I. Topological vector spaces

1. Basic properties

Definition 1. Let X be a vector space over K and 7 be topology on X. If the operations addition and multiplication by scalar
are continuous as mappings +: X x X — X and -: K x X — X, we say the tuple (X, ) is topological vector space (TVS).
Hausdorff TVS is denoted as HTVS.

System of all the neighborhoods of a point z € X is denoted by 7(z).

Definition 2. Let X be a vector space over K and A < X. The set A is
* balanced, if aA ¢ Aforevery a € K, |a| < 1;
e absolutly convex, if A is convex and balanced;
* absorbing, if for every x € X there exists A, > 0 such that tz € A for every t € [0, A,].

Absolutly convex hull of the set A is defined as
aconv A = ﬂ{B 5 A; B < X is absolutely convex}.

Definition 3. We say that a topolocial vector space is locally convex (LCS), if there exists basis of neighborhoods of 0 consisting
of convex sets. Hausdorff LCS is denoted as HLCS.

Proposition 4. Let X be TVS and U € 7(0).

(a) U is absorbing.

(b) There exists V € 7(0) open and balanced satisfying V +V < U.

(¢) If U is convex, then there exists V € 7(0) open and absolutely convex satisfying V. +V < U;
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Theorem 5. Let X be TVS.

(a) X is regular (i.e. we may separate points and closed sets by open sets).

(b) The following assertions are equivalent:

(i) X is Hausdorff.
(ii) X is T (i.e. points are closed sets).
(iii) {0} is closed set.
(iv) {0} = (WU; U er(0)}.
Remark: every TVS is even completely regular (even more generally: every topological group is completely regular).

Theorem 6 (John von Neumann (1935)). Let X be a vector space and U a system of subsets of X containing the origin 0, which
is filter basis (i.e. for every Uy, Us € U there exists U € U satisfying U < Uy n Us). Let us suppose that U has the following
properties:

(i) Forany U € U there exists V € U satisfying V +V < U.

(ii) Every set from U is absorbing and balanced.
Then there exists a unique topology T on X such that (X, 7) is TVS and U is basis of neighborhoods of 0. If members of U are
absolutely convex sets, then (X, 7) is LCS. If moreover (\U = {0}, then (X, ) is Hausdorff.
2. Topologies generated by pseudonorms, Minkowski functional

Let X be a vector space, p1, . .., p, pseudonorms on X and £ > 0. Denote

Upy,opne ={r € X5 p1(z) <e,...,pn(x) < e}

If X is a vector space and P je system of pseudonorms on X, then fopology generated by P is the smallest topology 7 such
that for every p € P the mapping p : (X, 7) — [0, ) is continuous. Then system S = {U,.; p € P,e > 0} forms subbasis
of neighborhoods of 0, system U = {U,, ... p,.e; » € N,p1,...,p, € P,e > 0} forms basis of neighborhoods of 0 and net
{z,},er € X converges to € X in 7 if and only if p(z, — ) — 0 for every p € P.



Theorem 7. Let X be a vector space and T be a topology on X. Then (X, 1) is LCS if and only if T is generated by a system of
pseudonorms.

Moreover; if T is generated by a system of pseudonorms P, then (X, 7) is Hausdorff if and only if for every x € X\{0} there
exists p € P satisfying p(x) > 0.
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Definition 8. Let X be a vector space and f: X — R. We say f is positively homogeneous of f(tx) = tf(x) for every t = 0.

Definition 9. Let X be a vector space and A — X be absorbing. Minkowski functional of the set A is function p 4 : X — [0, +00)
defined as
pa(z) =inf {\ > 0; z € AA}.

Theorem 10 (Basic properties of the Minkowski functional). Let X be a vector space and A < X be absorbing. Then:
(a) w4 is positively homogeneous.

(b) If Ais convex, then |14 nonnegative sublinear functional.

(c) If A is absolutly convex, then (14 is pseudonorm.

(d) If A is convex, then {xv € X; pa(x) <1} c Ac {re X; pa(x) <1}

Definition 11. Let (X, 7x), (Y,7y) be TVS and f: X — Y. We say f is uniformly continuous, if for every V' € 7y (0) there
exists U € 7x (0) such thatfor every x,y € X we have f(z) € f(y) + V wheneverx € y + U.

Lemma 12. Let X be TVS and p is sublinear functional on X. Then p is je uniformly continuous if and only if it is bounded from
above on some neighborhood of 0.

Proposition 13. Let X be TVS and A < X is absorbing convex set. Then p 4 is continuous if and only if A is neighborhood of 0.
In this case we have B
IntA={zxeX; pa(zr) <l}c Ac{zeX; pa(z) <1} = A.

Corollary 14. Every LCS is completely regular.

Proposition 15. If (X, 7) is LCS and V is subbasis of negihborhoods of 0 consisting of absolutely convex sets, then T is generated
by a system of pseudonorms {pv; V € V}. Moreover, T is also generated by the system of all the continuous pseudonorms on X.

3. Metrizability a normability

Theorem 16. Let (X, 7) be HTVS. Then the following assertions are equivalent:
(i) X has countable basis of neighborhoods of 0.

(ii) X is metrizable.
(iii) X is metrizable by a translation invariant pseudometric.

If X is HLCS, then it is metrizable if and only if T is generated by a countable system of pseudonorms {p, } and in this case

0

1
p(Ivy) = Z ? min{pn(x - y)v 1} (D

n=1
is translation invariant pseudometric on X generating T.
The end of lecture 3
Definition 17. Let X be TVS and A c X. The set A is bounded, if for every U € 7(0) there exists ¢ > 0 such that A < tU.
Proposition 18. Let X be TVS over K and A = X. Then the following assertions are equivalent:
(i) The set A is bounded.

(ii) For every sequence {x,} < A and every sequence {v,} < K, v, — 0 we have y,z, — 0.
(iii) For every sequence {x,} = A we have *x,, — 0.
Moreover, if X is LCS and topology on X is generated by a system of pseudonorms ‘P, then the conditions above are equivalent
to the fact that each p € P is bounded on A.
Definition 19. Let X be a TVS. We say X is normable if its topology is generated by a norm.

Theorem 20 (A. N. Kolmogorov (1934)). Let (X, 1) be HTVS. Then X is normable if and only if there exists a bounded convex
neighborhood of 0.

Lemma 21. Ler (X, 1) be LCS, topology T is generated by system of pseudonorms P and p is a pseudonorm on X. Then p is
continuous if and only if there are p 1, ..., p, € P and C > 0 satisfying p < C max{p1,...,pn}.
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4. Continuous linear mappings

Theorem 22. Let X and Y be HTVS and T : X — Y linear mapping. Consider the following statements:
(i) T is bounded on a neighborhood of 0.
(ii) T is continuous at 0.
(iii) T is continuous.
(iv) T is uniformly continuous.
(v) T(A) is bounded for every bounded A c X.
Then (i)=>(ii)<(iii)<(iv)=(v). If Y is normable, then (i)-(iv) are equivalent. If X is metrizable, then (ii)-(v) are equivalent.

Lemma 23. Let X be a metrizable TVS. If {x,,} = X converges to 0, then there exists a sequence {~y,} < N such that ~,, — +0
and vy, x, — 0.

Proposition 24. Let X and Y be HLCS, and T': X — Y be a linear mapping. Let P be system of pseudonorms generating
the topology of X and Q be system of pseudonorms generating the topology of Y. Then T is continuous if and only if ¢ o T is
continuous for every q € Q, equivalently

Vge Q3py,...,pr € PAC > Wz € X : ¢(Tz) < C - max{pi(x),...,pr(z)}.
Theorem 25. Let X be HTVS and f: X — K nonzero linear form. Then the following assertions are equivalent:
(i) f is continuous.
(ii) Ker f is closed.
(i) Ker f # X.
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As usual we shall call linear forms as (linear) functionals.

Definition 26. Let X be TVS. By X# we will denote the space of all the linear forms (functionals) on X and we will call it the
algebraic dual. By X* we will denote the subspace of X# consisting of those linear functionals, which are continuous on X,
and we will call it the topological dual (or only the dual).

Definition 27. Let X and Y be topological vector spaces and 7': X — Y be linear. We say 7T is isomorphism of X onto Y (or
just isomorphism), if T' is homeomorfism of X onto Y'; we say that 7" is isomorphism X into Y (or just isomorphism into), if T
is isomorphism of X onto RngT'.

5. Finite-dimensional spaces

Definition 28. Let X be TVS and A < X. Set A is said to be rotally bounded, if for every U € 7(0) there exists finite F' < A
suchthat Ac F + U.

Proposition 29. Let X be TVS. Compact subsets of X are totally bounded and totally bounded sets are bounded.
Theorem 30. Let X be HTVS. Then the Then the following assertions are equivalent:
(i) dim X < oo.
(ii) There exists n € N such that X is isomorphic with (K™, |-|2).
(iii) There exists totally bounded neighborhood of zero in X.
(iv) X is metrizable and every linear map from X into a topological vector space is continuous.
(v) X is metrizable and every linear form on X is continuous.
Corollary 31. Let X be HTVS. Then every finite-dimensional subspace of X is closed in X.
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6. Separating theorems

Theorem 32. Let X be LCS and A, B c X be disjoint convex sets. Then the following holds:
(a) If A has nonempty interior, then there exists f € X*\{0} satisfying sup 4 Re f < infp Re f.

(b) If A is closed and B compact, then there exists f € X* satisfying sup 4, Re f < infg Re f. If moreover A is absolutely
convex, then sup 4| f| < infg Re f.

Corollary 33. Let X be LCS. Then the following holds:
(a) If X is Hausdorff, then X* separates the points of X.
(b) If Y is a closed subspace of X and x ¢ Y, then there exists f € X* satisfying f|y = 0and f(z) = 1.

(c) If'Y is a subspace of X and | € Y*, then there exists F € X* satisfying F'|y = f.

7. Fréchet spaces

Definition 34. Let X be a metrizable HTVS.
« If the topology on X is induced by a translation invariant complete metric, we say X is F'-space.
o If X is F-space and moreover locally convex, we say X is Fréchet.

Lemma 35. Let X be HLCS, whose topology is generated by pseudonorms {p,: n € N} satisfying p1 < pa < .... Let p be
translation invariant metric on X defined by the formula (1). Then a sequence (x1,)yen € X" is cauchy in (X, p), if and only if
(k) is cauchy in the pseudonorm p,, for every n € N.
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Proposition 36. Let X be LCS and A < X is totally bounded set. Then aconv A is totally bounded. In particular, if X is Fréchet
space and A < X is compact, then aconv A is compact.

Theorem 37 (Principle of uniform boundedness). Let X be a Fréchet space, Y be LCS and A system of linear continuous
operators from X into'Y. Then the following assertions are equivalent.

(i) Forevery x € X the set {Tz: T € A} is bounded.

(ii) Operators from A are uniformly continuous, that is, for every V € 1y (0) there exists U € 7x (0) satisfying T(U) < V for
everyT € A.

Corollary 38. Let X be a Fréchet space, Y be LCS and (T),)nen a sequence of continuous linear mappings from X into'Y such
that for every x € X there exists Tx = lim,,_,o, Tp,x. Then T : X — Y is continuous linear operator.

Theorem 39 (Open mapping theorem). Let X andY be F-spaces andT : X — Y continuous linear and onto. Then T is open.
In particular, if T' is moreover one-to-one, then T is isomorphism.
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Theorem 40 (Closed graph theorem). Let X and Y be F-spaces and T : X — Y linear mapping. Then T is continuous if and
only if T has closed graph.
8. Weak topologies and polars

Weak topologies

Definition 41. Let X be a vector space and M < X7#. By o(X, M) we denote the locally convex topology on X generated by
the system of pseudonorms {|f|; f € M}.

Definition 42. Let X be a TVS.
* Topology w = o (X, X*) is called the weak topology (also w-topology) on X .
* Topology w* = o(X*,&(X)) is called the weak star topology (also w*-topology) on X *.

Lemma 43. Let X be avector space and f, f1, . .., [y linear forms on X. Then f € span{fi,..., fn}ifand only ifﬂ;;l Ker f;
Ker f.



Proposition 44. Let X be a vector space and M, N < X#. Then o(X, M) = (X, N) if and only if span M = span N. In
particular, o(X, M) = (X, span M).

Theorem 45. Let X be a vector space and M < X*#. Then (X, o(X, M))* = span M.
Corollary 46. Let (X, 7) be LCS. Then

(a) wce Ta(X,w)*=X*

(b) (X*,w*)* = e(X).

(¢) If X is normed linear space and f € X**, then f € (X)) if and only if f is w*-continuous.

Proposition 47. Let X be LCS and 'Y be subspace of X. Then on'Y the topology o(Y,Y*) coincides with the restriction of the
topology o (X, X*)onY.
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Theorem 48 (Mazur theorem). Let X be LCS and A — X be convex. Then
(a) A" = A.
(b) A is weakly closed if and only if it is closed.
(c) If X is metrizable and x,, — x weakly, then there are y,, € conv{x;; j = n} such that y, — .
Theorem 49 (Mackey). Let X be LCS and A < X. Then A is bounded if and only if it is weakly bounded.
Theorem 50. Let X, Y be HLCS and T': X — Y continuous linear mapping. Then
(a) T is w—w continuous.

(b) Define T* : Y* — X* by the formula T*f = foT, f € Y*. Then T* is w*-w* continuous.

Polars

Definition 51. If X is LCS and A < X, we define (absolut) polar of the set A as
={feX™ |f(z)| < 1forevery z € A}.
For a set B ¢ X* we define backwards (absolute) polar as
B, = {z € X; |f(z)| < 1forevery f € B}.
Theorem 52 (Bipolar Theorem; Jean Dieudonné (1950)). Let X be LCS.
(a) If A c X, then (A°), = aconv " A (= aconv A, if X is locally convex).
(b) If B X*, then (B,)° = aconv®" B.
Corollary 53. Let X be normed linear space.
(a) For B < X* we have (B,)* = span™" B.
(b) IfY is normed linear space and T € L(X,Y), then Ww* = (Ker T))*.
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*

Theorem 54 (Herman Heine Goldstine (1938)). If X is normed linear space, then (Bx) - Xk
Theorem 55 (Banach-Alaoglu-Bourbaki). Let X be HLCS and U neighborhood of 0 in X.
(a) U° is w*-compact set.

(b) If X is separable and {x,,}°_; is dense in X, then (U°, w*) is topological space metrizable by the metric

9= X el - el 1)



Corollary 56. Let X be normed linear space. Then (Bxx,w*) is compact. Morevoer, if X is separable, then (Bxx,w*) is
moreover metrizable.

Proposition 57. Let X be normed linear space, X* is separable and { f,,} is dense in Sxx. Then (Bx ,w) is metrizable by the

metric "
- 1
g 27|er - |
Theorem 58. If X is a Banach space, then X is reflexive if and only if (Bx,w) is compact. Morevoer, if X is separable then
(Bx,w) is metrizable.
Corollary 59. Let X be a Banach space. Then X is reflexive if and only if weak and weak-star topologies coincide on X*.
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I1. Distributions

1. Space of test functions

Lemma 60. Let Q — R? be open.

(a) Let p be borel complex (resp. signed) measure on ). IfSQ wdu = 0 for every nonnegative v € D(2,R), then u = 0.
(b) Let f € LP(Q,N). If §, fodX = 0 for every nonnegative ¢ € D(Q,R), then f = 0 a. e. on Q.

(c) Let ju be borel complex (resp. signed) measure on 2 and f € LY°°(Q,\). If SQ pdp = SQ fed\ for every nonnegative
¢ € D(Q,R), then f € L1(Q,\) and pu(A) = § , f dX for every borel A < Q.

Lemma 61. Let K < R? be compact and G = R? be open, G o K. Then there are U < G open, U > K and ¢ € D(G) such
that0 < p < landp=1o0nU.

Definition 62. Let K < R be compact, then the symbol 7x denotes the metrizable local convex topology on D(K ) generated
by the countable system of norms ||, N € Ny, where

lelly = H‘15<”1§[HD&‘PHOOa peD(K), N e N.

ETES
Symbol 7c= denotes the topology on C®(R?) generated by the countable system of pseudonorms ||y, N € Ng, where

|fIn = ‘max |D“fl|B ON)HOO7 S COO(Rd)7 N € No.

<N
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Proposition 63. (C*(R?), 7c« ) and (D(K), T ) are Fréchet spaces for every K < R? compact.
Theorem 64. Let Q < R? be open and nonempty. Put
U ={U < D(Q); U absolutely convex, U n D(K) € 7 (0) for every compact K < Q}.
Then U is basis of neighborhoods of 0 for a Hausdor{f locally convex topology T on D(2), which has the following properties:
(a) For every compact K < ) the space D(K) is closed subspace of (D(Q2),7) and T p(xy = Tk.
(b) If A < (D(R), 1) is bounded, then there exists K < Q compact such that A ¢ D(K).
(¢) Let {pn} be a sequence in D(QY) and ¢ € D(Y). Then o, — @ v T if and only if there exists a compact K < Q such that
supp ¢n < K for every n € N, and for every multiindex o of length d we have D®p,, — D uniformly on R<.
2. Space of distributions

Definition 65. Let © < R? be open and nonempty. Then D(Q)* = (D(Q),7)" is the space of distributions. We say A is
distribution, if A € D(Q)*.

Proposition 66 (characterization of distributions). Let Q = RY be open nonempty, Y be HLCS and A : (D(Q),7) — Y is linear.
Then the following conditions are equivalent:

(i) A is continuous.



(ii) A is sequentially continuous, that is, A(p,) — A(p) whenever ,, > .
(iii) For every compact K < ) the restriction A|p (g is continuous.
Morevoer, if Y = K, then the conditions above are equivalent to the condition
(iv) For every compact K c ) there are N € Ny and C > 0 satisfying |A(v)| < C||p| N for every ¢ € D(K).
Remark: proof was given only for the case Y = K. The end of lecture 13

Definition 67. Let Q — R? be open nonempty and A € D(2)*. If there is N € Ny such that for every compact K < 2 there
exists C' = 0 such that |A(p)| < C|¢|n for any ¢ € D(K), then the smallest N with this propery is called order of the
distribution A. If such N does not exist, we say that the order of A is infinity.

Examples 68. Let QO — R? be open nonempty.

(i) For f € L*°(, \) we define As(¢) = §, fodA, ¢ € D(2). Then Ay is distribution of order 0 and whenever Ay = A,
for some g € LI°¢(Q, \), then f = g ae.

(i) Let p be borel complex (resp. signed) measure on Q2. We define A, (¢) = §, ¢ du, ¢ € D(Q). Then A, is distribution of
order 0. Whenever A,, = A, for some borel complex (resp. signed) measure v, then 1+ = v. Whenever A, = A for some
feL(Q,N\), then u = fdA.

(iii) Let 4 be nonnegative borel regular measure on 2, which is finite on compact sets. We define A, (p) = SQ pdp for
¢ € D(Q). Then A, is distribution of order 0. Whenever A,, = A, for some measure v, then 4 = v. Whenever A, = Aj
for some f e LP¢(, \), then 1 = f d\.

(iv) Necht k € N. We define A(p) = ¢(¥)(0) for ¢ € D(R). Then A is distribution of order k, which is not of order k — 1.
(v) We define A(p) = 37, ¢™(n) for ¢ € D(R). Then A is distribution of order infinity.

Definition 69. Let Q — R? be open nonempty and A € D()*. For multiindex « of length d we define derivation D of the
distribution A as a functional on D(2) given by the formula

(D*A) () = (=1)*IA(Dp).

For a functionf € C® () we define multiplication of the function f and distribution A as a functional on D(€2) given by the
formula

(fA)(p) = A(fe).
Lemma 70. Let k € N, f € C*(R?) has a compact support and let o € N¢, |a| < k. Then

D fpdA = (—1)le J FD%pdA
Rd Rd

for every ¢ € D(R?).

Proposition 71. Let 2 < R? be open nonempty, A € D(Q)*, a € Nd and f € C*(Q). Then the following holds:
(a) DA € D(Q)*.

(b) fAeD(Q)*.

(c) For g € LI°°(Q) we have fA, = Ay,

(d) For g € C1°1(Q) we have DA, = Apa,.

Theorem 72. Let Q) = R? be open nonempty, connected and A € D(Q)* be such that D®A = 0 for every multiindex « satisfying
|| = 1. Then there exists ¢ € K such that A = A..

Remark: proof was given only for the case d = 1 and Q2 = (a, b). The end of lecture 14
Definition 73. Let Q = R be open nonempty. By the space of distributions we understand the locally convex space (D(2)*, w*).
Proposition 74. Let Q  R? be open nonempty. Then the following holds:
(a) If sequence {A,,} < D(Q)* converges to A € D(Q)*, then

o DYA,, — DA for every multiindex o € N,
o fA, — fAforevery function f € C*(Q).



(b) Suppose we have functions f,. f € LY*(Q) satisfying §;| fo — fldX — 0 for every compact K = Q. Then Ay, — Ay.
(©) 1< p < and o — f in L,(9), hen Ay, — Ay
(d) If‘pn " in D(Q), then A@n — A‘P'

Proposition 75. Let Q < R be open nonempty and (A,,) be sequence of distributions on Q such that for every o € D(S)) the
sequence (A, () is convergent. Then the functions A : D(Q) — K given by formula A(p) := lim, . An (@), ¢ € D(Q) is
distribution on ).

Definition 76. Let f: R? — K. Then we define the rotation of f as a function f : R — K given by the formula f(x) = f(—x)
pro x € R?,

Definition 77. Let A be distribution on R?, y € R? and ¢ € D(R?). Then we define shift of the distribution A as a distribution
7, A\ given by the formula 7,A(1)) = A(7_,%), ¥ € D(R?). Moreover, we define convolution of the function  and distribution
A by the formula A = ¢(x) := A(7,), v € R%

Theorem 78 (about convolution of a distribution with a function). Let A be a distribution on R?, y € R? and , 1) € D(R?).
(a) If f € LI°°(RY), then Ay = p = f = .
(b) A+ e C®(R?) and for every multiindex o € Nd we have D®(A = ¢) = DA % ¢ = A * D%.
(c) Ty(Ax @) =TyAxp=AxTye.
(d) For xo € R we have A(;wo # (= Ty, 0. In particular, s, * .
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Definition 79. Let U be distribution on R?. Then we define rotation U as a distribution U/ on R? given by the formula ﬁ((p) =
U(®). ¢ € D(RY).

Examples 80. We try to define convolution of two distributions by the formula U = V (p) = U (\v/ * ), ¢ € D(R?). But, since
V * ¢ sometimes does not have a compact support, we need to interpret this formula correctly. Several basic possible ways are
mentioned bellow.

(i) For f € LI°¢(R?), ¢, € D(R?) and a multiindex o € N¢ we put
(D"Ag) * Mg () = DAg(K, ).
Then DAy * A, is a distribution and we have (D“Ay) * A, = DAy, = D¥(Ag x Ay).
(ii) Given z¢ € R? and a distribution U on R%, for o € N& and ¢ € D(R?) we define
U % DAy, () i= U(D"Rs,,, #v),  D*As,, xU(t) i= D6, (T + 9),

where DA, is understood as a functional from (C*(R%))* defined by the formula DeAs, (f) = (=)l Do f(4) for

feC®RY). Then U * DAs,, = D%As, U = 75, DU and so the above are well-defined distributions. Moreover, we
have D(U  As, ) = DU % As, = U = D*A;_ .

(i) If f, g, f * g € L'*°(R?), we put for every o € N¢
DAgx Ag($) i= D* Ay (K, x0), v e D(RY),

where in the formula above we understand D® A ; as a linear functional defined by the formula DA ¢(h) = (—1)!* Sga fDA
whenever h € C*(R?) and §,, fD*h is convergent. Then D*Ay % Ay = DAy, and so the above are well-defined dis-
tributions satisfying D(Ay * Ay) = (D¥Ay) = A,.

(iv) If f, g € LI°¢(R?) are such that (supp f U supp g) = (R4 )%, then f * g € LI°¢(R9).

Definition 81. Aproximative unit in D(R?) is a sequence of functions (hj)i~yin D(RY), satisfying h;(z) = j¢h(jx) for x € RY
and j € N, where i € D(R?) is nonnegative function and {, h = 1.

Proposition 82. Let (h;) be aproximative unit in D(R?), ¢ € D(R?) and U be distribution on R Then ¢+ h; — ¢ in the space
D(RY) and Ay+p,, — U in the space D(R?)*.

Remark: proof was given only for the “p * h; — ¢” part.The end of lecture 16



3. Tempered distributions
For N € Ny and f € Sy put

vn (f) = lgllgfvﬂw = (L+ )Y D f(a)]

The metrizable locally convex topology on Sy generated by the system {vn}%_, we denote as o.
Theorem 83. (Sy, o) is Fréchet space and the topology o has the following properties:

(a) Let {f,} be a sequence in Sy and f € S4. Then the following conditions are equivalent:

(i) fn — fintopology o.
(ii) For every N € Ng and every multiindex o of length d it holds that (1 + |z|>)N D f,, — (1 + |z|?)N D f uniformly
on R%,

(iii) For every polynomial P and every multiindex o of length d it holds that PD® f,, — P D" f uniformly on R
(b) If fn — f in the space (S, ), then f, — f in L,(R?) for every 1 < p < 0.

(c) If o is a multiindex of length d, P polynom on R? and g € S,, then mappings f — D f, f — Pf a f — gf are continuous
as maps from (Sq,0) to (Sq, o).

(d) For any compact K < R¢ we have o Mp(k) = Tk-

Proposition 84. Subspace D(R?) is dense in (Sg,0) and for the topology T we have o I'D(ray © T. In other words, embedding
Id: (D(RY), 1) — (84, 0) is continuous onto a dense set.

Definition 85. Distributions on R¢, which are restrictions of functionals from (Sy, o)* are called tempered distributions.

Proposition 86. Distribution A on R is tempered if and only if there are N € Ny and C > 0 satisfying |A(¢)| < Cvn(p),
¢ € D(RY).

Examples 87. (a) Every distribution with a compact support (that is, satisfying that there exists a compact K — R¢ such that
A(p) = 0 whenever ¢ € D(R?\ K)) is tempered.

(b) Whenever 1 is borel measure satisfying {(1 + z[?)™ du < oo for some N € Ny, then A,, is tempered distribution and
Ay (f) = Sga f dpfor f e Sa.

(c) Whenever g is measurable function on R such that z — (1 + |2[?)" € L,(R?) for some N € Ny and 1 < p < oo (This
in particular holds for functions from L,,(R?) or for functions majorizable by a polynom). Then A, is tempered distribution,

where Ag(f) = §gza fg for f e Sy

Proposition 88. Let A be a tempered distribution on R?, o € N¢, g € Sy and P be polynomial on R?. Then D*A, gA and PA
are tempered distributions as well and the following formulas hold for every f € Sy:

« DA(f) = (=D)I*IA(Df),
* (9M(f) = Algf) and
* (PA)(f) = A(PS).
Moreover, mappings A — DA, A — gA and A — PA are continuous mappings from the space (S, w*) into itself.
The end of lecture 17

Theorem 89. Fourier transform is isomorfism Sq onto S4. Moreover, for every f € Sq we have

>

f(x) = f(—z) prokazdé x e R* and f = f.

Corollary 90. For f,g € Sq we have (27r)d/ 2;‘; = f x g. In particular, the space S, is closed under the operation of convolution.

~

Definition 91. Fourier transformation of tempered distribution A on R? is defined by the formula [A\( f) =A(f) for f € Sa.

Theorem 92.

(a) If g € L1(RY), then A is tempered distribution and //X; = Ay If g € Lo(RY), then //\; = Ap(g), where F' is the extension of
the Fourier transformation from the Plancherel theorem.

(b) If A is tempered distribution on R% a oo € N, then



« DA = s, A, where Sa(z) = (ix)% a
« DA = muA, where me () = (—iz)®.

(c) Fourier transformation F of tempered distributions is isomorphism of the space (S, w*) onto itself. Moreover, we have
Fi=1Id

Definition 93. For A € S(R?)* and function f € S(R?) we define the mapping A A, : S(R?) — K by the formula

AxAp(g) = A(fxg),  geSRY.
Proposition 94. Let A € S(R?)* and f € S(RY). Then the following holds.
(a) A=Ay e S(RY* and for every a € Nd we have D®(A = Ay) = (D*A) * Ay.
(b) Asy A=Ay,
The end of lecture 18

II1. Basics on vector integration

1. Measurable mappings
Definition 95. Let (2, .4) be a measurable space and X a Banach space. Mapping f: Q@ — X is
* borel A-measurable, if f~1(U) € A for every U = X open,

* simple measurable, if f(S2) is a finite set and f is borel .A-measurable (that is, f = > | x;x 4, where (z;)7_, € X™ and
Ay, ..., A, € Aare pairwise disjoint),

o strongly A-measurable, if f is a pointwise limit of simple measurable functions (that is, there are simple measurable
functions (s,,) such that ||s,,(x) — f(z)| — O for every z € Q),

* weakly A-measurable, if for every x* € X* the mapping x* o f : 2 — K is borel .A-measurable.
Proposition 96. Ler (2, A) be a measurable space and X a Banach space.
(a) Pointwise limit of a sequence of borel A-measurable mappings from Q) to X is borel A-measurable mapping.
(b) For function f : Q — X we have

f is strongly A-measurable = f is borel A-measurable = f is weakly A-measurable

(c) If X is separable, then f : Q — X is strongly A-measurable, if and only if it is borel A-measurable.

(d) Pointwise limit of a sequence of strongly (resp. weakly) A-measurable mappings from € to X is strongly (resp. weakly)
A-measurable mapping.

(e) Simple measurable, strongly A-measurable and weakly A-measurable mappings form a vector space.

Definition 97. Let (2, A, 1) be a space with a complete measure and X be a Banach space. Mapping f: Q — X is strongly
pu-measurable, if f is p-a.e. pointwise limit of a sequence of simple measurable functions (that is, there are simple measurable
functions (s,,) such that |5, (z) — f(z)| — 0 for p-a.e. z € ). Rikdme, 7e f: Q — X je slabé yi-measurable (resp. borelovsky
u-measurable), pokud je slabé A-méfitelné (resp. borelovsky A-measurable).

Lemma 98. Ler (2, A, 1) be a space with a complete measure, X a Banach space and f: Q — X. Then f is strongly u-
measurable, if and only if f is borel -measurable and there is E < Q) such that u(E) = 0 and f(Q\FE) is separable.

Corollary 99. Let (0, A, ) be a space with a complete measure, X a Banach space and f,: Q — X, n € N is sequence of
strongly p-measurable mappings, which pointwise converges a.e. to f: Q) — X. Then f is strongly measurable.

The end of lecture 19

Theorem 100 (Pettis theorem). Let (2, A, ) be a space with a complete measure, X a Banach space and f: Q@ — X. Then the
following assertions are equivalent:

(i) f is strongly p-measurable.
(ii) f is borel u-measurable and there is E < Q) such that u(E) = 0 and f(Q\E) is separable.
(iii) f is weakly p-measurable and there is E  Q such that (1((E) = 0 and f(Q\E) is separable.
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2. Dunford and Pettis integral

Definition 101. Let (£2,.A, 1) be a space with a complete measure and X be a Banach space. Function f : Q — X is weakly
integrable, if for every x* € X* we have 2* o f € Lq(p).

If f: Q — X is weakly integrable and £ < () is measurable, then Dunford integral f over the set E is the point
(D) §, fdu e X** satisfying

(0) Lfdu)(x*) _ JEJ;* o fdu, 2% e X*.

Proposition 102. Ler (2, A, 11) be a space with a complete measure, X be a Banach space, | : Q — X be weakly integrable
and E < ) measurable. Then there is a unique x** € X** such that x** is Dunford integral of f over the set E.

Definition 103. Let (€2, A, 1) be a space with a complete measure, X be a Banach space and f : 2 — X be weakly integrable.
If (D) §,, fdp € X (or more precisely (D) §,, fdu € e(X) < X**) for every E — 2 measurable, then we say that f is Pertis
integrable and

)| fan=o)| sau
E E
is the Pettis integral of [ over the set E.

The end of lecture 20

3. Bochner integral

Definition 104. Let (2, 1) be a space with a measure and X be a Banach space. Simple, measurable function f: Q — X is
Bochner integrable, if for every x € f(Q)\{0} we have u(f~*(z)) < +o0.

If f: Q — X is simple, measurable and Bochner integrable, then for every measurable £ < ) we define the Bochner integral
of f over the set ' as

B[ fau= ¥ w @) 0B
B e f(2)\{0}
Lemma 105. Ler (2, A, 1) be a space with a complete measure and X be a Banach space.

(i) Bochner integrable simple functions form a vector space and the mapping which assigns to a simple integrable function f
its integral (B) §¢, f dp, is linear.

(ii) If f: Q — X is simple, measurable, then f is Bochner integrable, if and only if the function t — || f(t)| is integrable. In
this case |(B) §, f du| < §,| | du for every measurable E < €.

Definition 106. Let (€2, .4, 1) be a space with a complete measure, X be a Banach space and f : @ — X be strongly p-
measurable. We say that f is bochner integrable, if there exists a sequence f,,: 2 — X, n € N of simple Bochner integrable
mappings such that lim, . §, | f» — f| di = 0. Then, for every measurable E — Q we define the Bochner integral of f over E
as

®) | s lin @) | fodn

E o E

Theorem 107. Let (2, A, i) be a space with a complete measure and X be a Banach space.

(a) The limit defining the Bochner integral exists and does not depend of the choice of the sequence (fy,).

(b) Bochner integrable functons form a vector space and the mapping which assigns to every bochner integrable function f its
integral (B) \, f du, is linear.

(c) |(B)S; fdu| < §,lIf] dufor every E < Q measurable and f : Q — X bochner integrable.

Theorem 108. Let (2, A, 1) be a space with a complete measure, X be a Banach space and f :  — X be strongly u-
measurable. Then f is bochner integrable, if and only if || f|| is lebesgue integrable.

Theorem 109 (about majorizable convergence). Ler (€2, A, 1) be a space with a complete measure, X be a Banach space
and f, : Q@ — X, n € N be sequence of strongly u-measurable mappings. Let [ : Q — X be such that f, — f pointwise
a.e., ane let g € Li(u) be such that for every n € N we have | f,(t)| < g(t) for a. e. t € Q. Then f is bochner integrable

and (B) g, f dp = lim (B) {,, fn dps.
Theorem 110 (absolute continuuity of Bochner integral). Ler (€2, .A, u) be a space with a complete measure, X be a Banach

space and f : 0 — X be bochner integrable. Then for every € > 0 there exists § > 0 such that H(B) SE fd,uH < & whenever
E < Qs such that u(E) < 6.
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Theorem 111. Let (2, A, 1) be a space with a complete measure, X and 'Y be Banach spaces, f : Q@ — X bochner integrable
and T € L(X,Y). Then T o f is bochner integrable and for every measurable E Q) we have

(B)JETofdu - T((B) JEfdu>.

In particular, f is Pettis integrable and (P) §,, f dp = (B) §, f du for every measurable E < Q.
The end of lecture 21

4. Lebesgue-Bochner spaces

Definition 112. Let (€2, A, 1) be a space with a complete measure, X a Banach space and 1 < p < o0. By L, (i, X) we denote
the set of all strongly measurable mappings from 2 into X such that || f|| € L, (), factorized by the equality p-a. e.

Moreover, for f € Ly (11, X) we denote || f| ., . x) = [t — [ f(2)] HLp(u)'

Theorem 113. Let (2, A, i) be a space with a complete measure, X a Banach space and 1 < p < oo.
(a) Ly(p, X) is Banach space with norm | |1, (. x)-
(b) If X is a Hilbert space, then Lo(u, X) is Hilbert space with the scalar product

o D) = L<f<t>,g<t>>du.

Remark: the proof of part (b) was omitted
Theorem 114. Let (2, A, i) be a space with a complete measure, X a Banach space and 1 < p < oo.
(a) The set of simple Bochner integrable mappings from S into X is dense in L, (u, X).
(b) If X and Ly,(p) are separable, then Ly (1, X) is separable.
The end of lecture 22
Theorem 115. Let (2, A, 1) be a space with a complete measure, X a Banach space, 1 < p < o0 and q be conjugate exponent

to p. Consider the mapping I: Lq(p, X*) — L, (u, X)*, I(g) = g, where

eolf) = Lg(t)(f(t)) dut), fe Ly X).

Then the following holds.
(a) The mapping I is isometry.

(b) If (2, 1) is atomic and p # 1, then I is onto. In particular, £y (J, X*) is isometric to £,(J, X)* for every set J. Moreover, if
W is o-additive measure, then the same holds even for p = 1.

(c) If X is reflexive and p # 1, then I is onto. If | is moreover o-additive measure, then the same holds even for p = 1.
Remark: we proved only the part (a) for p # 1

Theorem 116. Ler (2, A, 11) be a space with a complete measure, X be reflexive Banach space and 1 < p < 0. Then Ly (1, X)
is reflexive.

IV. Convex compact sets

Definition 117. Let C be convex subset of a vector space. We say that nonempty F' < C' is extremal subset of C, if no point
of F'is a nontrivial convex combination of points from C, some of which is not in E, that is, if Az + (1 — A\)y € F' for some
z,y€ Cand A€ (0,1), thenz,y € F.

We say x € C is an extreme point of the set C, if {x} is extremal subset of C'. The set of all the extreme points of C' is denoted
as ext C.

Fact 118. Let C be a convex set in a vector space and F < C'. Then the following conditions are equivalent.
(a) F is an extreme subset of C.

(b) If%(w+y)eFf0rs0mex,yeC, thenx,y € F.
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Theorem 119 (Krein-Milman). Let X be HLCS and let K < X be compact and convex. Then K = conv ext K.

Definition 120. Let A — R?. By cone(A) we denote the set of all nonnegative linear combinations of points from A, where
nonnegative (resp. positive) linear combination of points z1, ..., x,, € A is of the form 2211 a;x;, where o = 0 (resp. a > 0)
for every ¢ < m.

Theorem 121. Let A = R,

(a) Every nonzero vector from cone(A) can be expressed as a positive linear combination of linearly independent vectors from

A.
(b) Every vector from conv(A) can be expressed as a convex combination of d + 1 vectors from A.

(c) If A is compact and convex subset, then every point x € A is a convex combination of at most d + 1 extreme points of the
set A.

The end of lecture 24

Example 122. Let K be a Hausdorff compact space and let P(K) be Radon probability measures on K, that is P(K) = {u €
M(K); p=0,u(K) = 1}. Then (P(K),w*) c (M(K),w*) is a compact convex set and ext P(K) = {0,; v € K}.

Definition 123. Let X be HLCS, K — X be a compact convex set and u € P(K). A point x € K is the barrycenter of the

measure p (we write z = r(u)), if for everz continuous affine f : K — R we have

f@) = | san
K
Proposition 124. Let X be HLCS, K — X be a compact convex set and p € P(K). Then there exists a unique barrycenter
r(u) € K of the measure .

Theorem 125 (integral representation). Let X be HLCS, K c X be a compact convex set and x € K. Then there exists
€ P(K) satisfying (1) = x and p(ext K) = 1.

The end of lecture 25
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