EXERCISES 1 (30.9.2022)

1. Easier and essential exercises: Prove the following assertions (once you prove those, we will use those as “known
facts”)

Fact 1. Let X be a vector space and A C X. Then A is absolutely convez if and only if ax+ By € A for every x,y € A
and o, f € K with |a| + |5| < 1. Moreover, we have

n n
aconv A = {Z)\m DLy, Xn EAN, . AR € K,ZM,-\ <l,ne€ N}.
=1 =1
Fact 2. Let X be TVS, a € X and A € K\ {0}. Then the operations x — = + a and x — Ax are homeomorphisms of
X onto X. Moreover, for every x € X we have 7(z) = x + 7(0).

Fact 3. Let X be TVS.

(a) If G C X is open and A C X arbitrary, then A+ G is open.

(b) If F C X is closed and K C X compcat, then F + K is closed.

(¢) If K,L C X are compact, then K + L is compact.

Fact 4. Let X be TVS and A,B C X. Then A=N{A+U: U e 7(0)}.

Fact 5. Let X be TVS and A,B C X. Then

(a) A+ BC A+ B andInt A+ 1Int B C Int(A + B).

(b) ANA = NA for every A € K\ {0} and if A is subspace, then A is subspace.

Fact 6. Let X be TVS and A C X. Then span A = span A, conv A = conv A and aconv A = aconv A.

2. Further exercises: a) Let X # {0} be a vector space and 7 be the discrete topology on X. Prove that then
addition is continuous, but multiplication is not continuous.

b) Prove that on R? there is a topology 7 such that addition is separately continuous, but not continuous. (Hint:
consider topology whose basis of neighborhoods of the origin is given by sets {(0,0)} U {(x,y): |y| < || <}, r > 0).
c) We say that (X,|| -||) is a quasi-normed linear space, if X is a vector space and || - || : X — [0,00) is a mapping
satisfying all the axioms on the norm with the exception that triangle inequality is replaced by the following weaker
condition

3z 0vaye Xt fa+yl < Cllal + lyl).

For x € X and r > 0 put U(z,r) := {y € X: ||z — y|| < r}. Prove that there is a unique topology 7 on X such that
(X,7)is HTVS and {U(0,r): r > 0} is basis of neighborhoods of 0.

d) Prove that £, for 0 < p < 1 is HTVS with respect to topology given by the metric d(z,y) = |z — y|[h =
> o2 |zn — yn/P (Hint: in order to check that d is indeed a metric, note that we have a < a? for a € (0,1) which
implies (t + s)P = H%(t +8)P + g5 (t +5)P <P + 8P for every t,5 > 0).

e) Prove that ¢, for 0 < p < 1 is not locally convex. (Hint: realize that for small § > 0 we have that ||de;||, is small
while for the natural convex combinations we obtain that || 37 | L8e;|, is big).

f) Prove that Ly([0,1])) for 0 < p < 1 is HTVS with respect to topology given by the metric d(f,g) = ||f — g||h =
fol | f(t) — g(t)|P dt. Moreover, prove that L,([0,1]) is not locally convex.

g) Consider the vector space X = {f: [0,1] — K : f measurable} with metric p(f,g) = fol min{|f — g|, 1} d\ (we
identify functions equal almost everywhere). Prove that X endowed with the topology given by the metric p is HTVS,
which is not locally convex (Hint: show that convU(0,7) = X for every r > 0). Moreover, prove that a sequence
{fn} C X converges to f € X in metric p if and only if f,, — f in measure.

Suitable for credit: exercises 2.b, 2.f, 2.g



EXERCISES 2 (7.10.2022)

1. Easier and essential exercises:
a) Let (X, -][) be a normed linear space. Prove that jiy01)(z) = [|2|| = pp(o,1)(z) for every z € X.
b) Let X be a vector space, A C X such that span A = X and consider the Minkowski functional fiacony 4. Prove that
for every x € X we have

n n

Hacony A(x) = inf { Z la;|: Zaixi =z, a0; €K, ;€ A, ne N}.

i=1 i=1
Now, put N := {x € X: paconv A(x) = 0} and consider the vector space Z := X/n (quotient of X by points for which
Pacony A(2) = 0). Prove that || - || : Z — [0, 00) given by the formula ||z + N|| := pfaconv 4(2), € X defines a norm on
the vector space Z.
¢) Prove that K/ is metrizable if and only if I is countable.

2. Further exercises: a) Find an example of a quasi-norm || - || and a balanced neighborhood U of 0 in (R2,|| - ||)
such that the corresponding Minkowski functional p; is not continuous.

(Hint: Note that given a quasi-norm [ - || on R?, we have pgo1)(-) = || - ||, so it suffices to find a discontinuous
quasi-norm. Consider now the quasi-norm given by the fomula H(x Y| == |z| + |yl if y # 0 and ||(x,0)| := 2|z|)

b) Using Theorem 7, prove that for any TVS X the following holds

(i) X is completely regular;

(i) if X has countable basis of neighborhoods of 0, then it is metrizable by a translation invariant metric.
c) Let X be TVS, A C X balanced neighborhood of 0. Prove that the following conditions are equivalent
(i) w4 is continuous;

(ii) For every x € A we have {tz:t € [0,1)} C Int A;

(iii) Int A = {z: pa(z) <1} and A = {x: pa(x) < 1}.

3. Harder exercises (not intended for exams): a) Prove the following Theorem.

Theorem 7. Let X be TVS and (Vy)nen a sequence of balanced neighborhoods of 0 satisfying Va1 + Vas1 C Vi,
n € N. Then there exists a continuous mapping p : X — [0,00) such that

(1) p(z) =0 if and only if v € (\,en Vs
(ii) p(ax) < p(x) whenever |a] <1 and z € X;
(iii) p(x +y) < p(x) + p(y) for every x,y € X;
(iv) for everyn € N we have {v € X: p(x) <27 "} CV, C{z € X: p(x ) <27

Sketch of the proof. Given finite nonempty F' C N we put gp := ) and Vg := ) -V, and define p : X —

[0,00) by the formula

neF

inf{gp: z € Vp} ifze U(Z)#FCN finite VE

p(z) = .
1 otherwise.

First, prove the property (ii). Next, prove that ¢r, < ¢, implies Vg, C Vg, and deduce properties (i) and (iv). Finally,

prove that g + qr, = qr implies Vi, + Vg, C Vg (inductively with respect to |F'|) and deduce property (iii) and

continuity of p. O

b) Let 0 ¢ A C R™ be a finite set satisfying span A = R™ such that no two elements of A are scalar multiples of
each other. Let p : R™ — [0, 00) be a pseudonorm. Prove that for every ¢ > 0 there exists a norm || - || on R" satisfying
that max,ec H|a|| —p(a)| < e and [la]| € Q for every a € A.

Suitable for credit: exercises 2.a, 2.b, 2.c, 3.b



EXERCISES 3 (14.10.2022)

1. Easier and essential exercises:

a) Let X be a normed linear space and A C X. Prove that A is bounded as a subset of TVS X, if and only if it is
bounded with respect to the metric generated by the norm.

b) Prove that K/ is normable if and only if I is finite.

c) Let X be a TVS and A C X. Prove that

(i) If A is compact, then it is bounded.
(ii) If A is bounded, then A is bounded.
(iii) If A is bounded and X is LCS, then conv A and aconv A are bounded.

2. Further exercises: a) For p € (0,1) find a sequence (c,) € RY such that the set {cpe,} U {0} =@ K C £, is
compact (and therefore bounded), but conv K is not bounded (Hint: consider convex combinations > | Leyey,).

b) Consider the vector space X = C*°([0, 1]) endowed with the topology 7 generated by pseudonorms

— (n)
o (f) = max |/ e, N € NU{O).

Prove that (X, 7) is metrizable LCS which is not normable.

¢) Prove that L,([0,1])* = {0} for every p € (0,1) (Hint: given 0 # ¢ € L,([0,1])*, the set ¢~ 1(—1,1) # L,([0,1]) is
convex open neighborhood of 0; so it suffices to prove that for any r > 0 we have conv U(0,r) = Ly([0, 1])).

d) Fix p € (0,1). Consider the mapping I : og — (£,)* defined as I(z)(y) := > noy Tpyn for © € o and y € £,. Prove
that I is isometry onto ¢, and show that (¢,)* separate the points of £,,.

3. Bonus exercises (not intended for exams): a) Pick p € (0,1). We say that (X, || - ||) is a p-normed linear
space, if X is a vector space and | - | : X — [0,00) is a mapping satisfying all the axioms on the norm with the
exception that triangle inequality is replaced by the following weaker condition

Ve,ye X o+ yllP < flfl” + [lyll”.

If (X,|-]|P) is complete metric space (where by || - ||P we denote the metric (z,y) — ||z — y||P), we say (X, | - ) is a
p-Banach space. Prove that any p-normed linear space is quasi-normed space and that (€, || - ||,) is p-Banach space,
where [z, := §/3 22, [2nl?,

b) Let p € (0,1) and (X, | - ||) be a p-Banach space such that X* separates the points of X. Let |- | be the Minkowski
functional of the set aconv Ux (0, 1).

(i) Prove that |- | is a norm on X.

(ii) Let us denote by X the completion of (X, | -|). Prove that the mapping I : X — X defined by I(z) =z, x € X
is continuous and |I(z)| < ||z||.

(iii) Prove that whenever Y is a Banach space and T': X — Y is linear and continuous satisfying || Tz|| < C||z|| for
2 € X, then there exists a unique T : X — Y satisfying T oI = T and | T < C.

(iv) Prove that the property (iii) characterizes the Banach space X up to isometry. That is, if X is a Banach space
for which there exists I : X — X continuous onto dense subspace such that for any ¥ Banach and T': X — Y
there is T" : X — Y satisfying ||T’|| = ||T]|, then X is linearly isometric to X.

We say that X is the Banach envelope of X.
c) Prove that the Banach envelope of the p-Banach space ¢, is the Banach space /;.

Suitable for credit: exercises 2.b, 2.a+d, 3.b, 3.c



EXERCISES 4 (21.10.2022)

1. Easier and essential exercises:

a) Prove that any cauchy net in a complete metric space is convergent.

b) Let X be TVS and A, B C X totally bounded. Prove that AU B, A+ B, A are totally bounded.

c) Let X be TVS. Prove that A C X is totally bounded if and only if for every U € 7(0) there exists a finite set
F C X such that A C F' 4+ U. Deduce that subsets of totally bounded sets are totally bounded.

d) Let X be LCS and A C X totally bounded. Then conv A and aconv A are totally bounded.

2. Further exercises: In exercises below work only with spaces over R.

a) Let X be an infinite-dimensional normed linear space. Find two disjoint convex sets A, B C X which are both dense
and deduce that there does not exist z* € X*\ {0} satisfying sup, Rexz* < infp Rez*. (Hint: use the existence of
discontinuous linear forms)

b) Let X = ¢p. Put A = {z € ¢p: 2, > 0 for every n} and B = {(;5 — Lyoo 1 : t € R}. Prove that A, B are disjoint
closed convex sets, but there does not exist z* € X* \ {0} satisfying supp z* < inf4 z*. (Hint: pick f € (co)* = 01
satisfying supg f < infa f. Prove that f > 0 on A and so inf f = 0, deduce that f(n) > 0 for every n. Then show
that supg f < 0 implies f(( 5 )00 ) = 0 which in turn implies that f(n) =0 for every n)

¢) If D is a non-empty convex subset of a Banach space X so that 0 ¢ D, then there is 2* € Sy« such that
inf{z*(z): v € D} = inf{||z|: = € D}.

(Hint: put n = inf{||z||: x € D} and use Hahn-Banach to separate U(0,n) from D)

d) Fix p € (0,1). Find a closed subspace M C ¢, and z* € M* such that there does not exist ¢ € (£,)* satisfying
w Dz

(Hint: pick a sequence (xy,) in £y, such that the points x,, have disjoint supports, |z,||, =1 and ||z,|1 — 0. Then prove
that ey, — x,, induces isometry between ¢, and M := span{ey,: n € N}. Pick * € M* satisfying z*(e,) = 1 for every
n € N. Finally, show that for every ¢ € (£,)* we have ¢(zy) — 0.)

e) Prove that the Schwartz space S(R?) is Fréchet space (for the purpose of this exercise, proof it just for d = 1).

3. Bonus exercises (not intended for exams): a) Let (X, d) be a metric TVS with d being translation invariant.
Prove that there exists a completion of X, that is, an F-space X whose topology is generated by a translation invariant
metric d’ and a linear isometry I : X — X such that I(X) = X.

(Hint: consider

Y = {(zn): (zy) is cauchy sequence in X}

and for (zp) € Y put [(2)] = {(yn) € YV: limd(zp,yn) = 0}. Then put X = {[(z)]: (z,) € Y}, endow it with
metric d([(xn)], [(yn)]) := im d(2n, yn) and natural vector operations + and -. The mapping I : X — X will be given
by I(z) = [(z,z,z,...)].)
b) Let (X, 7) be a TVS metrizable by a complete metric. Prove that it is an F-space.
(Hint: pick a translation invariant metric p generating the topology T. Prove that (X, p) is G5 (and therefore comeager)
in its completion (X, p) and deduce that for any zo € X we have (zo+ X) N X # 0.

In order to prove that (X, p) is Gg in its completion, pick p' generating T such that (X, p') is complete. For ev-
eryn € N and x € X pick ro(z) < L satisfying Uy(z,n(2)) C Uy(z,L1). Finally, show that X = (G, where
Gn = Uzex Up(x,mn(x)) are open sets in (X,p).)

Suitable for credit: exercises 2.b, 2.c, 2.d



EXERCISES 5 (4.11.2022)

1. Easier and essential exercises:
a) Let X be a Banach space. Prove that the canonical isometry £ : X — X** is homeomorphism from (X, w) into
(X**, w*)
b) Let X,Y be Banach spaces, (T;) a bounded net of linear operators from £(X,Y), T € L(X,Y) and D C X such
that span D = X. Prove that then T;2 — Tz for every x € X if and only if T;& — Tz for every x € D.

As a corollary deduce the following:

(i) Pick p € [1,00] and consider X = ¢,(I") as a dual space with respect to the standard duality (that is, {4(I')* =

£,(T) for p € (1,00] and ¢o(I')* = £1(I")). Then for a bounded net (x;) in X and 2 € X we have that x; Y g if
and only if z;(y) — z(vy), vy € T

(ii) Pick p € (1, 00) and consider X = ¢,(I') or X = ¢p. Then for a bounded net (z;) in X and x € X we have that
r; = x if and only if ;(y) — z(y), y € T

c) Let X = C(]0,1]) and consider three topologies on X - norm topology | - ||, weak topology w and the topology of
pointwise convergence 7,. Prove that

(i) There exists a sequence in X which is 7,-convergent, but not bounded in norm.

(ii) A sequence in X is weak convergent if and only if it is norm bounded and 7,-convergent.

2. Further exercises:

a) Let p € (1,00). Find an example of a sequence (z,) in £, such that x, (k) — 0 for every k € N, but z,, does not
converge to 0 weakly. (Hint: consider x,, = exp(n) - e,)

b) Let X, Y be Banach spaces and T' € L(Y™, X*). Prove that T'= S* for some S € £(X,Y) if and only if T is w*-w*
continuous.

¢) Let X be an infinite-dimensional Banach space. Prove that any neighborhood of 0 in the weak topology contains a
non-trivial subspace of X. Deduce that @’” = Bx and then deduce that W* = Bx+.

d) Let X be a Banach space. Prove that dim X < oo if and only if weak topology on X coincides with the norm
topology if and only if weak star topology on X* coincides with the norm topology.

e) Let X be an infinite-dimensional Banach space. Find a net (z;) in X which is weakly convergent to 0, but not
bounded.

(Hint: let us denote the weak topology by Ty,. Using 2.c above, for any U € 7,(0) pick fy € X*\ {0} with Rf C U.
Consider the partially ordered set T = {(U,n): U € 1,(0), n € N} such that (U,n) < (U',n') iff U DU and n < n'.
Finally, consider the net (nfu)wnyez-)

3. Bonus exercises (not intended for exams):

a) Let X be a Banach space, C' > 0 and f,g € Sx~. Suppose that || f|ierg|| < C. Prove that there exists o € K with
|a] = 1 such that || f — ag| < 2C.

(Hint: for C' > 1 it is trivial, so suppose C' < 1. Pick the Hahn-Banach extension x* € X* of f|kerg € (ker g)*. Because
ker g C ker(f — x*), there is 8 € K satisfying f — x* = 8g. Show that it suffices to put o = %)

b) Let X be a Banach space and f € X**. Prove that f € ¢(X) if and only if f|p,. is w*-continuous.

(Hint: One implication follows directly from a theorem from the lecture. For the other one, assume that f|p,. is
w*-continuous, without loss of generality assume that ||f|| = 1. For n € (0,1) consider the sets A, = {x* €
Bx~+: Re f(z*) > n} and B, := {z* € Bx+: Re f(z*) < —n}, those sets are w*-compact, disjoint and convex, so
there 1s x € X such that for g = e(x) we have supy, Reg <infp, Reg. Deduce that || f|ker 4|l <1 and use the previous
exercise to show that f is in the closure of K(X), so it is in k(X).)

Suitable for credit: exercises 2.c+d, 2.a+e, 3.a+b



EXERCISES 6 (11.11.2022)

If not said otherwise, 2 C R? is a an open nonempty set and on D(Q2) we consider the topology 7 from Theorem 64.

Definition. Say that a sequence (z,) in a TVS X is cauchy if for every U € 7(0) there exists ng € N satisfying
Ty — Tm € U for every n,m > ng. We say X is sequentially complete if every cauchy sequence is convergent.

1. Easier and essential exercises:

a) Prove that 7 is the biggest locally convex topology on Z(2) such that the inclusion ix : (Z(K),7x) — (2(2),7)
is continuous mapping for any compact set K C €.

b) Prove that the inclusion i : (Z(R9),7) — (C®(R?), 7¢~) is continuous mapping.

2. Further exercises:

a) Find a sequence (f,) in Z(R) such that f, "% 0, but f, is not convergent in Z(R).

(Hint: Pick some 1 € 2(R) with suppy D [—1,1] and put f,(z) := %@Z)(%))

b) Find a sequence (f,) in Z(R) and f € C®°(R)\ Z(R) such that f, <> f. Deduce that (Z(R), 7o~ ) is not sequen-
tially complete. ‘

(Hint: Pick ¢y € 2(R) satisfying supp ¢ = [0,1] and show that fn(x) :=> 1", %{Z) is cauchy in C*°(R) and let f be
the limit of (f,) in C*°(R))

c) Prove that 2(f2) is sequentially complete.

d) Let K C Q be compact with nonempty interior, x € Int K, N € N, ¢ > 0 and M > 0. Find ¢ € Z2(K), ¢ > 0 such
that |||y < & and D®p(z) = 0 whenever |a| < N, but there is § € N¢, |8] = N + 1 with |[D@®p(x)| > M.

(Hint: show that it suffices to handle the case when x = 0 and dimension d = 1. In this special case use @(t) = tNT1p(t)
for a suitable function @)

3. Bonus exercise (not intended for exams): Consider the set
Vi={fe2®): |f(k)f®(0)] <1 for every k € N}.
Prove that

(i) If f € Vand W C Z2(R) is an absolutely convex set satisfying W N 2(K) € 7x(0) for every compact K C R,
then (f + W)\ V # 0. In particular, the set Z(R) \ V is dense in Z(R).
(Hint: By the assumption there are N(n) € N and (n) > 0 such that

Un = Ul |ymetn) = {f € 2([=n.n]) : || fllnwm) <e(n)} € W N D([—n,n]).

Put N := N(1) and find g € Uny satisfying |f(N + 1) + 2g(N +1)| > 0 and |g(N + 1)| > 0. Observe that by
2.d for any M > 0 there exists ¢ € Uy satisfying |V T1(0)] > M. Use this observation to show that if M is big
enough, we obtain f + 232 € (f + W)\ V.)

(i) VN 2(K) € 1x(0) for every compact K C R, but V' is not a neighborhood of zero in Z(R).

(iii) The set Z(R)\ V is sequentially closed in (Z(R), 7), that is, every convergent sequence of points from Z(R)\ V/
has the limit in the set Z(R) \ V.

Deduce that there exists f € Z(R) \ V, which is not a limit of a sequence of functions from Z(R) \ V. In particular,
Z(R) is not metrizable.

Suitable for credit: exercises 2.a+b, 2.c, 2.d, 3.



EXERCISES 7 (18.11.2022)

1. Essential exercises:
a) Let Ajgg|o| be the regular distribution on R corresponding to the locally integrable function log|z|. Prove that its

derivative (Ajqg|q()’ is the distribution A; on R given by the formula
x

. p(x)
= lim =24 2(R
(p) = lim eny @ 0T PE (R)

A

1
T

and moreover we have A1 = A;.
x

2. Further exercises:
a) Which of the following formulas define a distribution on R and which define a distribution on (0, c0)? If the formula
defines a distribution find out whether it is of finite order.

(i) Alp) = X0 ne™ (n).
(i) Alp) = 02 o).
(i) Alp) = oy 7ze™ (3)-
(Hint: sometimes it helps to use 2.d from Ezercises 6)
b) Let (a,b) C R and z¢ € (a,b). Prove that S € Z((a,b)) is a solution of the equation (z — x¢)S = 0 if and only if

there is ¢ € K satisfying S = cAs, . Then deduce that (z — 10)%S = 0 if and only if S € span{As, , (As,,)'}-
(Hint: For the nontrivial implication in the first part consider Q : Z2(R) — Z(R) given by the formula

1
Q)(x) = /0 (w0 + tx — z0)) dt.

Prove that Q is well-defined mapping satisfying (x—x¢)Q(v) = ¥ whenever () = 0. Deduce that if (x—x¢)S = 0 then
KerAs, C KerS. For the second part, by the first part we have (x —x0)S = cAs, , then notice that (z — x0)(As,,)" =
—As,,» and finally apply the already proven part to S + C(A(gzo)/.)

¢) Find all the solutions of the following equations for S € Z(R)*.

(i) §"=As,, (v0 €R). (iii) (1 +x)%9" = 0.
(i) S” = Ag,, (20 €R). (iv) (z—1)S = A;.

(Hint: find one “particular solution” and prove that any solution is a particular solution plus general solution of a
homogeneous equation .. for the solution of a homogeneous equation use Ezercise 2.b) above or Theorem 72)

3. Bonus exercises (not intended for exams): a) Prove that given f € C*°(R), distribution S € Z(R)* solves
the equation S’ + fS = 0 if and only if S = c¢A__r() for some constant ¢ € K and some function F satisfying F’ = f.
(Hint: prove that we have (e¥®)8) = eF@) (8" 4+ £S) so S is the solution of our equation iff (¥'*)S)" = 0)

b) Prove that for any S € Z(R)* and xg € R there exists A € Z(R)* satisfying (v — z9)A = S.

(Hint: pick any ¢ € Z(R) with ¢(xp) = 1 and consider Q : Z(R) — Z(R) given by the formula

1
Qu)(x) == /0 W (2o + H(z — 20)) — (o) b0 + t(x — o)) dt.

Prove that Q) is well-defined sequentially continuous mapping satisfying Q((z—x0)p) = . Finally, put A(y) == S(Q(v)))
for ¢y € 2(R))

Suitable for credit: exercises 2.a, 2.b, 2.c



EXERCISES 8 (25.11.2022)

1. Essential exercises:
a) Prove that

Ay % ((ASO)/ * AX(O,OO)) # (Al * (A50)/) * AX(Om)'

(that is, prove that all the expressions are well-defined and that the inequality holds)

b) Prove that Ax<o,oo) * AX(o,oo> = Ayq.

2. Further exercises:
a) Given ¢ > 0, consider the function

L xl <et
t,x) =< 2 ’ t,x) € R?.
ft.) {O, otherwise, (t.)
Prove that
(i) Distribution A solves the equation DDA — 2DO2A = Aso)-

(ii) Given ¢ € 2(R?) satisfying supp ¢ C R x (tg,00) for some tq € R, there exists g € C°°(R?) such that suppg C
R x (tg,00) and 92g — 2029 = .

(iii) For every (zg,tp) € R? find a distribution A satisfying equation DDA — 2DO2A =

O(z0,u0)”
(Note: Ay is fundamental solution of the “Wave equation”)
b) Consider the function
! BBy >0
Fit) i 4 v P ’ (t,z) € R%.
0, otherwise,
Prove that
(i) f is locally integrable on R?,
(ii) (Orf — 92f)(z,t) = 0 whenever t > 0,
(iii) fR f(t,x)dz =1 for every t > 0,
(Hint: use the well-known value [~ e~ = /1),
(iv) Distribution A solves the equation d;A — 2A = A5
(Hint: First, using per partes and (i) show that for every ¢ € Z(R) we have
(DA — 2A)(p) = lim / /f (t,z)(Opp — %) (t,z)dzdt = ... = lim /f(e,x)cp(s,a:) dz
e—0t e—=0t JR

and then using (1) and the fact that ¢ is a Lipchitz map prove that the limit above is equal to ¢(0,0))

(Note: A¢ is fundamental solution of the “Heat equation”)

3. Bonus exercises (not intended for exams):
a) Let f(z) = ||lz|| 7!, z € R3. Prove that f is locally integrable on R® and that the distribution A solves the equation
ANp = =45 0 -

(Note: —ﬁA ¢ is fundamental solution of the “Laplace equation”)

Suitable for credit: exercises 2.a, 2.b, 3.a



EXERCISES 9 (2.12.2022)
1. Essential exercises:

a) Prove that on R we have Kg = \/%Al, A=y 2mAs, and Kg = \/%Aefm for every a € R.

b) Let A be a tempered distribution on R. Prove that lA\( ) = A(p) for every ¢ € S;.

c) Express on R the Fourier transform A/cc; as a linear combination of tempered distributions of the form As,, a € R.
(Hint: express cosinus as exponential and use (a) and then (b))

2. Further exercises:
a) Let f € LY(R), f > 0. Prove that if Ay is tempered distribution, then there are C' > 0 and N € Ny satisfying

R
VR >1: / f(x)dr < C(1+ R)Y
-R

Deduce that Ace is not a tempered distribution. On the other hand, prove that Az co(er) is tempered distribution.
(Hint: Pick A > 0 and N € Ny satisfying |Ap(¢)| < Avn(¢), ¢ € D(R). Fiz some ) € D([-2,2]) satisfying |11 = 1,
then check that for every R > 0 we have

0</ f(x dx</ f(z %dmgAuN(w(E))S...gC(l—i—R)N

For the “on the other hand” part note that we have (sin(e®))’ = e® cos(e”) and that sin(e®) is bounded function)
b) Which of the following formulas define a tempered distribution on R?

(1) Alp) =272 o %0(5), ¥ € Z2(R). (i) A(p) = [y 20 gy 4 [ 208 4y € D(R).
(i) A(p) =252 o €’0(i), ¥ € 2(R).
(Hint: for (ii) use similar strategy as in Ezercise 2.a)
c) Prove that for a tempered distribution A on R we have
A e span{(As,)™ : neNg} < A € {Ap: P is a polynomial}.
d) Let d € N and (aa)aeNg,|a\§N be a finite sequence of complex numbers satisfying that the polynom Z\&ISN aq (ix)®
does not have root in R%. Prove that then the only tempered distribution A satisfying Z| al<N aoc DA =01is A =0.

3. Bonus exercise (not intended for exams): Let A be a tempered distribution satisfying the equation Z| o <N Ga DeA =
0 (where (aa)jo<n is finite sequence in K). Consider then the polynomial P(z) = 3_, <y @a(i2)®. Prove that the
following holds.

(a) If polynomial P does not have root in R?, then A = 0.
(b) If polynomial P does not have root in R?\ {0}, then A = Ag for some polynomial Q.

(c) Aply the above to prove the following generalization of the Liouville theorem: Let f € H(C) be a holomorphic
function satisfying for some C' > 0 and N € Ny that |f(x)| < C(1 + |z|), 2 € C. Then f is polynomial of degree
at most N.

For the proof of (b) you may without proof use the following well-known result.
Theorem 8. Let A be a distribution on RY such that for any ¢ € 2(R9\ {0}) we have A(p) = 0. Then
A € span{D%As, : o € N&}.

Proof. viz. skripta od doc. Johanise a prof. Spurného (Véta 33 on page 136 here:
https://www2.karlin.mff.cuni.cz/ spurny/doc/ufa/funkcionalka.pdf) O

Suitable for credit: exercises 2.a, 2.b, 2.c+d



EXERCISES 10 (9.12.2022)
1. Essential exercises:
a) Consider on an uncountable set I the o-algebra A := P(I) consisting of all the subsets of I. Prove that the mapping
I>iwe; €co(l) is borel A-measurable, but not strongly .A-measurable.
b) Consider the o-algebra A consisting of Lebesgue-measurable sets on [0, 1]. Prove that the mapping [0,1] 2 = —
e € l2([0,1]) is weakly A-measurable, but not borel .A-measurable.

2. Further exercises:
a) Let (€, A, p) be the interval (0,00) with the Lebesgue measure, 9 : (0,00) — (0, 00) a function and X = Ly(0, co)
for some p € (1, 00]. Consider the function ¢ : (0,00) — X given by the formula ¢(t) := x(0,4(1)), t > 0. Prove that

e If p € (1,00), then ¢ is strongly u-measurable < ¢ is weakly p-measurable < 1) is u-measurable.
(Hint: since X is separable, strong and weak measurability coincide. Next, use without proof the well-known fact
that simple functions are dense in Ly and deduce that functions of the form {xry: T > 0} are linearly dense
in X*, so to test weak measurability it suffices to consider functions of the form x 1) € Ly = X™)

e if p = 0o, then ¢ is strongly p-measurable < 1) is p-measurable and there exists a countable set C' C (0, 00)
such that ¢(t) € C for a.e. t € (0,00).
(Hint: = to prove measurability of 1 consider functions of the form x(or) similarly as above, to prove the
ezistence of C mote that for characteristic functions in X form a discrete set and use that the range of ¢ is
a.e. contained in a separable set; <= prove that ¢ is borel p-measurable and the range of ¢ is a.e. contained in a
separable set)

b) In this exercise we work with real Banach spaces, that is, K = R. Let (€,.4, 1) be the interval (0,1) with the
Lebesgue measure, ¢ : (0,00) — R a function and X = L,(0,00) for some p € [1,00). Consider the function ¢
given by the formula ¢(t)(u) := ¥(u)x(0,4)(u), t,u € (0,1). Prove that ¢(t) € X for every ¢t € (0,1) if and only if
Ylo,r) € Lp((0,T)) for every T > 0. Assume now that ¢(t) € X for every ¢ € (0,1) and prove the following.

e The mapping ¢ : (0,1) — X is strongly y-measurable. Moreover, it is weakly integrable iff (1—wu)y(u) € Ly(0,1).
(Hint: you may use without the proof the fact that f € L, if and only if for every g € L, we have fg € Ly, see
Ezercise 3.a below)

e Assume ¢ : (0,1) — X is weakly integrable. Prove that it is Pettis integrable and compute the value of the Pettis
integral (P) [, ¢dp for any measurable E C (0,1).

3. Bonus exercises (not intended for exams):

a) Let f : (0,1) — [0,00) be a measurable function and p € (1,00). Prove that f € L,(0,1) if and only if for every
g € Ly(0,1), g >0 we have fg € L1(0,1).

b) Let (X,.A) be a measurable space such that the cardinality of X is greater than continuum. Prove that {(z,z) :
x € X} is not in the o-algebra A ® A on X x X generated by sets {A x B: A,B € A}.

(Hint: pick any U € A® A. First, prove that there exists a sequence (Ay,) in A such that U € 0{A, X Ay, : n,m € N}.
Then for o € 2% put B, := ﬂ{m o(n)=1} An N ﬂ{n: o(n):o}(X \ Ay) and prove that U is union of sets of the from
B, x B; for some o,7 € 2¥. Deduce that any A @ A-measureable set is union of 2% sets of the form A x B for some
A, B € A® A. Finally, use the assumption on the cardinality of X to prove that the set {(z,x): = € X} cannot be
written as a union of 2¥ sets of the form A x B for some A,B € A® A.)

c¢) Consider the Banach space X = f5(I) where the cardinality of I is greater than continuum. Consider the o-algebra
A on X consisting of borel subsets of X and the measurable space (X x X, A® A). Let f,g: X x X — X be defined
as f(z,y) =z and g(z,y) = —y. Prove that both f, g are A ® A-measurable, but f + ¢ is not A ® A-measurable.
(Hint: use exercise 2a above)

Suitable for credit: exercises 2.a, 2.b, 3.a, 3.b+c



EXERCISES 11 (16.12.2022)
1. Essential exercises:
a) Let (Q, A4, p) be the set N with the counting measure. Consider the function f : N — ¢ given as f(n) := Le,. Prove
that f is Pettis integrable, but not Bochner integrable.

2. Further exercises:

a) Let (Q,A, 1) be the interval (0,00) with the Lebesgue measure, 9 : (0,00) — K a measurable function and
X = Ly(0,00) for some p € [1,00). Consider the function f : (0,00) — X given by the formula f(t) := ¥(t)x(0,),
t>0.

(i) Prove that f is strongly p-measurable. (Hint: since X is separable, strong and weak measurability coincide.)

(ii) Prove that f is Bochner integrable if and only if [ /P (t)| dt < oo. Moreover, if p = 1 and f is weakly integrable,
then it is Bochner integrable. (Hint: for the second part use that x* o f is integrable for x* =1 € Lo ((0,00)) = X™*)

(iii) Prove that if p > 1 and [;~ ( L5 (t)] dt)pdu < 00, then f is weakly integrable and therefore also Pettis

integrable.
(iv) If p > 1, find a function 1 such that the function f is Pettis integrable, but not Bochner integrable.
(Hint: try to consider a function 1 = 7, EnX[2n,2n+1) @ for a suitable sequence of positive numbers (g,).)
b) For f € Li(u; X) put
fllpetis == sup / 2" o 7] dt.
r*eB X*

Let (€2, A, ) be the interval [0, 1] with the Lebesgue measure, X = ¢» and consider functions f, : [0, 1] — ¢ given by

Zekx k t), te [0, 1].

(i) Prove that ||anL1(u .x) = 1, n € N but || fu|| petris — 0.

(ii) Find a sequence f, in Ly (u; X) satisfying an”Ll(u,X) — 00, but || fp| pettis — 0. (Hint: try to put fp, = anfn for
some sequence (ou,).)
(iii) For n € N consider functions g, : [0,1] — X defined as g,(t) := 2"f,(2"t — 1)x

)( ) and function

[anzn 1
f:10,1] — X defined as g(t) := > 7, gn(t)x[ 11 )(t). Prove that g is not Bochner integrable, but it is Pettis
onsgn—1
integrable.
1
(Hint: first, show that for each N € N we have [ ||f]| > ZnN:1 [27 " lgn(t)]| = ... = N — co. Then, note that since
2n

1

X is reflexive it suffices to show weak integrability of f, for this purpose compute first the value of [¥" " |h(f(t))| dt
on

for every h € {s.)
c) Let (2, A, 1) be the interval [0, 1] with the Lebesgue measure, X = ¢y and consider the function F': A — X given
as

F(E) = ( /E sin(2"7t) dt);, Ee A

Prove that F(E) € ¢y and ||F(E)|| < u(E) for every E € A. Deduce that F' is also o-additive (that is, for pairwise
disjoint sequence (E,) from A we have F(U,2 1 En) =302, F(Ey)). On the other hand, prove that there does not
exist f € Li(p; X) satisfying F(FE) = [ fdu, E € A. Note: this witnesses that ¢y does not have RNP.

(Hint: in order to prove F(E) E co use Bessel inequality and the well-known fact that {\/2sin(nnt): n € N} is or-
thonormal system in La([0,1]); In order to prove the nonexistence of f € Li(u; X) suppose it exists and deduce that
then ey o f, = sin(2"nt) for every n € N, prove that for E,, := {t € [0,1]: sin(2"xt) > \[} we have p(E,) = %, deduce
that p(Nyen Unen Ex) > limsup u(Ey) > § and from this deduce that p({t: f(t) & co}) > 0, a contradiction.)

Suitable for credit: exercises 2.a, 2.b, 2.c



EXERCISES 12 (6.1.2022)
1. Essential exercises:
a) Prove that ext By, = {te,: n € N,t € Sk}.
b) Prove that ext By = {f € {x: |f(n)] =1 for every n € N}.
c) Prove that ext By, (j0,1)) = 0.

2. Further exercises:
a) Let H be a Hilbert space. Prove that ext By = Sy.(Hint: use the parallelogram law.)

b) Prove that conv ext BX”'” = By for X = {,, where p € [1,00). (Hint: for p > 1 use Krein-Milman tehorem together
with the fact that Bx is weakly closed because X is reflexive. For p =1 proceed directly.)

Solutions are available at https://www2.karlin.mff.cuni.cz/"cuth/fa-priklady.pdf



