^{2} \Lambda=\Lambda_{\delta_{(0,0)}}$.
(Hint: First, using per partes and (i) show that for every $\varphi \in \mathscr{D}(\mathbb{R})$ we have

$$
\left(\partial_{t} \Lambda-\partial_{x}^{2} \Lambda\right)(\varphi)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{\infty} \int_{\mathbb{R}} f(t, x)\left(\partial_{t} \varphi-\partial_{x}^{2} \varphi\right)(t, x) \mathrm{d} x \mathrm{~d} t=\ldots=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}} f(\varepsilon, x) \varphi(\varepsilon, x) \mathrm{d} x
$$

and then using (ii) and the fact that φ is a Lipchitz map prove that the limit above is equal to $\varphi(0,0)$)
(Note: Λ_{f} is fundamental solution of the "Heat equation")

3. Bonus exercises (not intended for exams):

a) Let $f(x)=\|x\|^{-1}, x \in \mathbb{R}^{3}$. Prove that f is locally integrable on \mathbb{R}^{3} and that the distribution Λ_{f} solves the equation $\triangle \Lambda_{f}=-4 \pi \Lambda_{\delta_{(0,0,0)}}$.
(Note: $-\frac{1}{4 \pi} \Lambda_{f}$ is fundamental solution of the "Laplace equation")
Suitable for credit: exercises 2.a, 2.b, 3.a

1. Essential exercises:

a) Prove that on \mathbb{R} we have $\widehat{\Lambda_{\delta_{0}}}=\frac{1}{\sqrt{2 \pi}} \Lambda_{1}, \widehat{\Lambda_{1}}=\sqrt{2 \pi} \Lambda_{\delta_{0}}$ and $\widehat{\Lambda_{\delta_{a}}}=\frac{1}{\sqrt{2 \pi}} \Lambda_{e^{-i a x}}$ for every $a \in \mathbb{R}$.
b) Let Λ be a tempered distribution on \mathbb{R}. Prove that $\widehat{\widehat{\Lambda}}(\varphi)=\Lambda(\breve{\varphi})$ for every $\varphi \in \mathcal{S}_{1}$.
c) Express on \mathbb{R} the Fourier transform $\widehat{\Lambda_{\cos x}}$ as a linear combination of tempered distributions of the form $\Lambda_{\delta_{a}}, a \in \mathbb{R}$.
(Hint: express cosinus as exponential and use (a) and then (b))

2. Further exercises:

a) Let $f \in L_{1}^{\text {loc }}(\mathbb{R}), f \geq 0$. Prove that if Λ_{f} is tempered distribution, then there are $C>0$ and $N \in \mathbb{N}_{0}$ satisfying

$$
\forall R \geq 1: \quad \int_{-R}^{R} f(x) \mathrm{d} x \leq C(1+R)^{N}
$$

Deduce that $\Lambda_{e^{x}}$ is not a tempered distribution. On the other hand, prove that $\Lambda_{e^{x} \cos \left(e^{x}\right)}$ is tempered distribution.
(Hint: Pick $A>0$ and $N \in \mathbb{N}_{0}$ satisfying $\left|\Lambda_{f}(\phi)\right| \leq A \nu_{N}(\phi), \phi \in \mathscr{D}(\mathbb{R})$. Fix some $\psi \in \mathscr{D}([-2,2])$ satisfying $\left.\psi\right|_{[-1,1]} \equiv 1$, then check that for every $R>0$ we have

$$
0 \leq \int_{-R}^{R} f(x) \mathrm{d} x \leq \int_{-R}^{R} f(x) \psi\left(\frac{x}{R}\right) \mathrm{d} x \leq A \nu_{N}\left(\psi\left(\frac{\dot{B}}{R}\right)\right) \leq \ldots \leq C(1+R)^{N}
$$

For the "on the other hand" part note that we have $\left(\sin \left(e^{x}\right)\right)^{\prime}=e^{x} \cos \left(e^{x}\right)$ and that $\sin \left(e^{x}\right)$ is bounded function)
b) Which of the following formulas define a tempered distribution on \mathbb{R} ?
(i) $\Lambda(\varphi):=\sum_{j=-\infty}^{\infty} j^{2} \varphi(j), \varphi \in \mathscr{D}(\mathbb{R})$.
(iii) $\Lambda(\varphi):=\int_{0}^{10} \frac{\varphi(x)-\varphi(0)}{x} \mathrm{~d} x+\int_{10}^{\infty} \frac{\varphi(x)}{x} \mathrm{~d} x, \varphi \in \mathscr{D}(\mathbb{R})$.
(ii) $\Lambda(\varphi):=\sum_{j=-\infty}^{\infty} e^{j} \varphi(j), \varphi \in \mathscr{D}(\mathbb{R})$.
(Hint: for (ii) use similar strategy as in Exercise 2.a)
c) Prove that for a tempered distribution Λ on \mathbb{R} we have

$$
\Lambda \in \operatorname{span}\left\{\left(\Lambda_{\delta_{0}}\right)^{(n)}: n \in \mathbb{N}_{0}\right\} \Leftrightarrow \widehat{\Lambda} \in\left\{\Lambda_{P}: P \text { is a polynomial }\right\}
$$

d) Let $d \in \mathbb{N}$ and $\left(a_{\alpha}\right)_{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq N}$ be a finite sequence of complex numbers satisfying that the polynom $\sum_{|\alpha| \leq N} a_{\alpha}(i x)^{\alpha}$ does not have root in \mathbb{R}^{d}. Prove that then the only tempered distribution Λ satisfying $\sum_{|\alpha| \leq N} a_{\alpha} D^{\alpha} \Lambda=0$ is $\Lambda=0$.
3. Bonus exercise (not intended for exams): Let Λ be a tempered distribution satisfying the equation $\sum_{|\alpha| \leq N} a_{\alpha} D^{\alpha} \Lambda=$ 0 (where $\left(a_{\alpha}\right)_{|\alpha| \leq N}$ is finite sequence in \mathbb{K}). Consider then the polynomial $P(x)=\sum_{|\alpha| \leq N} a_{\alpha}(i x)^{\alpha}$. Prove that the following holds.
(a) If polynomial P does not have root in \mathbb{R}^{d}, then $\Lambda=0$.
(b) If polynomial P does not have root in $\mathbb{R}^{d} \backslash\{0\}$, then $\Lambda=\Lambda_{Q}$ for some polynomial Q.
(c) Aply the above to prove the following generalization of the Liouville theorem: Let $f \in H(\mathbb{C})$ be a holomorphic function satisfying for some $C>0$ and $N \in \mathbb{N}_{0}$ that $|f(x)| \leq C(1+|x|)^{N}, x \in \mathcal{C}$. Then f is polynomial of degree at most N.
For the proof of (b) you may without proof use the following well-known result.
Theorem 8. Let Λ be a distribution on \mathbb{R}^{d} such that for any $\varphi \in \mathscr{D}\left(\mathbb{R}^{d} \backslash\{0\}\right)$ we have $\Lambda(\varphi)=0$. Then

$$
\Lambda \in \operatorname{span}\left\{D^{\alpha} \Lambda_{\delta_{0}}: \alpha \in \mathbb{N}_{0}^{d}\right\}
$$

Proof. viz. skripta od doc. Johanise a prof. Spurného (Věta 33 on page 136 here:
https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf)
Suitable for credit: exercises 2.a, 2.b, 2.c+d

1. Essential exercises:

a) Consider on an uncountable set I the σ-algebra $\mathcal{A}:=\mathcal{P}(I)$ consisting of all the subsets of I. Prove that the mapping $I \ni i \mapsto e_{i} \in c_{0}(I)$ is borel \mathcal{A}-measurable, but not strongly \mathcal{A}-measurable.
b) Consider the σ-algebra \mathcal{A} consisting of Lebesgue-measurable sets on [0, 1]. Prove that the mapping $[0,1] \ni x \mapsto$ $e_{x} \in \ell_{2}([0,1])$ is weakly \mathcal{A}-measurable, but not borel \mathcal{A}-measurable.

2. Further exercises:

a) Let $(\Omega, \mathcal{A}, \mu)$ be the interval $(0, \infty)$ with the Lebesgue measure, $\psi:(0, \infty) \rightarrow(0, \infty)$ a function and $X=L_{p}(0, \infty)$ for some $p \in(1, \infty]$. Consider the function $\phi:(0, \infty) \rightarrow X$ given by the formula $\phi(t):=\chi_{(0, \psi(t))}, t>0$. Prove that

- If $p \in(1, \infty)$, then ϕ is strongly μ-measurable $\Leftrightarrow \phi$ is weakly μ-measurable $\Leftrightarrow \psi$ is μ-measurable.
(Hint: since X is separable, strong and weak measurability coincide. Next, use without proof the well-known fact that simple functions are dense in L_{q} and deduce that functions of the form $\left\{\chi_{(0, T)}: T>0\right\}$ are linearly dense in X^{*}, so to test weak measurability it suffices to consider functions of the form $\chi_{(0, T)} \in L_{q}=X^{*}$)
- if $p=\infty$, then ϕ is strongly μ-measurable $\Leftrightarrow \psi$ is μ-measurable and there exists a countable set $C \subset(0, \infty)$ such that $\psi(t) \in C$ for a.e. $t \in(0, \infty)$.
(Hint: \Rightarrow to prove measurability of ψ consider functions of the form $\chi_{(0, T)}$ similarly as above, to prove the existence of C note that for characteristic functions in X form a discrete set and use that the range of ϕ is a.e. contained in a separable set; \Leftarrow prove that ϕ is borel μ-measurable and the range of ϕ is a.e. contained in a separable set)
b) In this exercise we work with real Banach spaces, that is, $\mathbb{K}=\mathbb{R}$. Let $(\Omega, \mathcal{A}, \mu)$ be the interval $(0,1)$ with the Lebesgue measure, $\psi:(0, \infty) \rightarrow \mathbb{R}$ a function and $X=L_{p}(0, \infty)$ for some $p \in[1, \infty)$. Consider the function ϕ given by the formula $\phi(t)(u):=\psi(u) \chi_{(0, t)}(u), t, u \in(0,1)$. Prove that $\phi(t) \in X$ for every $t \in(0,1)$ if and only if $\left.\psi\right|_{(0, T)} \in L_{p}((0, T))$ for every $T>0$. Assume now that $\phi(t) \in X$ for every $t \in(0,1)$ and prove the following.
- The mapping $\phi:(0,1) \rightarrow X$ is strongly μ-measurable. Moreover, it is weakly integrable iff $(1-u) \psi(u) \in L_{p}(0,1)$. (Hint: you may use without the proof the fact that $f \in L_{p}$ if and only if for every $g \in L_{q}$ we have $f g \in L_{1}$, see Exercise 3.a below)
- Assume $\phi:(0,1) \rightarrow X$ is weakly integrable. Prove that it is Pettis integrable and compute the value of the Pettis integral $(P) \int_{E} \phi d \mu$ for any measurable $E \subset(0,1)$.

3. Bonus exercises (not intended for exams):
a) Let $f:(0,1) \rightarrow[0, \infty)$ be a measurable function and $p \in(1, \infty)$. Prove that $f \in L_{p}(0,1)$ if and only if for every $g \in L_{q}(0,1), g \geq 0$ we have $f g \in L_{1}(0,1)$.
b) Let (X, \mathcal{A}) be a measurable space such that the cardinality of X is greater than continuum. Prove that $\{(x, x)$: $x \in X\}$ is not in the σ-algebra $\mathcal{A} \otimes \mathcal{A}$ on $X \times X$ generated by sets $\{A \times B: A, B \in \mathcal{A}\}$.
(Hint: pick any $U \in \mathcal{A} \otimes \mathcal{A}$. First, prove that there exists a sequence $\left(A_{n}\right)$ in \mathcal{A} such that $U \in \sigma\left\{A_{n} \times A_{m}: n, m \in \mathbb{N}\right\}$. Then for $\sigma \in 2^{\omega}$ put $B_{\sigma}:=\bigcap_{\{n: \sigma(n)=1\}} A_{n} \cap \bigcap_{\{n: \sigma(n)=0\}}\left(X \backslash A_{n}\right)$ and prove that U is union of sets of the from $B_{\sigma} \times B_{\tau}$ for some $\sigma, \tau \in 2^{\omega}$. Deduce that any $\mathcal{A} \otimes \mathcal{A}$-measureable set is union of 2^{ω} sets of the form $A \times B$ for some $A, B \in \mathcal{A} \otimes \mathcal{A}$. Finally, use the assumption on the cardinality of X to prove that the set $\{(x, x): x \in X\}$ cannot be written as a union of 2^{ω} sets of the form $A \times B$ for some $A, B \in \mathcal{A} \otimes \mathcal{A}$.)
c) Consider the Banach space $X=\ell_{2}(I)$ where the cardinality of I is greater than continuum. Consider the σ-algebra \mathcal{A} on X consisting of borel subsets of X and the measurable space $(X \times X, \mathcal{A} \otimes \mathcal{A})$. Let $f, g: X \times X \rightarrow X$ be defined as $f(x, y)=x$ and $g(x, y)=-y$. Prove that both f, g are $\mathcal{A} \otimes \mathcal{A}$-measurable, but $f+g$ is not $\mathcal{A} \otimes \mathcal{A}$-measurable.
(Hint: use exercise 2 a above)
Suitable for credit: exercises 2.a, 2.b, 3.a, 3.b+c

1. Essential exercises:

a) Let $(\Omega, \mathcal{A}, \mu)$ be the set \mathbb{N} with the counting measure. Consider the function $f: \mathbb{N} \rightarrow c_{0}$ given as $f(n):=\frac{1}{n} e_{n}$. Prove that f is Pettis integrable, but not Bochner integrable.

2. Further exercises:

a) Let $(\Omega, \mathcal{A}, \mu)$ be the interval $(0, \infty)$ with the Lebesgue measure, $\psi:(0, \infty) \rightarrow \mathbb{K}$ a measurable function and $X=L_{p}(0, \infty)$ for some $p \in[1, \infty)$. Consider the function $f:(0, \infty) \rightarrow X$ given by the formula $f(t):=\psi(t) \chi_{(0, t)}$, $t>0$.
(i) Prove that f is strongly μ-measurable. (Hint: since X is separable, strong and weak measurability coincide.)
(ii) Prove that f is Bochner integrable if and only if $\int_{0}^{\infty} t^{1 / p}|\psi(t)| \mathrm{d} t<\infty$. Moreover, if $p=1$ and f is weakly integrable, then it is Bochner integrable. (Hint: for the second part use that $x^{*} \circ f$ is integrable for $\left.x^{*}=1 \in L_{\infty}((0, \infty))=X^{*}\right)$
(iii) Prove that if $p>1$ and $\int_{0}^{\infty}\left(\int_{u}^{\infty}|\psi(t)| \mathrm{d} t\right)^{p} \mathrm{~d} u<\infty$, then f is weakly integrable and therefore also Pettis integrable.
(iv) If $p>1$, find a function ψ such that the function f is Pettis integrable, but not Bochner integrable.
(Hint: try to consider a function $\psi=\sum_{n=1}^{\infty} \varepsilon_{n} \chi_{\left[2^{n}, 2^{n+1}\right)}$ a for a suitable sequence of positive numbers (ε_{n}).)
b) For $f \in L_{1}(\mu ; X)$ put

$$
\|f\|_{\text {Pettis }}:=\sup _{x^{*} \in B_{X^{*}}} \int_{0}^{1}\left|x^{*} \circ f\right| \mathrm{d} t .
$$

Let $(\Omega, \mathcal{A}, \mu)$ be the interval $[0,1]$ with the Lebesgue measure, $X=\ell_{2}$ and consider functions $f_{n}:[0,1] \rightarrow \ell_{2}$ given by

$$
f_{n}(t):=\sum_{k=1}^{2^{n}} e_{k} \chi_{\left.\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right)\right]}(t), \quad t \in[0,1] .
$$

(i) Prove that $\left\|f_{n}\right\|_{L_{1}(\mu ; X)}=1, n \in \mathbb{N}$ but $\left\|f_{n}\right\|_{\text {Pettis }} \rightarrow 0$.
(ii) Find a sequence \tilde{f}_{n} in $L_{1}(\mu ; X)$ satisfying $\left\|\tilde{f}_{n}\right\|_{L_{1}(\mu ; X)} \rightarrow \infty$, but $\left\|\tilde{f}_{n}\right\|_{\text {Pettis }} \rightarrow 0$. (Hint: try to put $\tilde{f}_{n}=\alpha_{n} f_{n}$ for some sequence $\left(\alpha_{n}\right)$.)
(iii) For $n \in \mathbb{N}$ consider functions $g_{n}:[0,1] \rightarrow X$ defined as $g_{n}(t):=2^{n} f_{n}\left(2^{n} t-1\right) \chi_{\left[\frac{1}{2^{n}}, \frac{1}{\left.2^{n-1}\right)}\right.}(t)$ and function $f:[0,1] \rightarrow X$ defined as $g(t):=\sum_{n=1}^{\infty} g_{n}(t) \chi_{\left[\frac{1}{2^{n}}, \frac{1}{\left.2^{n-1}\right)}\right.}(t)$. Prove that g is not Bochner integrable, but it is Pettis integrable.
(Hint: first, show that for each $N \in \mathbb{N}$ we have $\int\|f\| \geq \sum_{n=1}^{N} \int_{\frac{1}{2^{n}}}^{\frac{1}{2^{n-1}}}\left\|g_{n}(t)\right\|=\ldots=N \rightarrow \infty$. Then, note that since X is reflexive it suffices to show weak integrability of f, for this purpose compute first the value of $\int_{\frac{1}{2^{n}}}^{\frac{1}{2^{n-1}}}|h(f(t))| \mathrm{d} t$ for every $h \in \ell_{2}$.)
c) Let $(\Omega, \mathcal{A}, \mu)$ be the interval $[0,1]$ with the Lebesgue measure, $X=c_{0}$ and consider the function $F: \mathcal{A} \rightarrow X$ given as

$$
F(E):=\left(\int_{E} \sin \left(2^{n} \pi t\right) \mathrm{d} t\right)_{n=1}^{\infty}, \quad E \in \mathcal{A} .
$$

Prove that $F(E) \in c_{0}$ and $\|F(E)\| \leq \mu(E)$ for every $E \in \mathcal{A}$. Deduce that F is also σ-additive (that is, for pairwise disjoint sequence $\left(E_{n}\right)$ from \mathcal{A} we have $\left.F\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} F\left(E_{n}\right)\right)$. On the other hand, prove that there does not exist $f \in L_{1}(\mu ; X)$ satisfying $F(E)=\int_{E} f \mathrm{~d} \mu, E \in \mathcal{A}$. Note: this witnesses that c_{0} does not have RNP.
(Hint: in order to prove $F(E) \in c_{0}$ use Bessel inequality and the well-known fact that $\{\sqrt{2} \sin (n \pi t): n \in \mathbb{N}\}$ is orthonormal system in $L_{2}([0,1])$; In order to prove the nonexistence of $f \in L_{1}(\mu ; X)$ suppose it exists and deduce that then $e_{n} \circ f_{n}=\sin \left(2^{n} \pi t\right)$ for every $n \in \mathbb{N}$, prove that for $E_{n}:=\left\{t \in[0,1]: \sin \left(2^{n} \pi t\right) \geq \frac{1}{\sqrt{2}}\right\}$ we have $\mu\left(E_{n}\right)=\frac{1}{4}$, deduce that $\mu\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k=n}^{\infty} E_{k}\right) \geq \lim \sup \mu\left(E_{k}\right) \geq \frac{1}{4}$ and from this deduce that $\mu\left(\left\{t: f(t) \notin c_{0}\right\}\right)>0$, a contradiction. $)$

Suitable for credit: exercises 2.a, 2.b, 2.c

1. Essential exercises:

a) Prove that ext $B_{\ell_{1}}=\left\{t e_{n}: n \in \mathbb{N}, t \in S_{\mathbb{K}}\right\}$.
b) Prove that $\operatorname{ext} B_{\ell_{\infty}}=\left\{f \in \ell_{\infty}:|f(n)|=1\right.$ for every $\left.n \in \mathbb{N}\right\}$.
c) Prove that ext $B_{L_{1}([0,1])}=\emptyset$.
2. Further exercises:
a) Let H be a Hilbert space. Prove that ext $B_{H}=S_{H}$.(Hint: use the parallelogram law.)
b) Prove that $\overline{\text { conv ext } B_{X}}{ }^{\|\cdot\|}=B_{X}$ for $X=\ell_{p}$, where $p \in[1, \infty)$. (Hint: for $p>1$ use Krein-Milman tehorem together with the fact that B_{X} is weakly closed because X is reflexive. For $p=1$ proceed directly.)

Solutions are available at https://www2.karlin.mff.cuni.cz/~cuth/fa-priklady.pdf

