
EXERCISES 1 (30.9.2022)

1. Easier and essential exercises: Prove the following assertions (once you prove those, we will use those as “known
facts”)

Fact 1. Let X be a vector space and A ⊂ X. Then A is absolutely convex if and only if αx+βy ∈ A for every x, y ∈ A
and α, β ∈ K with |α|+ |β| ≤ 1. Moreover, we have

aconvA =

{
n∑
i=1

λixi : x1, . . . , xn ∈ A, λ1, . . . , λn ∈ K,
n∑
i=1

|λi| ≤ 1, n ∈ N

}
.

Fact 2. Let X be TVS, a ∈ X and λ ∈ K \ {0}. Then the operations x 7→ x+ a and x 7→ λx are homeomorphisms of
X onto X. Moreover, for every x ∈ X we have τ(x) = x+ τ(0).

Fact 3. Let X be TVS.

(a) If G ⊂ X is open and A ⊂ X arbitrary, then A+G is open.

(b) If F ⊂ X is closed and K ⊂ X compcat, then F +K is closed.

(c) If K,L ⊂ X are compact, then K + L is compact.

Fact 4. Let X be TVS and A,B ⊂ X. Then A =
⋂
{A+ U : U ∈ τ(0)}.

Fact 5. Let X be TVS and A,B ⊂ X. Then

(a) A+B ⊂ A+B and IntA+ IntB ⊂ Int(A+B).

(b) λA = λA for every λ ∈ K \ {0} and if A is subspace, then A is subspace.

Fact 6. Let X be TVS and A ⊂ X. Then spanA = spanA, convA = convA and aconvA = aconvA.

2. Further exercises: a) Let X 6= {0} be a vector space and τ be the discrete topology on X. Prove that then
addition is continuous, but multiplication is not continuous.
b) Prove that on R2 there is a topology τ such that addition is separately continuous, but not continuous. (Hint:
consider topology whose basis of neighborhoods of the origin is given by sets {(0, 0)} ∪ {(x, y) : |y| < |x| < r}, r > 0).
c) We say that (X, ‖ · ‖) is a quasi-normed linear space, if X is a vector space and ‖ · ‖ : X → [0,∞) is a mapping
satisfying all the axioms on the norm with the exception that triangle inequality is replaced by the following weaker
condition

∃C ≥ 0∀x, y ∈ X : ‖x+ y‖ ≤ C(‖x‖+ ‖y‖).
For x ∈ X and r > 0 put U(x, r) := {y ∈ X : ‖x − y‖ < r}. Prove that there is a unique topology τ on X such that
(X, τ) is HTVS and {U(0, r) : r > 0} is basis of neighborhoods of 0.
d) Prove that `p for 0 < p < 1 is HTVS with respect to topology given by the metric d(x, y) = ‖x − y‖pp :=∑∞

n=1 |xn − yn|p (Hint: in order to check that d is indeed a metric, note that we have a ≤ ap for a ∈ (0, 1) which
implies (t+ s)p = t

t+s(t+ s)p + s
t+s(t+ s)p ≤ tp + sp for every t, s > 0).

e) Prove that `p for 0 < p < 1 is not locally convex. (Hint: realize that for small δ > 0 we have that ‖δei‖p is small
while for the natural convex combinations we obtain that ‖

∑n
i=1

1
nδei‖p is big).

f) Prove that Lp([0, 1])) for 0 < p < 1 is HTVS with respect to topology given by the metric d(f, g) = ‖f − g‖pp :=∫ 1
0 |f(t)− g(t)|p dt. Moreover, prove that Lp([0, 1]) is not locally convex.
g) Consider the vector space X = {f : [0, 1] → K : f measurable} with metric ρ(f, g) =

∫ 1
0 min{|f − g|, 1} dλ (we

identify functions equal almost everywhere). Prove that X endowed with the topology given by the metric ρ is HTVS,
which is not locally convex (Hint: show that convU(0, r) = X for every r > 0). Moreover, prove that a sequence
{fn} ⊂ X converges to f ∈ X in metric ρ if and only if fn → f in measure.

Suitable for credit: exercises 2.b, 2.f, 2.g



EXERCISES 2 (7.10.2022)

1. Easier and essential exercises:
a) Let (X, ‖ · ‖) be a normed linear space. Prove that µU(0,1)(x) = ‖x‖ = µB(0,1)(x) for every x ∈ X.
b) Let X be a vector space, A ⊂ X such that spanA = X and consider the Minkowski functional µaconvA. Prove that
for every x ∈ X we have

µaconvA(x) = inf
{ n∑
i=1

|ai| :
n∑
i=1

aixi = x, ai ∈ K, xi ∈ A, n ∈ N
}
.

Now, put N := {x ∈ X : µaconvA(x) = 0} and consider the vector space Z := X/N (quotient of X by points for which
µaconvA(x) = 0). Prove that ‖ · ‖ : Z → [0,∞) given by the formula ‖x+N‖ := µaconvA(x), x ∈ X defines a norm on
the vector space Z.
c) Prove that KI is metrizable if and only if I is countable.
2. Further exercises: a) Find an example of a quasi-norm ‖ · ‖ and a balanced neighborhood U of 0 in (R2, ‖ · ‖)
such that the corresponding Minkowski functional µU is not continuous.
(Hint: Note that given a quasi-norm ‖ · ‖ on R2, we have µU(0,1)(·) = ‖ · ‖, so it suffices to find a discontinuous
quasi-norm. Consider now the quasi-norm given by the fomula ‖(x, y)‖ := |x|+ |y| if y 6= 0 and ‖(x, 0)‖ := 2|x|)
b) Using Theorem 7, prove that for any TVS X the following holds

(i) X is completely regular;

(ii) if X has countable basis of neighborhoods of 0, then it is metrizable by a translation invariant metric.

c) Let X be TVS, A ⊂ X balanced neighborhood of 0. Prove that the following conditions are equivalent

(i) µA is continuous;

(ii) For every x ∈ A we have {tx : t ∈ [0, 1)} ⊂ IntA;

(iii) IntA = {x : µA(x) < 1} and A = {x : µA(x) ≤ 1}.
3. Harder exercises (not intended for exams): a) Prove the following Theorem.

Theorem 7. Let X be TVS and (Vn)n∈N a sequence of balanced neighborhoods of 0 satisfying Vn+1 + Vn+1 ⊂ Vn,
n ∈ N. Then there exists a continuous mapping p : X → [0,∞) such that

(i) p(x) = 0 if and only if x ∈
⋂
n∈N Vn;

(ii) p(αx) ≤ p(x) whenever |α| ≤ 1 and x ∈ X;

(iii) p(x+ y) ≤ p(x) + p(y) for every x, y ∈ X;

(iv) for every n ∈ N we have {x ∈ X : p(x) < 2−n} ⊂ Vn ⊂ {x ∈ X : p(x) ≤ 2−n}.
Sketch of the proof. Given finite nonempty F ⊂ N we put qF :=

∑
n∈F 2−n and VF :=

∑
n∈F Vn and define p : X →

[0,∞) by the formula

p(x) :=

{
inf{qF : x ∈ VF } if x ∈

⋃
∅6=F⊂N finite VF ,

1 otherwise.

First, prove the property (ii). Next, prove that qF1 < qF2 implies VF1 ⊂ VF2 and deduce properties (i) and (iv). Finally,
prove that qF1 + qF2 = qF implies VF1 + VF2 ⊂ VF (inductively with respect to |F |) and deduce property (iii) and
continuity of p.

b) Let 0 /∈ A ⊂ Rn be a finite set satisfying spanA = Rn such that no two elements of A are scalar multiples of
each other. Let p : Rn → [0,∞) be a pseudonorm. Prove that for every ε > 0 there exists a norm ‖ · ‖ on Rn satisfying
that maxa∈A

∣∣‖a‖ − p(a)
∣∣ < ε and ‖a‖ ∈ Q for every a ∈ A.

Suitable for credit: exercises 2.a, 2.b, 2.c, 3.b



EXERCISES 3 (14.10.2022)

1. Easier and essential exercises:
a) Let X be a normed linear space and A ⊂ X. Prove that A is bounded as a subset of TVS X, if and only if it is
bounded with respect to the metric generated by the norm.
b) Prove that KI is normable if and only if I is finite.
c) Let X be a TVS and A ⊂ X. Prove that

(i) If A is compact, then it is bounded.

(ii) If A is bounded, then A is bounded.

(iii) If A is bounded and X is LCS, then convA and aconvA are bounded.

2. Further exercises: a) For p ∈ (0, 1) find a sequence (cn) ∈ RN such that the set {cnen} ∪ {0} =: K ⊂ `p is
compact (and therefore bounded), but convK is not bounded (Hint: consider convex combinations

∑m
n=1

1
mcnen).

b) Consider the vector space X = C∞([0, 1]) endowed with the topology τ generated by pseudonorms

νN (f) := max
n≤N
‖f (n)‖∞, N ∈ N ∪ {0}.

Prove that (X, τ) is metrizable LCS which is not normable.
c) Prove that Lp([0, 1])∗ = {0} for every p ∈ (0, 1) (Hint: given 0 6= φ ∈ Lp([0, 1])∗, the set φ−1(−1, 1) 6= Lp([0, 1]) is
convex open neighborhood of 0; so it suffices to prove that for any r > 0 we have convU(0, r) = Lp([0, 1])).
d) Fix p ∈ (0, 1). Consider the mapping I : `∞ → (`p)

∗ defined as I(x)(y) :=
∑∞

n=1 xnyn for x ∈ `∞ and y ∈ `p. Prove
that I is isometry onto `p and show that (`p)

∗ separate the points of `p.

3. Bonus exercises (not intended for exams): a) Pick p ∈ (0, 1). We say that (X, ‖ · ‖) is a p-normed linear
space, if X is a vector space and ‖ · ‖ : X → [0,∞) is a mapping satisfying all the axioms on the norm with the
exception that triangle inequality is replaced by the following weaker condition

∀x, y ∈ X : ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

If (X, ‖ · ‖p) is complete metric space (where by ‖ · ‖p we denote the metric (x, y) 7→ ‖x− y‖p), we say (X, ‖ · ‖) is a
p-Banach space. Prove that any p-normed linear space is quasi-normed space and that (`p, ‖ · ‖p) is p-Banach space,
where ‖x‖p := p

√∑∞
n=1 |xn|p.

b) Let p ∈ (0, 1) and (X, ‖ · ‖) be a p-Banach space such that X∗ separates the points of X. Let | · | be the Minkowski
functional of the set aconvUX(0, 1).

(i) Prove that | · | is a norm on X.

(ii) Let us denote by X̂ the completion of (X, | · |). Prove that the mapping I : X → X̂ defined by I(x) = x, x ∈ X
is continuous and |I(x)| ≤ ‖x‖.

(iii) Prove that whenever Y is a Banach space and T : X → Y is linear and continuous satisfying ‖Tx‖ ≤ C‖x‖ for
x ∈ X, then there exists a unique T̂ : X̂ → Y satisfying T̂ ◦ I = T and ‖T̂‖ ≤ C.

(iv) Prove that the property (iii) characterizes the Banach space X̂ up to isometry. That is, if X̃ is a Banach space
for which there exists Ĩ : X → X̂ continuous onto dense subspace such that for any Y Banach and T : X → Y
there is T ′ : X̃ → Y satisfying ‖T ′‖ = ‖T‖, then X̃ is linearly isometric to X̂.

We say that X̂ is the Banach envelope of X.
c) Prove that the Banach envelope of the p-Banach space `p is the Banach space `1.

Suitable for credit: exercises 2.b, 2.a+d, 3.b, 3.c



EXERCISES 4 (21.10.2022)

1. Easier and essential exercises:
a) Prove that any cauchy net in a complete metric space is convergent.
b) Let X be TVS and A,B ⊂ X totally bounded. Prove that A ∪B, A+B, A are totally bounded.
c) Let X be TVS. Prove that A ⊂ X is totally bounded if and only if for every U ∈ τ(0) there exists a finite set
F ⊂ X such that A ⊂ F + U . Deduce that subsets of totally bounded sets are totally bounded.
d) Let X be LCS and A ⊂ X totally bounded. Then convA and aconvA are totally bounded.

2. Further exercises: In exercises below work only with spaces over R.
a) Let X be an infinite-dimensional normed linear space. Find two disjoint convex sets A,B ⊂ X which are both dense
and deduce that there does not exist x∗ ∈ X∗ \ {0} satisfying supA Rex∗ ≤ infB Rex∗. (Hint: use the existence of
discontinuous linear forms)
b) Let X = c0. Put A = {z ∈ c0 : zn ≥ 0 for every n} and B = {( t

n2 − 1
n)∞n=1 : t ∈ R}. Prove that A,B are disjoint

closed convex sets, but there does not exist x∗ ∈ X∗ \ {0} satisfying supB x
∗ ≤ infA x

∗. (Hint: pick f ∈ (c0)
∗ = `1

satisfying supB f ≤ infA f . Prove that f ≥ 0 on A and so infA f = 0, deduce that f(n) ≥ 0 for every n. Then show
that supB f ≤ 0 implies f

(
( 1
n2 )∞n=1

)
= 0 which in turn implies that f(n) = 0 for every n)

c) If D is a non-empty convex subset of a Banach space X so that 0 /∈ D, then there is x∗ ∈ SX∗ such that

inf{x∗(x) : x ∈ D} = inf{‖x‖ : x ∈ D}.

(Hint: put η = inf{‖x‖ : x ∈ D} and use Hahn-Banach to separate U(0, η) from D)
d) Fix p ∈ (0, 1). Find a closed subspace M ⊂ `p and x∗ ∈ M∗ such that there does not exist ϕ ∈ (`p)

∗ satisfying
ϕ ⊃ x∗.
(Hint: pick a sequence (xn) in `p such that the points xn have disjoint supports, ‖xn‖p = 1 and ‖xn‖1 → 0. Then prove
that en 7→ xn induces isometry between `p and M := span{en : n ∈ N}. Pick x∗ ∈ M∗ satisfying x∗(en) = 1 for every
n ∈ N. Finally, show that for every ϕ ∈ (`p)

∗ we have ϕ(xn)→ 0.)
e) Prove that the Schwartz space S(Rd) is Fréchet space (for the purpose of this exercise, proof it just for d = 1).

3. Bonus exercises (not intended for exams): a) Let (X, d) be a metric TVS with d being translation invariant.
Prove that there exists a completion of X, that is, an F -space X̃ whose topology is generated by a translation invariant
metric d′ and a linear isometry I : X → X̃ such that I(X) = X̃.
(Hint: consider

Y := {(xn) : (xn) is cauchy sequence in X}

and for (xn) ∈ Y put [(xn)] := {(yn) ∈ Y : lim d(xn, yn) = 0}. Then put X̃ := {[(xn)] : (xn) ∈ Y }, endow it with
metric d([(xn)], [(yn)]) := lim d(xn, yn) and natural vector operations + and ·. The mapping I : X → X̃ will be given
by I(x) = [(x, x, x, . . .)].)
b) Let (X, τ) be a TVS metrizable by a complete metric. Prove that it is an F -space.
(Hint: pick a translation invariant metric ρ generating the topology τ . Prove that (X, ρ) is Gδ (and therefore comeager)
in its completion (X̃, ρ) and deduce that for any x0 ∈ X̃ we have (x0 +X) ∩X 6= ∅.

In order to prove that (X, ρ) is Gδ in its completion, pick ρ′ generating τ such that (X, ρ′) is complete. For ev-
ery n ∈ N and x ∈ X pick rn(x) < 1

n satisfying Uρ(x, rn(x)) ⊂ Uρ′(x,
1
n). Finally, show that X =

⋂
Gn, where

Gn =
⋃
x∈X Uρ(x, rn(x)) are open sets in (X̃, ρ).)

Suitable for credit: exercises 2.b, 2.c, 2.d



EXERCISES 5 (4.11.2022)

1. Easier and essential exercises:
a) Let X be a Banach space. Prove that the canonical isometry ε : X → X∗∗ is homeomorphism from (X,w) into
(X∗∗, w∗).
b) Let X,Y be Banach spaces, (Ti) a bounded net of linear operators from L(X,Y ), T ∈ L(X,Y ) and D ⊂ X such
that spanD = X. Prove that then Tix→ Tx for every x ∈ X if and only if Tix→ Tx for every x ∈ D.

As a corollary deduce the following:

(i) Pick p ∈ [1,∞] and consider X = `p(Γ) as a dual space with respect to the standard duality (that is, `q(Γ)∗ =

`p(Γ) for p ∈ (1,∞] and c0(Γ)∗ = `1(Γ)). Then for a bounded net (xi) in X and x ∈ X we have that xi
w∗→ x if

and only if xi(γ)→ x(γ), γ ∈ Γ.

(ii) Pick p ∈ (1,∞) and consider X = `p(Γ) or X = c0. Then for a bounded net (xi) in X and x ∈ X we have that
xi

w→ x if and only if xi(γ)→ x(γ), γ ∈ Γ.

c) Let X = C([0, 1]) and consider three topologies on X - norm topology ‖ · ‖, weak topology w and the topology of
pointwise convergence τp. Prove that

(i) There exists a sequence in X which is τp-convergent, but not bounded in norm.

(ii) A sequence in X is weak convergent if and only if it is norm bounded and τp-convergent.

2. Further exercises:
a) Let p ∈ (1,∞). Find an example of a sequence (xn) in `p such that xn(k) → 0 for every k ∈ N, but xn does not
converge to 0 weakly. (Hint: consider xn = exp(n) · en)
b) Let X, Y be Banach spaces and T ∈ L(Y ∗, X∗). Prove that T = S∗ for some S ∈ L(X,Y ) if and only if T is w∗-w∗

continuous.
c) Let X be an infinite-dimensional Banach space. Prove that any neighborhood of 0 in the weak topology contains a
non-trivial subspace of X. Deduce that SX

w
= BX and then deduce that SX∗

w∗
= BX∗ .

d) Let X be a Banach space. Prove that dimX < ∞ if and only if weak topology on X coincides with the norm
topology if and only if weak star topology on X∗ coincides with the norm topology.
e) Let X be an infinite-dimensional Banach space. Find a net (xi) in X which is weakly convergent to 0, but not
bounded.
(Hint: let us denote the weak topology by τw. Using 2.c above, for any U ∈ τw(0) pick fU ∈ X∗ \ {0} with Rf ⊂ U .
Consider the partially ordered set I = {(U, n) : U ∈ τw(0), n ∈ N} such that (U, n) ≤ (U ′, n′) iff U ⊃ U ′ and n ≤ n′.
Finally, consider the net (nfU )(U,n)∈I .)

3. Bonus exercises (not intended for exams):
a) Let X be a Banach space, C > 0 and f, g ∈ SX∗ . Suppose that ‖f |ker g‖ ≤ C. Prove that there exists α ∈ K with
|α| = 1 such that ‖f − αg‖ ≤ 2C.
(Hint: for C ≥ 1 it is trivial, so suppose C < 1. Pick the Hahn-Banach extension x∗ ∈ X∗ of f |ker g ∈ (ker g)∗. Because
ker g ⊂ ker(f − x∗), there is β ∈ K satisfying f − x∗ = βg. Show that it suffices to put α = β

|β| .)
b) Let X be a Banach space and f ∈ X∗∗. Prove that f ∈ ε(X) if and only if f |BX∗ is w∗-continuous.
(Hint: One implication follows directly from a theorem from the lecture. For the other one, assume that f |BX∗ is
w∗-continuous, without loss of generality assume that ‖f‖ = 1. For η ∈ (0, 1) consider the sets Aη := {x∗ ∈
BX∗ : Re f(x∗) ≥ η} and Bη := {x∗ ∈ BX∗ : Re f(x∗) ≤ −η}, those sets are w∗-compact, disjoint and convex, so
there is x ∈ X such that for g = ε(x) we have supAη Re g < infBη Re g. Deduce that ‖f |ker g‖ ≤ η and use the previous
exercise to show that f is in the closure of κ(X), so it is in κ(X).)

Suitable for credit: exercises 2.c+d, 2.a+e, 3.a+b



EXERCISES 6 (11.11.2022)

If not said otherwise, Ω ⊂ Rd is a an open nonempty set and on D(Ω) we consider the topology τ from Theorem 64.

Definition. Say that a sequence (xn) in a TVS X is cauchy if for every U ∈ τ(0) there exists n0 ∈ N satisfying
xn − xm ∈ U for every n,m ≥ n0. We say X is sequentially complete if every cauchy sequence is convergent.

1. Easier and essential exercises:
a) Prove that τ is the biggest locally convex topology on D(Ω) such that the inclusion iK : (D(K), τK) → (D(Ω), τ)
is continuous mapping for any compact set K ⊂ Ω.
b) Prove that the inclusion i : (D(Rd), τ)→ (C∞(Rd), τC∞) is continuous mapping.

2. Further exercises:
a) Find a sequence (fn) in D(R) such that fn

τC∞→ 0, but fn is not convergent in D(R).
(Hint: Pick some ψ ∈ D(R) with suppψ ⊃ [−1, 1] and put fn(x) := 1

nψ(xn))
b) Find a sequence (fn) in D(R) and f ∈ C∞(R) \D(R) such that fn

τC∞→ f . Deduce that (D(R), τC∞) is not sequen-
tially complete.
(Hint: Pick ψ ∈ D(R) satisfying suppψ = [0, 1] and show that fn(x) :=

∑n
i=1

ψ(x−i)
i2

is cauchy in C∞(R) and let f be
the limit of (fn) in C∞(R))
c) Prove that D(Ω) is sequentially complete.
d) Let K ⊂ Ω be compact with nonempty interior, x ∈ IntK, N ∈ N, ε > 0 and M > 0. Find ϕ ∈ D(K), ϕ ≥ 0 such
that ‖ϕ‖N < ε and D(α)ϕ(x) = 0 whenever |α| ≤ N , but there is β ∈ Nd0, |β| = N + 1 with |D(β)ϕ(x)| > M .
(Hint: show that it suffices to handle the case when x = 0 and dimension d = 1. In this special case use ϕ(t) = tN+1φ(t)
for a suitable function φ)

3. Bonus exercise (not intended for exams): Consider the set

V := {f ∈ D(R) : |f(k)f (k)(0)| < 1 for every k ∈ N}.

Prove that

(i) If f ∈ V and W ⊂ D(R) is an absolutely convex set satisfying W ∩ D(K) ∈ τK(0) for every compact K ⊂ R,
then (f +W ) \ V 6= ∅. In particular, the set D(R) \ V is dense in D(R).
(Hint: By the assumption there are N(n) ∈ N and ε(n) > 0 such that

Un := U‖·‖N(n),ε(n) = {f ∈ D([−n, n]) : ‖f‖N(n) < ε(n)} ⊂W ∩D([−n, n]]).

Put N := N(1) and find g ∈ UN+1 satisfying |f(N + 1) + 1
2g(N + 1)| > 0 and |g(N + 1)| > 0. Observe that by

2.d for any M > 0 there exists ϕ ∈ U1 satisfying |ϕN+1(0)| > M . Use this observation to show that if M is big
enough, we obtain f + ϕ+g

2 ∈ (f +W ) \ V .)

(ii) V ∩D(K) ∈ τK(0) for every compact K ⊂ R, but V is not a neighborhood of zero in D(R).

(iii) The set D(R) \ V is sequentially closed in (D(R), τ), that is, every convergent sequence of points from D(R) \ V
has the limit in the set D(R) \ V .

Deduce that there exists f ∈ D(R) \ V , which is not a limit of a sequence of functions from D(R) \ V . In particular,
D(R) is not metrizable.

Suitable for credit: exercises 2.a+b, 2.c, 2.d, 3.



EXERCISES 7 (18.11.2022)

1. Essential exercises:
a) Let Λlog |x| be the regular distribution on R corresponding to the locally integrable function log |x|. Prove that its
derivative (Λlog |x|)

′ is the distribution Λ 1
x
on R given by the formula

Λ 1
x

(ϕ) := lim
ε→0+

∫
R\(−ε,ε)

ϕ(x)

x
dx, ϕ ∈ D(R)

and moreover we have xΛ 1
x

= Λ1.

2. Further exercises:
a) Which of the following formulas define a distribution on R and which define a distribution on (0,∞)? If the formula
defines a distribution find out whether it is of finite order.

(i) Λ(ϕ) =
∑∞

n=1 nϕ
(n)(n).

(ii) Λ(ϕ) =
∑∞

n=1
1
nϕ( 1

n).

(iii) Λ(ϕ) =
∑∞

n=1
1
n2ϕ

(n)( 1
n).

(Hint: sometimes it helps to use 2.d from Exercises 6 )
b) Let (a, b) ⊂ R and x0 ∈ (a, b). Prove that S ∈ D((a, b)) is a solution of the equation (x − x0)S = 0 if and only if
there is c ∈ K satisfying S = cΛδx0 . Then deduce that (x− x0)2S = 0 if and only if S ∈ span{Λδx0 , (Λδx0 )′}.
(Hint: For the nontrivial implication in the first part consider Q : D(R)→ D(R) given by the formula

Q(ψ)(x) :=

∫ 1

0
ψ′(x0 + t(x− x0)) dt.

Prove that Q is well-defined mapping satisfying (x−x0)Q(ψ) = ψ whenever ψ(x0) = 0. Deduce that if (x−x0)S = 0 then
Ker Λδx0 ⊂ KerS. For the second part, by the first part we have (x− x0)S = cΛδx0 , then notice that (x− x0)(Λδx0 )′ =
−Λδx0 , and finally apply the already proven part to S + c(Λδx0 )′.)
c) Find all the solutions of the following equations for S ∈ D(R)∗.

(i) S′ = Λδx0 (x0 ∈ R).

(ii) S′′ = Λδx0 (x0 ∈ R).

(iii) (1 + x)2S′′ = 0.

(iv) (x− 1)S = Λ1.

(Hint: find one “particular solution” and prove that any solution is a particular solution plus general solution of a
homogeneous equation .. for the solution of a homogeneous equation use Exercise 2.b) above or Theorem 72 )

3. Bonus exercises (not intended for exams): a) Prove that given f ∈ C∞(R), distribution S ∈ D(R)∗ solves
the equation S′ + fS = 0 if and only if S = cΛe−F (x) for some constant c ∈ K and some function F satisfying F ′ = f .
(Hint: prove that we have (eF (x)S)′ = eF (x)(S′ + fS) so S is the solution of our equation iff (eF (x)S)′ = 0)
b) Prove that for any S ∈ D(R)∗ and x0 ∈ R there exists Λ ∈ D(R)∗ satisfying (x− x0)Λ = S.
(Hint: pick any φ ∈ D(R) with φ(x0) = 1 and consider Q : D(R)→ D(R) given by the formula

Q(ψ)(x) :=

∫ 1

0
ψ′(x0 + t(x− x0))− ψ(x0)φ(x0 + t(x− x0)) dt.

Prove that Q is well-defined sequentially continuous mapping satisfying Q((x−x0)ϕ) = ϕ. Finally, put Λ(ψ) := S(Q(ψ))
for ψ ∈ D(R))

Suitable for credit: exercises 2.a, 2.b, 2.c



EXERCISES 8 (25.11.2022)

1. Essential exercises:
a) Prove that

Λ1 ∗
(
(Λδ0)′ ∗ Λχ(0,∞)

)
6=
(
Λ1 ∗ (Λδ0)′

)
∗ Λχ(0,∞)

.

(that is, prove that all the expressions are well-defined and that the inequality holds)
b) Prove that Λχ(0,∞)

∗ Λχ(0,∞)
= Λid.

2. Further exercises:
a) Given c > 0, consider the function

f(t, x) :=

{
1
2c , |x| < ct,

0, otherwise,
(t, x) ∈ R2.

Prove that

(i) Distribution Λf solves the equation D(2,0)Λ− c2D(0,2)Λ = Λδ(0,0) .

(ii) Given ϕ ∈ D(R2) satisfying suppϕ ⊂ R× (t0,∞) for some t0 ∈ R, there exists g ∈ C∞(R2) such that supp g ⊂
R× (t0,∞) and ∂2t g − c2∂2xg = ϕ.

(iii) For every (x0, t0) ∈ R2 find a distribution Λ satisfying equation D(2,0)Λ− c2D(0,2)Λ = Λδ(x0,y0) .

(Note: Λf is fundamental solution of the “Wave equation”)
b) Consider the function

f(t, x) :=

{
1√
4πt

exp(− |x|
2

4t ), t > 0,

0, otherwise,
(t, x) ∈ R2.

Prove that

(i) f is locally integrable on R2,

(ii) (∂tf − ∂2xf)(x, t) = 0 whenever t > 0,

(iii)
∫
R f(t, x) dx = 1 for every t > 0,
(Hint: use the well-known value

∫∞
−∞ e

−x2 =
√
π),

(iv) Distribution Λf solves the equation ∂tΛ− ∂2xΛ = Λδ(0,0) .
(Hint: First, using per partes and (i) show that for every ϕ ∈ D(R) we have

(∂tΛ− ∂2xΛ)(ϕ) = lim
ε→0+

∫ ∞
ε

∫
R
f(t, x)(∂tϕ− ∂2xϕ)(t, x) dx dt = . . . = lim

ε→0+

∫
R
f(ε, x)ϕ(ε, x) dx

and then using (ii) and the fact that ϕ is a Lipchitz map prove that the limit above is equal to ϕ(0, 0))

(Note: Λf is fundamental solution of the “Heat equation”)

3. Bonus exercises (not intended for exams):
a) Let f(x) = ‖x‖−1, x ∈ R3. Prove that f is locally integrable on R3 and that the distribution Λf solves the equation
4Λf = −4πΛδ(0,0,0) .
(Note: − 1

4πΛf is fundamental solution of the “Laplace equation”)

Suitable for credit: exercises 2.a, 2.b, 3.a



EXERCISES 9 (2.12.2022)
1. Essential exercises:
a) Prove that on R we have Λ̂δ0 = 1√

2π
Λ1, Λ̂1 =

√
2πΛδ0 and Λ̂δa = 1√

2π
Λe−iax for every a ∈ R.

b) Let Λ be a tempered distribution on R. Prove that ̂̂Λ(ϕ) = Λ(ϕ̌) for every ϕ ∈ S1.
c) Express on R the Fourier transform Λ̂cosx as a linear combination of tempered distributions of the form Λδa , a ∈ R.
(Hint: express cosinus as exponential and use (a) and then (b))

2. Further exercises:
a) Let f ∈ Lloc1 (R), f ≥ 0. Prove that if Λf is tempered distribution, then there are C > 0 and N ∈ N0 satisfying

∀R ≥ 1 :

∫ R

−R
f(x) dx ≤ C(1 +R)N .

Deduce that Λex is not a tempered distribution. On the other hand, prove that Λex cos(ex) is tempered distribution.
(Hint: Pick A > 0 and N ∈ N0 satisfying |Λf (φ)| ≤ AνN (φ), φ ∈ D(R). Fix some ψ ∈ D([−2, 2]) satisfying ψ|[−1,1] ≡ 1,
then check that for every R > 0 we have

0 ≤
∫ R

−R
f(x) dx ≤

∫ R

−R
f(x)ψ( xR) dx ≤ AνN (ψ(

·
R

)) ≤ . . . ≤ C(1 +R)N .

For the “on the other hand” part note that we have (sin(ex))′ = ex cos(ex) and that sin(ex) is bounded function)
b) Which of the following formulas define a tempered distribution on R?

(i) Λ(ϕ) :=
∑∞

j=−∞ j
2ϕ(j), ϕ ∈ D(R).

(ii) Λ(ϕ) :=
∑∞

j=−∞ e
jϕ(j), ϕ ∈ D(R).

(iii) Λ(ϕ) :=
∫ 10
0

ϕ(x)−ϕ(0)
x dx+

∫∞
10

ϕ(x)
x dx, ϕ ∈ D(R).

(Hint: for (ii) use similar strategy as in Exercise 2.a)
c) Prove that for a tempered distribution Λ on R we have

Λ ∈ span{(Λδ0)(n) : n ∈ N0} ⇔ Λ̂ ∈ {ΛP : P is a polynomial}.

d) Let d ∈ N and (aα)α∈Nd0,|α|≤N
be a finite sequence of complex numbers satisfying that the polynom

∑
|α|≤N aα(ix)α

does not have root in Rd. Prove that then the only tempered distribution Λ satisfying
∑
|α|≤N aαD

αΛ = 0 is Λ = 0.

3. Bonus exercise (not intended for exams): Let Λ be a tempered distribution satisfying the equation
∑
|α|≤N aαD

αΛ =
0 (where (aα)|α|≤N is finite sequence in K). Consider then the polynomial P (x) =

∑
|α|≤N aα(ix)α. Prove that the

following holds.

(a) If polynomial P does not have root in Rd, then Λ = 0.

(b) If polynomial P does not have root in Rd \ {0}, then Λ = ΛQ for some polynomial Q.

(c) Aply the above to prove the following generalization of the Liouville theorem: Let f ∈ H(C) be a holomorphic
function satisfying for some C > 0 and N ∈ N0 that |f(x)| ≤ C(1 + |x|)N , x ∈ C. Then f is polynomial of degree
at most N .

For the proof of (b) you may without proof use the following well-known result.

Theorem 8. Let Λ be a distribution on Rd such that for any ϕ ∈ D(Rd \ {0}) we have Λ(ϕ) = 0. Then

Λ ∈ span{DαΛδ0 : α ∈ Nd0}.

Proof. viz. skripta od doc. Johanise a prof. Spurného (Věta 33 on page 136 here:
https://www2.karlin.mff.cuni.cz/~spurny/doc/ufa/funkcionalka.pdf)

Suitable for credit: exercises 2.a, 2.b, 2.c+d



EXERCISES 10 (9.12.2022)
1. Essential exercises:
a) Consider on an uncountable set I the σ-algebra A := P(I) consisting of all the subsets of I. Prove that the mapping
I 3 i 7→ ei ∈ c0(I) is borel A-measurable, but not strongly A-measurable.
b) Consider the σ-algebra A consisting of Lebesgue-measurable sets on [0, 1]. Prove that the mapping [0, 1] 3 x 7→
ex ∈ `2([0, 1]) is weakly A-measurable, but not borel A-measurable.

2. Further exercises:
a) Let (Ω,A, µ) be the interval (0,∞) with the Lebesgue measure, ψ : (0,∞)→ (0,∞) a function and X = Lp(0,∞)
for some p ∈ (1,∞]. Consider the function φ : (0,∞)→ X given by the formula φ(t) := χ(0,ψ(t)), t > 0. Prove that

• If p ∈ (1,∞), then φ is strongly µ-measurable ⇔ φ is weakly µ-measurable ⇔ ψ is µ-measurable.
(Hint: since X is separable, strong and weak measurability coincide. Next, use without proof the well-known fact
that simple functions are dense in Lq and deduce that functions of the form {χ(0,T ) : T > 0} are linearly dense
in X∗, so to test weak measurability it suffices to consider functions of the form χ(0,T ) ∈ Lq = X∗)

• if p = ∞, then φ is strongly µ-measurable ⇔ ψ is µ-measurable and there exists a countable set C ⊂ (0,∞)
such that ψ(t) ∈ C for a.e. t ∈ (0,∞).
(Hint: ⇒ to prove measurability of ψ consider functions of the form χ(0,T ) similarly as above, to prove the
existence of C note that for characteristic functions in X form a discrete set and use that the range of φ is
a.e. contained in a separable set; ⇐ prove that φ is borel µ-measurable and the range of φ is a.e. contained in a
separable set)

b) In this exercise we work with real Banach spaces, that is, K = R. Let (Ω,A, µ) be the interval (0, 1) with the
Lebesgue measure, ψ : (0,∞) → R a function and X = Lp(0,∞) for some p ∈ [1,∞). Consider the function φ
given by the formula φ(t)(u) := ψ(u)χ(0,t)(u), t, u ∈ (0, 1). Prove that φ(t) ∈ X for every t ∈ (0, 1) if and only if
ψ|(0,T ) ∈ Lp((0, T )) for every T > 0. Assume now that φ(t) ∈ X for every t ∈ (0, 1) and prove the following.

• The mapping φ : (0, 1)→ X is strongly µ-measurable. Moreover, it is weakly integrable iff (1−u)ψ(u) ∈ Lp(0, 1).
(Hint: you may use without the proof the fact that f ∈ Lp if and only if for every g ∈ Lq we have fg ∈ L1, see
Exercise 3.a below)

• Assume φ : (0, 1)→ X is weakly integrable. Prove that it is Pettis integrable and compute the value of the Pettis
integral (P )

∫
E φdµ for any measurable E ⊂ (0, 1).

3. Bonus exercises (not intended for exams):
a) Let f : (0, 1) → [0,∞) be a measurable function and p ∈ (1,∞). Prove that f ∈ Lp(0, 1) if and only if for every
g ∈ Lq(0, 1), g ≥ 0 we have fg ∈ L1(0, 1).
b) Let (X,A) be a measurable space such that the cardinality of X is greater than continuum. Prove that {(x, x) :
x ∈ X} is not in the σ-algebra A⊗A on X ×X generated by sets {A×B : A,B ∈ A}.
(Hint: pick any U ∈ A⊗A. First, prove that there exists a sequence (An) in A such that U ∈ σ{An×Am : n,m ∈ N}.
Then for σ ∈ 2ω put Bσ :=

⋂
{n: σ(n)=1}An ∩

⋂
{n: σ(n)=0}(X \ An) and prove that U is union of sets of the from

Bσ ×Bτ for some σ, τ ∈ 2ω. Deduce that any A⊗A-measureable set is union of 2ω sets of the form A×B for some
A,B ∈ A ⊗ A. Finally, use the assumption on the cardinality of X to prove that the set {(x, x) : x ∈ X} cannot be
written as a union of 2ω sets of the form A×B for some A,B ∈ A⊗A.)
c) Consider the Banach space X = `2(I) where the cardinality of I is greater than continuum. Consider the σ-algebra
A on X consisting of borel subsets of X and the measurable space (X ×X,A⊗A). Let f, g : X ×X → X be defined
as f(x, y) = x and g(x, y) = −y. Prove that both f, g are A⊗A-measurable, but f + g is not A⊗A-measurable.
(Hint: use exercise 2a above)

Suitable for credit: exercises 2.a, 2.b, 3.a, 3.b+c



EXERCISES 11 (16.12.2022)
1. Essential exercises:
a) Let (Ω,A, µ) be the set N with the counting measure. Consider the function f : N→ c0 given as f(n) := 1

nen. Prove
that f is Pettis integrable, but not Bochner integrable.

2. Further exercises:
a) Let (Ω,A, µ) be the interval (0,∞) with the Lebesgue measure, ψ : (0,∞) → K a measurable function and
X = Lp(0,∞) for some p ∈ [1,∞). Consider the function f : (0,∞) → X given by the formula f(t) := ψ(t)χ(0,t),
t > 0.
(i) Prove that f is strongly µ-measurable. (Hint: since X is separable, strong and weak measurability coincide.)
(ii) Prove that f is Bochner integrable if and only if

∫∞
0 t1/p|ψ(t)|dt <∞. Moreover, if p = 1 and f is weakly integrable,

then it is Bochner integrable. (Hint: for the second part use that x∗ ◦ f is integrable for x∗ = 1 ∈ L∞((0,∞)) = X∗)
(iii) Prove that if p > 1 and

∫∞
0

( ∫∞
u |ψ(t)| dt

)p
du < ∞, then f is weakly integrable and therefore also Pettis

integrable.
(iv) If p > 1, find a function ψ such that the function f is Pettis integrable, but not Bochner integrable.
(Hint: try to consider a function ψ =

∑∞
n=1 εnχ[2n,2n+1) a for a suitable sequence of positive numbers (εn).)

b) For f ∈ L1(µ;X) put

‖f‖Pettis := sup
x∗∈BX∗

∫ 1

0
|x∗ ◦ f |dt.

Let (Ω,A, µ) be the interval [0, 1] with the Lebesgue measure, X = `2 and consider functions fn : [0, 1]→ `2 given by

fn(t) :=
2n∑
k=1

ekχ
[
k−1
2n ,

k
2n )]

(t), t ∈ [0, 1].

(i) Prove that ‖fn‖L1(µ;X) = 1, n ∈ N but ‖fn‖Pettis → 0.
(ii) Find a sequence f̃n in L1(µ;X) satisfying ‖f̃n‖L1(µ;X) → ∞, but ‖f̃n‖Pettis → 0. (Hint: try to put f̃n = αnfn for
some sequence (αn).)
(iii) For n ∈ N consider functions gn : [0, 1] → X defined as gn(t) := 2nfn(2nt − 1)χ

[
1
2n ,

1
2n−1 )

(t) and function

f : [0, 1] → X defined as g(t) :=
∑∞

n=1 gn(t)χ
[
1
2n ,

1
2n−1 )

(t). Prove that g is not Bochner integrable, but it is Pettis

integrable.

(Hint: first, show that for each N ∈ N we have
∫
‖f‖ ≥

∑N
n=1

∫ 1
2n−1

1
2n

‖gn(t)‖ = . . . = N → ∞. Then, note that since

X is reflexive it suffices to show weak integrability of f , for this purpose compute first the value of
∫ 1

2n−1

1
2n

|h(f(t))|dt

for every h ∈ `2.)
c) Let (Ω,A, µ) be the interval [0, 1] with the Lebesgue measure, X = c0 and consider the function F : A → X given
as

F (E) :=
(∫

E
sin(2nπt) dt

)∞
n=1

, E ∈ A.

Prove that F (E) ∈ c0 and ‖F (E)‖ ≤ µ(E) for every E ∈ A. Deduce that F is also σ-additive (that is, for pairwise
disjoint sequence (En) from A we have F (

⋃∞
n=1En) =

∑∞
n=1 F (En)). On the other hand, prove that there does not

exist f ∈ L1(µ;X) satisfying F (E) =
∫
E f dµ, E ∈ A. Note: this witnesses that c0 does not have RNP.

(Hint: in order to prove F (E) ∈ c0 use Bessel inequality and the well-known fact that {
√

2 sin(nπt) : n ∈ N} is or-
thonormal system in L2([0, 1]); In order to prove the nonexistence of f ∈ L1(µ;X) suppose it exists and deduce that
then en ◦fn = sin(2nπt) for every n ∈ N, prove that for En := {t ∈ [0, 1] : sin(2nπt) ≥ 1√

2
} we have µ(En) = 1

4 , deduce
that µ(

⋂
n∈N

⋃∞
k=nEk) ≥ lim supµ(Ek) ≥ 1

4 and from this deduce that µ({t : f(t) /∈ c0}) > 0, a contradiction.)

Suitable for credit: exercises 2.a, 2.b, 2.c



EXERCISES 12 (6.1.2022)
1. Essential exercises:
a) Prove that extB`1 = {ten : n ∈ N, t ∈ SK}.
b) Prove that extB`∞ = {f ∈ `∞ : |f(n)| = 1 for every n ∈ N}.
c) Prove that extBL1([0,1]) = ∅.

2. Further exercises:
a) Let H be a Hilbert space. Prove that extBH = SH .(Hint: use the parallelogram law.)
b) Prove that conv extBX

‖·‖
= BX for X = `p, where p ∈ [1,∞). (Hint: for p > 1 use Krein-Milman tehorem together

with the fact that BX is weakly closed because X is reflexive. For p = 1 proceed directly.)

Solutions are available at https://www2.karlin.mff.cuni.cz/~cuth/fa-priklady.pdf


