I. Topological vector spaces

1. Basic properties

Definition 1. Let X be a vector space over \mathbb{K} and τ be topology on X. If the operations addition and multiplication by scalar are continuous as mappings $+: X \times X \to X$ and $\cdot: \mathbb{K} \times X \to X$, we say the tuple (X, τ) is *topological vector space* (TVS). Hausdorff TVS is denoted as HTVS.

System of all the neighborhoods of a point $x \in X$ is denoted by $\tau(x)$.

Definition 2. Let X be a vector space over \mathbb{K} and $A \subset X$. The set A is

- *balanced*, if $\alpha A \subset A$ for every $\alpha \in \mathbb{K}$, $|\alpha| \leq 1$;
- *absolutly convex*, if A is convex and balanced;
- absorbing, if for every $x \in X$ there exists $\lambda_x > 0$ such that $tx \in A$ for every $t \in [0, \lambda_x]$.

Absolutly convex hull of the set A is defined as

aconv $A = \bigcap \{ B \supset A; B \subset X \text{ is absolutely convex} \}.$

Definition 3. We say that a topolocial vector space is *locally convex* (LCS), if there exists basis of neighborhoods of 0 consisting of convex sets. Hausdorff LCS is denoted as HLCS.

Proposition 4. Let X be TVS and $U \in \tau(0)$.

- (a) U is absorbing.
- (b) There exists $V \in \tau(0)$ open and balanced satisfying $V + V \subset U$.
- (c) If U is convex, then there exists $V \in \tau(0)$ open and absolutely convex satisfying $V + V \subset U$;

The end of lecture 1

Theorem 5. Let X be TVS.

- (a) X is regular (i.e. we may separate points and closed sets by open sets).
- (b) The following assertions are equivalent:
 - (i) X is Hausdorff.
 - (ii) X is T_1 (i.e. points are closed sets).
 - (iii) $\{0\}$ is closed set.
 - (*iv*) $\{0\} = \bigcap \{U; U \in \tau(0)\}.$

Remark: every TVS is even completely regular (even more generally: every topological group is completely regular).

Theorem 6 (John von Neumann (1935)). Let X be a vector space and \mathcal{U} a system of subsets of X containing the origin 0, which is filter basis (i.e. for every $U_1, U_2 \in \mathcal{U}$ there exists $U \in \mathcal{U}$ satisfying $U \subset U_1 \cap U_2$). Let us suppose that \mathcal{U} has the following properties:

- (i) For any $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ satisfying $V + V \subset U$.
- (ii) Every set from \mathcal{U} is absorbing and balanced.

Then there exists a unique topology τ on X such that (X, τ) is TVS and \mathcal{U} is basis of neighborhoods of 0. If members of \mathcal{U} are absolutely convex sets, then (X, τ) is LCS. If moreover $\bigcap \mathcal{U} = \{0\}$, then (X, τ) is Hausdorff.

2. Topologies generated by pseudonorms, Minkowski functional

Let X be a vector space, p_1, \ldots, p_n pseudonorms on X and $\varepsilon > 0$. Denote

$$U_{p_1,\ldots,p_n,\varepsilon} = \{ x \in X; \ p_1(x) < \varepsilon, \ldots, p_n(x) < \varepsilon \}.$$

If X is a vector space and \mathcal{P} je system of pseudonorms on X, then topology generated by \mathcal{P} is the smallest topology τ such that for every $p \in \mathcal{P}$ the mapping $p : (X, \tau) \to [0, \infty)$ is continuous. Then system $\mathcal{S} = \{U_{p,\varepsilon}; p \in \mathcal{P}, \varepsilon > 0\}$ forms subbasis of neighborhoods of 0, system $\mathcal{U} = \{U_{p_1,\ldots,p_n,\varepsilon}; n \in \mathbb{N}, p_1,\ldots,p_n \in \mathcal{P}, \varepsilon > 0\}$ forms basis of neighborhoods of 0 and net $\{x_{\gamma}\}_{\gamma \in \Gamma} \subset X$ converges to $x \in X$ in τ if and only if $p(x_{\gamma} - x) \to 0$ for every $p \in \mathcal{P}$.

Theorem 7. Let X be a vector space and τ be a topology on X. Then (X, τ) is LCS if and only if τ is generated by a system of pseudonorms.

Moreover, if τ is generated by a system of pseudonorms \mathcal{P} , then (X, τ) is Hausdorff if and only if for every $x \in X \setminus \{0\}$ there exists $p \in \mathcal{P}$ satisfying p(x) > 0.

The end of lecture 2

Definition 8. Let X be a vector space and $f: X \to \mathbb{R}$. We say f is *positively homogeneous* of f(tx) = tf(x) for every $t \ge 0$.

Definition 9. Let X be a vector space and $A \subset X$ be absorbing. *Minkowski functional* of the set A is function $\mu_A \colon X \to [0, +\infty)$ defined as

$$\mu_A(x) = \inf \{\lambda > 0; \ x \in \lambda A\}.$$

Theorem 10 (Basic properties of the Minkowski functional). Let X be a vector space and $A \subset X$ be absorbing. Then:

(a) μ_A is positively homogeneous.

- (b) If A is convex, then μ_A nonnegative sublinear functional.
- (c) If A is absolutly convex, then μ_A is pseudonorm.

(d) If A is convex, then $\{x \in X; \mu_A(x) < 1\} \subset A \subset \{x \in X; \mu_A(x) \leq 1\}$.

Definition 11. Let (X, τ_X) , (Y, τ_Y) be TVS and $f: X \to Y$. We say f is *uniformly continuous*, if for every $V \in \tau_Y(0)$ there exists $U \in \tau_X(0)$ such that for every $x, y \in X$ we have $f(x) \in f(y) + V$ whenever $x \in y + U$.

Lemma 12. Let X be TVS and p is sublinear functional on X. Then p is je uniformly continuous if and only if it is bounded from above on some neighborhood of 0.

Proposition 13. Let X be TVS and $A \subset X$ is absorbing convex set. Then μ_A is continuous if and only if A is neighborhood of 0. In this case we have

Int
$$A = \{x \in X; \ \mu_A(x) < 1\} \subset A \subset \{x \in X; \ \mu_A(x) \leq 1\} = \overline{A}.$$

Corollary 14. Every LCS is completely regular.

Proposition 15. If (X, τ) is LCS and \mathcal{V} is subbasis of negihborhoods of 0 consisting of absolutely convex sets, then τ is generated by a system of pseudonorms $\{\mu_V; V \in \mathcal{V}\}$. Moreover, τ is also generated by the system of all the continuous pseudonorms on X.

3. Metrizability a normability

Theorem 16. Let (X, τ) be HTVS. Then the following assertions are equivalent:

- (*i*) X has countable basis of neighborhoods of 0.
- (ii) X is metrizable.
- (iii) X is metrizable by a translation invariant pseudometric.
- If X is HLCS, then it is metrizable if and only if τ is generated by a countable system of pseudonorms $\{p_n\}$ and in this case

$$\rho(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \min\{p_n(x-y), 1\}$$
(1)

is translation invariant pseudometric on X generating τ .

The end of lecture 3

Definition 17. Let X be TVS and $A \subset X$. The set A is *bounded*, if for every $U \in \tau(0)$ there exists t > 0 such that $A \subset tU$.

Proposition 18. Let X be TVS over \mathbb{K} and $A \subset X$. Then the following assertions are equivalent:

- (i) The set A is bounded.
- (ii) For every sequence $\{x_n\} \subset A$ and every sequence $\{\gamma_n\} \subset \mathbb{K}, \gamma_n \to 0$ we have $\gamma_n x_n \to 0$.

(iii) For every sequence $\{x_n\} \subset A$ we have $\frac{1}{n}x_n \to 0$.

Moreover, if X is LCS and topology on X is generated by a system of pseudonorms \mathcal{P} , then the conditions above are equivalent to the fact that each $p \in \mathcal{P}$ is bounded on A.

Definition 19. Let X be a TVS. We say X is *normable* if its topology is generated by a norm.

Theorem 20 (A. N. Kolmogorov (1934)). Let (X, τ) be HTVS. Then X is normable if and only if there exists a bounded convex neighborhood of 0.

Lemma 21. Let (X, τ) be LCS, topology τ is generated by system of pseudonorms \mathcal{P} and p is a pseudonorm on X. Then p is continuous if and only if there are $p, 1, \ldots, p_n \in \mathcal{P}$ and C > 0 satisfying $p \leq C \max\{p_1, \ldots, p_n\}$.

The end of lecture 4

4. Continuous linear mappings

Theorem 22. Let X and Y be HTVS and $T: X \to Y$ linear mapping. Consider the following statements:

- (i) T is bounded on a neighborhood of 0.
- (ii) T is continuous at 0.
- (iii) T is continuous.
- (iv) T is uniformly continuous.
- (v) T(A) is bounded for every bounded $A \subset X$.

Then $(i) \Rightarrow (ii) \Rightarrow (iv) \Rightarrow (v)$. If Y is normable, then (i) - (iv) are equivalent. If X is metrizable, then (ii) - (v) are equivalent.

Lemma 23. Let X be a metrizable TVS. If $\{x_n\} \subset X$ converges to 0, then there exists a sequence $\{\gamma_n\} \subset \mathbb{N}$ such that $\gamma_n \to +\infty$ and $\gamma_n x_n \to 0$.

Proposition 24. Let X and Y be HLCS, and $T: X \to Y$ be a linear mapping. Let \mathcal{P} be system of pseudonorms generating the topology of X and \mathcal{Q} be system of pseudonorms generating the topology of Y. Then T is continuous if and only if $q \circ T$ is continuous for every $q \in \mathcal{Q}$, equivalently

 $\forall q \in \mathcal{Q} \exists p_1, \dots, p_k \in \mathcal{P} \exists C > 0 \forall x \in X : q(Tx) \leq C \cdot \max\{p_1(x), \dots, p_k(x)\}.$

Theorem 25. Let X be HTVS and $f: X \to \mathbb{K}$ nonzero linear form. Then the following assertions are equivalent:

- (i) f is continuous.
- (ii) Ker f is closed.
- (*iii*) $\overline{\operatorname{Ker} f} \neq X$.

The end of lecture 5

As usual we shall call linear forms as (linear) functionals.

Definition 26. Let X be TVS. By $X^{\#}$ we will denote the space of all the linear forms (functionals) on X and we will call it the *algebraic dual*. By X^* we will denote the subspace of $X^{\#}$ consisting of those linear functionals, which are continuous on X, and we will call it the *topological dual* (or only the *dual*).

Definition 27. Let X and Y be topological vector spaces and $T: X \to Y$ be linear. We say T is isomorphism of X onto Y (or just *isomorphism*), if T is homeomorfism of X onto Y; we say that T is isomorphism X into Y (or just *isomorphism into*), if T is isomorphism of X onto Rng T.

5. Finite-dimensional spaces

Definition 28. Let X be TVS and $A \subset X$. Set A is said to be *totally bounded*, if for every $U \in \tau(0)$ there exists finite $F \subset A$ such that $A \subset F + U$.

Proposition 29. Let X be TVS. Compact subsets of X are totally bounded and totally bounded sets are bounded.

Theorem 30. Let X be HTVS. Then the Then the following assertions are equivalent:

- (i) $\dim X < \infty$.
- (ii) There exists $n \in \mathbb{N}$ such that X is isomorphic with $(\mathbb{K}^n, \|\cdot\|_2)$.
- (iii) There exists totally bounded neighborhood of zero in X.
- (iv) X is metrizable and every linear map from X into a topological vector space is continuous.
- (v) X is metrizable and every linear form on X is continuous.

Corollary 31. Let X be HTVS. Then every finite-dimensional subspace of X is closed in X.

The end of lecture 6

6. Separating theorems

Theorem 32. Let X be LCS and $A, B \subset X$ be disjoint convex sets. Then the following holds:

- (a) If A has nonempty interior, then there exists $f \in X^* \setminus \{0\}$ satisfying $\sup_A \operatorname{Re} f \leq \inf_B \operatorname{Re} f$.
- (b) If A is closed and B compact, then there exists $f \in X^*$ satisfying $\sup_A \operatorname{Re} f < \inf_B \operatorname{Re} f$. If moreover A is absolutely convex, then $\sup_A |f| < \inf_B \operatorname{Re} f$.

Corollary 33. Let X be LCS. Then the following holds:

- (a) If X is Hausdorff, then X^* separates the points of X.
- (b) If Y is a closed subspace of X and $x \notin Y$, then there exists $f \in X^*$ satisfying $f \upharpoonright_Y = 0$ and f(x) = 1.
- (c) If Y is a subspace of X and $f \in Y^*$, then there exists $F \in X^*$ satisfying $F \upharpoonright_Y = f$.

7. Fréchet spaces

Definition 34. Let *X* be a metrizable HTVS.

- If the topology on X is induced by a translation invariant complete metric, we say X is F-space.
- If X is F-space and moreover locally convex, we say X is Fréchet.

Lemma 35. Let X be HLCS, whose topology is generated by pseudonorms $\{p_n : n \in \mathbb{N}\}$ satisfying $p_1 \leq p_2 \leq \ldots$. Let ρ be translation invariant metric on X defined by the formula (1). Then a sequence $(x_k)_{k\in\mathbb{N}} \in X^{\mathbb{N}}$ is cauchy in (X, ρ) , if and only if $(x_k)_k$ is cauchy in the pseudonorm p_n for every $n \in \mathbb{N}$.

The end of lecture 7

Proposition 36. Let X be LCS and $A \subset X$ is totally bounded set. Then $\overline{\operatorname{aconv}}A$ is totally bounded. In particular, if X is Fréchet space and $A \subset X$ is compact, then $\overline{\operatorname{aconv}}A$ is compact.

Theorem 37 (Principle of uniform boundedness). Let X be a Fréchet space, Y be LCS and A system of linear continuous operators from X into Y. Then the following assertions are equivalent.

- (i) For every $x \in X$ the set $\{Tx : T \in A\}$ is bounded.
- (ii) Operators from \mathcal{A} are uniformly continuous, that is, for every $V \in \tau_Y(0)$ there exists $U \in \tau_X(0)$ satisfying $T(U) \subset V$ for every $T \in \mathcal{A}$.

Corollary 38. Let X be a Fréchet space, Y be LCS and $(T_n)_{n \in \mathbb{N}}$ a sequence of continuous linear mappings from X into Y such that for every $x \in X$ there exists $Tx = \lim_{n \to \infty} T_n x$. Then $T : X \to Y$ is continuous linear operator.

Theorem 39 (Open mapping theorem). Let X and Y be F-spaces and $T : X \to Y$ continuous linear and onto. Then T is open. In particular, if T is moreover one-to-one, then T is isomorphism.

The end of lecture 8

Theorem 40 (Closed graph theorem). Let X and Y be F-spaces and $T : X \to Y$ linear mapping. Then T is continuous if and only if T has closed graph.

8. Weak topologies and polars

Weak topologies

Definition 41. Let X be a vector space and $M \subset X^{\#}$. By $\sigma(X, M)$ we denote the locally convex topology on X generated by the system of pseudonorms $\{|f|; f \in M\}$.

Definition 42. Let X be a TVS.

- Topology $w = \sigma(X, X^*)$ is called the *weak topology* (also *w*-topology) on X.
- Topology $w^* = \sigma(X^*, \varepsilon(X))$ is called the *weak star topology* (also w^* -topology) on X^* .

Lemma 43. Let X be a vector space and f, f_1, \ldots, f_n linear forms on X. Then $f \in \text{span}\{f_1, \ldots, f_n\}$ if and only if $\bigcap_{j=1}^n \text{Ker } f_j \subset \text{Ker } f$.

Proposition 44. Let X be a vector space and $M, N \subset X^{\#}$. Then $\sigma(X, M) = \sigma(X, N)$ if and only if span M = span N. In particular, $\sigma(X, M) = \sigma(X, \text{span } M)$.

Theorem 45. Let X be a vector space and $M \subset X^{\#}$. Then $(X, \sigma(X, M))^* = \operatorname{span} M$.

Corollary 46. Let (X, τ) be LCS. Then

- (a) $w \subset \tau \ a \ (X, w)^* = X^*$.
- (b) $(X^*, w^*)^* = \varepsilon(X).$
- (c) If X is normed linear space and $f \in X^{**}$, then $f \in \varepsilon(X)$ if and only if f is w^* -continuous.

Proposition 47. Let X be LCS and Y be subspace of X. Then on Y the topology $\sigma(Y, Y^*)$ coincides with the restriction of the topology $\sigma(X, X^*)$ on Y.

The end of lecture 9

Theorem 48 (Mazur theorem). Let X be LCS and $A \subset X$ be convex. Then

- (a) $\overline{A}^w = \overline{A}$.
- (b) A is weakly closed if and only if it is closed.

(c) If X is metrizable and $x_n \to x$ weakly, then there are $y_n \in \operatorname{conv}\{x_j; j \ge n\}$ such that $y_n \to x$.

Theorem 49 (Mackey). Let X be LCS and $A \subset X$. Then A is bounded if and only if it is weakly bounded.

Theorem 50. Let X, Y be HLCS and $T: X \rightarrow Y$ continuous linear mapping. Then

(a) T is w-w continuous.

(b) Define $T^*: Y^* \to X^*$ by the formula $T^*f = f \circ T$, $f \in Y^*$. Then T^* is $w^* \cdot w^*$ continuous.

Polars

Definition 51. If X is LCS and $A \subset X$, we define (*absolut*) *polar* of the set A as

 $A^{\circ} = \{ f \in X^*; |f(x)| \le 1 \text{ for every } x \in A \}.$

For a set $B \subset X^*$ we define *backwards* (*absolute*) *polar* as

 $B_{\circ} = \{x \in X; |f(x)| \leq 1 \text{ for every } f \in B\}.$

Theorem 52 (Bipolar Theorem; Jean Dieudonné (1950)). Let X be LCS.

(a) If $A \subset X$, then $(A^{\circ})_{\circ} = \overline{\operatorname{aconv}}^{w} A$ (= $\overline{\operatorname{aconv}} A$, if X is locally convex).

(b) If $B \subset X^*$, then $(B_\circ)^\circ = \overline{\operatorname{aconv}}^w B$.

Corollary 53. Let X be normed linear space.

- (a) For $B \subset X^*$ we have $(B_{\perp})^{\perp} = \overline{\operatorname{span}}^{w^*} B$.
- (b) If Y is normed linear space and $T \in \mathcal{L}(X, Y)$, then $\overline{\operatorname{Rng} T^*}^{w^*} = (\operatorname{Ker} T)^{\perp}$.

The end of lecture 10

Theorem 54 (Herman Heine Goldstine (1938)). If X is normed linear space, then $\overline{\varepsilon(B_X)}^{w^*} = B_{X^{**}}$.

Theorem 55 (Banach-Alaoglu-Bourbaki). Let X be HLCS and U neighborhood of 0 in X.

(a) U° is w^* -compact set.

(b) If X is separable and $\{x_n\}_{n=1}^{\infty}$ is dense in X, then (U°, w^*) is topological space metrizable by the metric

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \min\{|(f-g)(x_n)|, 1\}.$$

Corollary 56. Let X be normed linear space. Then (B_{X^*}, w^*) is compact. Moreover, if X is separable, then (B_{X^*}, w^*) is moreover metrizable.

Proposition 57. Let X be normed linear space, X^* is separable and $\{f_n\}$ is dense in S_{X^*} . Then (B_X, w) is metrizable by the metric

$$\rho(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} |f_n(x-y)|.$$

Theorem 58. If X is a Banach space, then X is reflexive if and only if (B_X, w) is compact. Moreover, if X is separable then (B_X, w) is metrizable.

Corollary 59. Let X be a Banach space. Then X is reflexive if and only if weak and weak-star topologies coincide on X^* .

The end of lecture 11

II. Distributions

1. Space of test functions

Lemma 60. Let $\Omega \subset \mathbb{R}^d$ be open.

- (a) Let μ be borel complex (resp. signed) measure on Ω . If $\int_{\Omega} \varphi \, d\mu = 0$ for every nonnegative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then $\mu = 0$.
- (b) Let $f \in L_1^{\text{loc}}(\Omega, \lambda)$. If $\int_{\Omega} f\varphi \, d\lambda = 0$ for every nonnegative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then f = 0 a. e. on Ω .
- (c) Let μ be borel complex (resp. signed) measure on Ω and $f \in L_1^{\text{loc}}(\Omega, \lambda)$. If $\int_{\Omega} \varphi \, d\mu = \int_{\Omega} f \varphi \, d\lambda$ for every nonnegative $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, then $f \in L_1(\Omega, \lambda)$ and $\mu(A) = \int_A f \, d\lambda$ for every borel $A \subset \Omega$.

Lemma 61. Let $K \subset \mathbb{R}^d$ be compact and $G \subset \mathbb{R}^d$ be open, $G \supset K$. Then there are $U \subset G$ open, $U \supset K$ and $\varphi \in \mathcal{D}(G)$ such that $0 \leq \varphi \leq 1$ and $\varphi = 1$ on U.

Definition 62. Let $K \subset \mathbb{R}^d$ be compact, then the symbol τ_K denotes the metrizable local convex topology on $\mathcal{D}(K)$ generated by the countable system of norms $\|\cdot\|_N$, $N \in \mathbb{N}_0$, where

$$\|\varphi\|_{N} = \max_{|\alpha| \le N} \|D^{\alpha}\varphi\|_{\infty}, \qquad \varphi \in \mathcal{D}(K), \ N \in \mathbb{N}_{0}.$$

Symbol $\tau_{C^{\infty}}$ denotes the topology on $C^{\infty}(\mathbb{R}^d)$ generated by the countable system of pseudonorms $|\cdot|_N$, $N \in \mathbb{N}_0$, where

$$|f|_N = \max_{|\alpha| \le N} \|D^{\alpha} f|_{B(0,N)}\|_{\infty}, \qquad f \in C^{\infty}(\mathbb{R}^d), \ N \in \mathbb{N}_0.$$

The end of lecture 12

Proposition 63. $(C^{\infty}(\mathbb{R}^d), \tau_{C^{\infty}})$ and $(\mathcal{D}(K), \tau_K)$ are Fréchet spaces for every $K \subset \mathbb{R}^d$ compact.

Theorem 64. Let $\Omega \subset \mathbb{R}^d$ be open and nonempty. Put

 $\mathcal{U} = \{ U \subset \mathcal{D}(\Omega); \ U \text{ absolutely convex}, \ U \cap \mathcal{D}(K) \in \tau_K(0) \text{ for every compact } K \subset \Omega \}.$

Then U is basis of neighborhoods of 0 for a Hausdorff locally convex topology τ on $\mathcal{D}(\Omega)$, which has the following properties:

- (a) For every compact $K \subset \Omega$ the space $\mathcal{D}(K)$ is closed subspace of $(\mathcal{D}(\Omega), \tau)$ and $\tau \upharpoonright_{\mathcal{D}(K)} = \tau_K$.
- (b) If $A \subset (\mathcal{D}(\Omega), \tau)$ is bounded, then there exists $K \subset \Omega$ compact such that $A \subset \mathcal{D}(K)$.
- (c) Let $\{\varphi_n\}$ be a sequence in $\mathcal{D}(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$. Then $\varphi_n \to \varphi v \tau$ if and only if there exists a compact $K \subset \Omega$ such that $\operatorname{supp} \varphi_n \subset K$ for every $n \in \mathbb{N}$, and for every multiindex α of length d we have $D^{\alpha}\varphi_n \to D^{\alpha}\varphi$ uniformly on \mathbb{R}^d .

2. Space of distributions

Definition 65. Let $\Omega \subset \mathbb{R}^d$ be open and nonempty. Then $\mathcal{D}(\Omega)^* = (\mathcal{D}(\Omega), \tau)^*$ is the space of distributions. We say Λ is *distribution*, if $\Lambda \in \mathcal{D}(\Omega)^*$.

Proposition 66 (characterization of distributions). Let $\Omega \subset \mathbb{R}^d$ be open nonempty, *Y* be HLCS and $\Lambda : (\mathcal{D}(\Omega), \tau) \to Y$ is linear. Then the following conditions are equivalent:

(i) Λ is continuous.

- (ii) Λ is sequentially continuous, that is, $\Lambda(\varphi_n) \to \Lambda(\varphi)$ whenever $\varphi_n \xrightarrow{\tau} \varphi$.
- (iii) For every compact $K \subset \Omega$ the restriction $\Lambda \upharpoonright_{\mathcal{D}(K)}$ is continuous.
- Morevoer, if $Y = \mathbb{K}$, then the conditions above are equivalent to the condition
 - (iv) For every compact $K \subset \Omega$ there are $N \in \mathbb{N}_0$ and C > 0 satisfying $|\Lambda(\varphi)| \leq C ||\varphi||_N$ for every $\varphi \in \mathcal{D}(K)$.

Remark: proof was given only for the case $Y = \mathbb{K}$. The end of lecture 13

Definition 67. Let $\Omega \subset \mathbb{R}^d$ be open nonempty and $\Lambda \in \mathcal{D}(\Omega)^*$. If there is $N \in \mathbb{N}_0$ such that for every compact $K \subset \Omega$ there exists $C \ge 0$ such that $|\Lambda(\varphi)| \le C \|\varphi\|_N$ for any $\varphi \in \mathcal{D}(K)$, then the smallest N with this property is called *order of the distribution* Λ . If such N does not exist, we say that the order of Λ is infinity.

Examples 68. Let $\Omega \subset \mathbb{R}^d$ be open nonempty.

- (i) For $f \in L_1^{\text{loc}}(\Omega, \lambda)$ we define $\Lambda_f(\varphi) = \int_{\Omega} f\varphi \, d\lambda$, $\varphi \in \mathcal{D}(\Omega)$. Then Λ_f is distribution of order 0 and whenever $\Lambda_f = \Lambda_g$ for some $g \in L_1^{\text{loc}}(\Omega, \lambda)$, then f = g a.e.
- (ii) Let μ be borel complex (resp. signed) measure on Ω. We define Λ_μ(φ) = ∫_Ω φ dμ, φ ∈ D(Ω). Then Λ_μ is distribution of order 0. Whenever Λ_μ = Λ_ν for some borel complex (resp. signed) measure ν, then μ = ν. Whenever Λ_μ = Λ_f for some f ∈ L₁^{loc}(Ω, λ), then μ = f dλ.
- (iii) Let μ be nonnegative borel regular measure on Ω , which is finite on compact sets. We define $\Lambda_{\mu}(\varphi) = \int_{\Omega} \varphi \, d\mu$ for $\varphi \in \mathcal{D}(\Omega)$. Then Λ_{μ} is distribution of order 0. Whenever $\Lambda_{\mu} = \Lambda_{\nu}$ for some measure ν , then $\mu = \nu$. Whenever $\Lambda_{\mu} = \Lambda_{f}$ for some $f \in L_{1}^{\text{loc}}(\Omega, \lambda)$, then $\mu = f \, d\lambda$.
- (iv) Necht $k \in \mathbb{N}$. We define $\Lambda(\varphi) = \varphi^{(k)}(0)$ for $\varphi \in \mathcal{D}(\mathbb{R})$. Then Λ is distribution of order k, which is not of order k-1.
- (v) We define $\Lambda(\varphi) = \sum_{n=1}^{\infty} \varphi^{(n)}(n)$ for $\varphi \in \mathcal{D}(\mathbb{R})$. Then Λ is distribution of order infinity.

Definition 69. Let $\Omega \subset \mathbb{R}^d$ be open nonempty and $\Lambda \in \mathcal{D}(\Omega)^*$. For multiindex α of length d we define *derivation* D^{α} of the *distribution* Λ as a functional on $\mathcal{D}(\Omega)$ given by the formula

$$(D^{\alpha}\Lambda)(\varphi) = (-1)^{|\alpha|}\Lambda(D^{\alpha}\varphi).$$

For a function $f \in C^{\infty}(\Omega)$ we define *multiplication of the function* f and *distribution* Λ as a functional on $\mathcal{D}(\Omega)$ given by the formula

$$(f\Lambda)(\varphi) = \Lambda(f\varphi)$$

Lemma 70. Let $k \in \mathbb{N}$, $f \in C^k(\mathbb{R}^d)$ has a compact support and let $\alpha \in \mathbb{N}_0^d$, $|\alpha| \leq k$. Then

$$\int_{\mathbb{R}^d} D^{\alpha} f \varphi \, \mathrm{d}\lambda = (-1)^{|\alpha|} \int_{\mathbb{R}^d} f D^{\alpha} \varphi \, \mathrm{d}\lambda$$

for every $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Proposition 71. Let $\Omega \subset \mathbb{R}^d$ be open nonempty, $\Lambda \in \mathcal{D}(\Omega)^*$, $\alpha \in \mathbb{N}_0^d$ and $f \in C^{\infty}(\Omega)$. Then the following holds:

- (a) $D^{\alpha}\Lambda \in \mathcal{D}(\Omega)^*$.
- (b) $f\Lambda \in \mathcal{D}(\Omega)^*$.
- (c) For $g \in L_1^{\text{loc}}(\Omega)$ we have $f\Lambda_g = \Lambda_{fg}$.
- (d) For $g \in C^{|\alpha|}(\Omega)$ we have $D^{\alpha}\Lambda_g = \Lambda_{D^{\alpha}g}$.

Theorem 72. Let $\Omega \subset \mathbb{R}^d$ be open nonempty, connected and $\Lambda \in \mathcal{D}(\Omega)^*$ be such that $D^{\alpha}\Lambda = 0$ for every multiindex α satisfying $|\alpha| = 1$. Then there exists $c \in \mathbb{K}$ such that $\Lambda = \Lambda_c$.

Remark: proof was given only for the case d = 1 and $\Omega = (a, b)$. The end of lecture 14

Definition 73. Let $\Omega \subset \mathbb{R}^d$ be open nonempty. By the *space of distributions* we understand the locally convex space $(\mathcal{D}(\Omega)^*, w^*)$.

Proposition 74. Let $\Omega \subset \mathbb{R}^d$ be open nonempty. Then the following holds:

(a) If sequence $\{\Lambda_n\} \subset \mathcal{D}(\Omega)^*$ converges to $\Lambda \in \mathcal{D}(\Omega)^*$, then

- $D^{\alpha}\Lambda_n \to D^{\alpha}\Lambda$ for every multiindex $\alpha \in \mathbb{N}_0^d$,
- $f\Lambda_n \to f\Lambda$ for every function $f \in C^{\infty}(\Omega)$.

- (b) Suppose we have functions $f_n, f \in L_1^{\text{loc}}(\Omega)$ satisfying $\int_K |f_n f| d\lambda \to 0$ for every compact $K \subset \Omega$. Then $\Lambda_{f_n} \to \Lambda_f$.
- (c) If $1 \leq p \leq \infty$ and $f_n \to f$ in $L_p(\Omega)$, then $\Lambda_{f_n} \to \Lambda_f$.
- (d) If $\varphi_n \to \varphi$ in $\mathcal{D}(\Omega)$, then $\Lambda_{\varphi_n} \to \Lambda_{\varphi}$.

Proposition 75. Let $\Omega \subset \mathbb{R}^d$ be open nonempty and (Λ_n) be sequence of distributions on Ω such that for every $\varphi \in \mathcal{D}(\Omega)$ the sequence $(\Lambda_n(\varphi))$ is convergent. Then the functions $\Lambda : \mathcal{D}(\Omega) \to \mathbb{K}$ given by formula $\Lambda(\varphi) := \lim_{n \to \infty} \Lambda_n(\varphi), \varphi \in \mathcal{D}(\Omega)$ is distribution on Ω .

Definition 76. Let $f : \mathbb{R}^d \to \mathbb{K}$. Then we define the rotation of f as a function $\check{f} : \mathbb{R}^d \to \mathbb{K}$ given by the formula $\check{f}(x) = f(-x)$ pro $x \in \mathbb{R}^d$.

Definition 77. Let Λ be distribution on \mathbb{R}^d , $y \in \mathbb{R}^d$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$. Then we define shift of the distribution Λ as a distribution $\tau_y \Lambda$ given by the formula $\tau_y \Lambda(\psi) = \Lambda(\tau_{-y}\psi), \psi \in \mathcal{D}(\mathbb{R}^d)$. Moreover, we define *convolution* of the function φ and distribution Λ by the formula $\Lambda * \varphi(x) := \Lambda(\tau_x \check{\varphi}), x \in \mathbb{R}^d$.

Theorem 78 (about convolution of a distribution with a function). Let Λ be a distribution on \mathbb{R}^d , $y \in \mathbb{R}^d$ and $\varphi, \psi \in \mathcal{D}(\mathbb{R}^d)$.

- (a) If $f \in L_1^{\text{loc}}(\mathbb{R}^d)$, then $\Lambda_f * \varphi = f * \varphi$.
- (b) $\Lambda * \varphi \in C^{\infty}(\mathbb{R}^d)$ and for every multiindex $\alpha \in \mathbb{N}_0^d$ we have $D^{\alpha}(\Lambda * \varphi) = D^{\alpha}\Lambda * \varphi = \Lambda * D^{\alpha}\varphi$.
- (c) $\tau_y(\Lambda * \varphi) = \tau_y \Lambda * \varphi = \Lambda * \tau_y \varphi.$
- (d) For $x_0 \in \mathbb{R}^d$ we have $\Lambda_{\delta_{x_0}} * \varphi = \tau_{x_0} \varphi$. In particular, $\Lambda_{\delta_0} * \varphi$.

The end of lecture 15

Definition 79. Let U be distribution on \mathbb{R}^d . Then we define rotation U as a distribution \check{U} on \mathbb{R}^d given by the formula $\check{U}(\varphi) = U(\check{\varphi}), \varphi \in \mathcal{D}(\mathbb{R}^d)$.

Examples 80. We try to define convolution of two distributions by the formula $U * V(\varphi) = U(\check{V} * \varphi), \varphi \in \mathcal{D}(\mathbb{R}^d)$. But, since $\check{V} * \varphi$ sometimes does not have a compact support, we need to interpret this formula correctly. Several basic possible ways are mentioned below.

(i) For $f \in L_1^{\text{loc}}(\mathbb{R}^d)$, $\varphi, \psi \in \mathcal{D}(\mathbb{R}^d)$ and a multiindex $\alpha \in \mathbb{N}_0^d$ we put

$$(D^{\alpha}\Lambda_f) * \Lambda_{\varphi}(\psi) := D^{\alpha}\Lambda_f(\Lambda_{\varphi} * \psi).$$

Then $D^{\alpha}\Lambda_{f} * \Lambda_{\varphi}$ is a distribution and we have $(D^{\alpha}\Lambda_{f}) * \Lambda_{\varphi} = D^{\alpha}\Lambda_{f*\varphi} = D^{\alpha}(\Lambda_{f} * \Lambda_{\varphi}).$

(ii) Given $x_0 \in \mathbb{R}^d$ and a distribution U on \mathbb{R}^d , for $\alpha \in \mathbb{N}_0^d$ and $\psi \in \mathcal{D}(\mathbb{R}^d)$ we define

$$U*D^{\alpha}\Lambda_{\delta_{x_0}}(\psi):=U(\widecheck{D^{\alpha}\Lambda_{\delta_{x_0}}}*\psi),\qquad D^{\alpha}\Lambda_{\delta_{x_0}}*U(\psi):=D^{\alpha}\delta_{x_0}(\widecheck{U}*\psi),$$

where $D^{\alpha}\Lambda_{\delta_{x_0}}$ is understood as a functional from $(C^{\infty}(\mathbb{R}^d))^*$ defined by the formula $D^{\alpha}\Lambda_{\delta_{x_0}}(f) = (-1)^{|\alpha|}D^{\alpha}f(x_0)$ for $f \in C^{\infty}(\mathbb{R}^d)$. Then $U * D^{\alpha}\Lambda_{\delta_{x_0}} = D^{\alpha}\Lambda_{\delta_{x_0}} * U = \tau_{x_0}D^{\alpha}U$ and so the above are well-defined distributions. Moreover, we have $D^{\alpha}(U * \Lambda_{\delta_{x_0}}) = D^{\alpha}U * \Lambda_{\delta_{x_0}} = U * D^{\alpha}\Lambda_{\delta_{x_0}}$.

(iii) If $f, g, f * g \in L_1^{\text{loc}}(\mathbb{R}^d)$, we put for every $\alpha \in \mathbb{N}_0^d$

$$D^{\alpha}\Lambda_f * \Lambda_g(\psi) := D^{\alpha}\Lambda_f(\Lambda_g * \psi), \qquad \psi \in \mathcal{D}(\mathbb{R}^d),$$

where in the formula above we understand $D^{\alpha}\Lambda_{f}$ as a linear functional defined by the formula $D^{\alpha}\Lambda_{f}(h) = (-1)^{|\alpha|} \int_{\mathbb{R}^{d}} f D^{\alpha} h$ whenever $h \in C^{\infty}(\mathbb{R}^{d})$ and $\int_{\mathbb{R}^{d}} f D^{\alpha} h$ is convergent. Then $D^{\alpha}\Lambda_{f} * \Lambda_{g} = D^{\alpha}\Lambda_{f*g}$ and so the above are well-defined distributions satisfying $D^{\alpha}(\Lambda_{f} * \Lambda_{g}) = (D^{\alpha}\Lambda_{f}) * \Lambda_{g}$.

(iv) If $f, g \in L_1^{\text{loc}}(\mathbb{R}^d)$ are such that $(\operatorname{supp} f \cup \operatorname{supp} g) \subset (\mathbb{R}_+)^d$, then $f * g \in L_1^{\text{loc}}(\mathbb{R}^d)$.

Definition 81. Approximative unit in $\mathcal{D}(\mathbb{R}^d)$ is a sequence of functions $(h_j)_{j=1}^{\infty}$ in $\mathcal{D}(\mathbb{R}^d)$, satisfying $h_j(x) = j^d h(jx)$ for $x \in \mathbb{R}^d$ and $j \in \mathbb{N}$, where $h \in \mathcal{D}(\mathbb{R}^d)$ is nonnegative function and $\int_{\mathbb{R}^d} h = 1$.

Proposition 82. Let (h_j) be approximative unit in $\mathcal{D}(\mathbb{R}^d)$, $\varphi \in \mathcal{D}(\mathbb{R}^d)$ and U be distribution on \mathbb{R}^d . Then $\varphi * h_j \to \varphi$ in the space $\mathcal{D}(\mathbb{R}^d)$ and $\Lambda_{U*h_j} \to U$ in the space $\mathcal{D}(\mathbb{R}^d)^*$.

Remark: proof was given only for the " $\varphi * h_j \rightarrow \varphi$ " part. The end of lecture 16

3. Tempered distributions

For $N \in \mathbb{N}_0$ and $f \in \mathcal{S}_d$ put

$$\nu_N(f) = \max_{|\alpha| \le N} \|x \mapsto (1 + \|x\|^2)^N D^{\alpha} f(x)\|_{\infty}$$

The metrizable locally convex topology on \mathcal{S}_d generated by the system $\{\nu_N\}_{N=0}^{\infty}$ we denote as σ .

Theorem 83. (S_d, σ) is Fréchet space and the topology σ has the following properties:

- (a) Let $\{f_n\}$ be a sequence in S_d and $f \in S_d$. Then the following conditions are equivalent:
 - (i) $f_n \to f$ in topology σ .
 - (ii) For every $N \in \mathbb{N}_0$ and every multiindex α of length d it holds that $(1 + ||x||^2)^N D^{\alpha} f_n \rightarrow (1 + ||x||^2)^N D^{\alpha} f$ uniformly on \mathbb{R}^d .
 - (iii) For every polynomial P and every multiindex α of length d it holds that $PD^{\alpha}f_n \rightarrow PD^{\alpha}f$ uniformly on \mathbb{R}^d .
- (b) If $f_n \to f$ in the space (\mathcal{S}_d, σ) , then $f_n \to f$ in $L_p(\mathbb{R}^d)$ for every $1 \leq p < \infty$.
- (c) If α is a multiindex of length d, P polynom on \mathbb{R}^d and $g \in S_d$, then mappings $f \mapsto D^{\alpha} f$, $f \mapsto Pf$ a $f \mapsto gf$ are continuous as maps from (S_d, σ) to (S_d, σ) .
- (d) For any compact $K \subset \mathbb{R}^d$ we have $\sigma \upharpoonright_{\mathcal{D}(K)} = \tau_K$.

Proposition 84. Subspace $\mathcal{D}(\mathbb{R}^d)$ is dense in (\mathcal{S}_d, σ) and for the topology τ we have $\sigma \upharpoonright_{\mathcal{D}(\mathbb{R}^d)} \subset \tau$. In other words, embedding $Id: (\mathcal{D}(\mathbb{R}^d), \tau) \to (\mathcal{S}_d, \sigma)$ is continuous onto a dense set.

Definition 85. Distributions on \mathbb{R}^d , which are restrictions of functionals from $(S_d, \sigma)^*$ are called *tempered distributions*.

Proposition 86. Distribution Λ on \mathbb{R}^d is tempered if and only if there are $N \in \mathbb{N}_0$ and C > 0 satisfying $|\Lambda(\varphi)| \leq C\nu_N(\varphi)$, $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

- **Examples 87.** (a) Every distribution with a compact support (that is, satisfying that there exists a compact $K \subset \mathbb{R}^d$ such that $\Lambda(\varphi) = 0$ whenever $\varphi \in \mathcal{D}(\mathbb{R}^d \setminus K)$) is tempered.
- (b) Whenever μ is borel measure satisfying $\int (1 + ||x||^2)^{-N} d\mu < \infty$ for some $N \in \mathbb{N}_0$, then Λ_{μ} is tempered distribution and $\Lambda_{\mu}(f) = \int_{\mathbb{R}^d} f d\mu$ for $f \in S_d$.
- (c) Whenever g is measurable function on \mathbb{R}^d such that $x \mapsto (1 + \|x\|^2)^N \in L_p(\mathbb{R}^d)$ for some $N \in \mathbb{N}_0$ and $1 \leq p \leq \infty$ (This in particular holds for functions from $L_p(\mathbb{R}^d)$ or for functions majorizable by a polynom). Then Λ_g is tempered distribution, where $\Lambda_g(f) = \int_{\mathbb{R}^d} fg$ for $f \in S_d$.

Proposition 88. Let Λ be a tempered distribution on \mathbb{R}^d , $\alpha \in \mathbb{N}_0^d$, $g \in S_d$ and P be polynomial on \mathbb{R}^d . Then $D^{\alpha}\Lambda$, $g\Lambda$ and $P\Lambda$ are tempered distributions as well and the following formulas hold for every $f \in S_d$:

- $D^{\alpha}\Lambda(f) = (-1)^{|\alpha|}\Lambda(D^{\alpha}f)$,
- $(g\Lambda)(f) = \Lambda(gf)$ and
- $(P\Lambda)(f) = \Lambda(Pf).$

Moreover, mappings $\Lambda \mapsto D^{\alpha}\Lambda$, $\Lambda \mapsto g\Lambda$ and $\Lambda \mapsto P\Lambda$ are continuous mappings from the space (S_d^*, w^*) into itself.

The end of lecture 17

Theorem 89. Fourier transform is isomorfism S_d onto S_d . Moreover, for every $f \in S_d$ we have

$$\hat{f}(x) = f(-x) \text{ pro každé } x \in \mathbb{R}^d \text{ and } \hat{\hat{f}} = f.$$

Corollary 90. For $f, g \in S_d$ we have $(2\pi)^{d/2} \widehat{fg} = \widehat{f} * \widehat{g}$. In particular, the space S_d is closed under the operation of convolution.

Definition 91. Fourier transformation of tempered distribution Λ on \mathbb{R}^d is defined by the formula $\widehat{\Lambda}(f) = \Lambda(\widehat{f})$ for $f \in S_d$.

Theorem 92.

- (a) If $g \in L_1(\mathbb{R}^d)$, then $\Lambda_{\widehat{g}}$ is tempered distribution and $\widehat{\Lambda_g} = \Lambda_{\widehat{g}}$. If $g \in L_2(\mathbb{R}^d)$, then $\widehat{\Lambda_g} = \Lambda_{F(g)}$, where F is the extension of the Fourier transformation from the Plancherel theorem.
- (b) If Λ is tempered distribution on \mathbb{R}^d a $\alpha \in \mathbb{N}_0^d$, then

- $\widehat{D^{\alpha}\Lambda} = s_{\alpha}\widehat{\Lambda}$, where $s_{\alpha}(x) = (ix)^{\alpha}$, a
- $D^{\alpha}\widehat{\Lambda} = \widehat{m_{\alpha}\Lambda}$, where $m_{\alpha}(x) = (-ix)^{\alpha}$.
- (c) Fourier transformation \mathcal{F} of tempered distributions is isomorphism of the space (\mathcal{S}_d^*, w^*) onto itself. Moreover, we have $\mathcal{F}^4 = Id$.

Definition 93. For $\Lambda \in \mathcal{S}(\mathbb{R}^d)^*$ and function $f \in \mathcal{S}(\mathbb{R}^d)$ we define the mapping $\Lambda * \Lambda_{\varphi} : \mathcal{S}(\mathbb{R}^d) \to \mathbb{K}$ by the formula

 $\Lambda * \Lambda_f(g) := \Lambda(\check{f} * g), \qquad g \in \mathcal{S}(\mathbb{R}^d).$

Proposition 94. Let $\Lambda \in \mathcal{S}(\mathbb{R}^d)^*$ and $f \in \mathcal{S}(\mathbb{R}^d)$. Then the following holds.

- (a) $\Lambda * \Lambda_f \in \mathcal{S}(\mathbb{R}^d)^*$ and for every $\alpha \in \mathbb{N}_0^d$ we have $D^{\alpha}(\Lambda * \Lambda_f) = (D^{\alpha}\Lambda) * \Lambda_f$.
- (b) $\Lambda_{\delta_0} * \Lambda_f = \Lambda_f$.

The end of lecture 18

III. Basics on vector integration

1. Measurable mappings

Definition 95. Let (Ω, \mathcal{A}) be a measurable space and X a Banach space. Mapping $f: \Omega \to X$ is

- borel A-measurable, if $f^{-1}(U) \in \mathcal{A}$ for every $U \subset X$ open,
- simple measurable, if $f(\Omega)$ is a finite set and f is borel \mathcal{A} -measurable (that is, $f = \sum_{i=1}^{n} x_i \chi_{A_i}$ where $(x_i)_{i=1}^n \in X^n$ and $A_1, \ldots, A_n \in \mathcal{A}$ are pairwise disjoint),
- strongly A-measurable, if f is a pointwise limit of simple measurable functions (that is, there are simple measurable functions (s_n) such that ||s_n(x) − f(x)|| → 0 for every x ∈ Ω),
- weakly \mathcal{A} -measurable, if for every $x^* \in X^*$ the mapping $x^* \circ f : \Omega \to \mathbb{K}$ is borel \mathcal{A} -measurable.

Proposition 96. Let (Ω, \mathcal{A}) be a measurable space and X a Banach space.

- (a) Pointwise limit of a sequence of borel A-measurable mappings from Ω to X is borel A-measurable mapping.
- (b) For function $f: \Omega \to X$ we have

f is strongly A-measurable \Rightarrow f is borel A-measurable \Rightarrow f is weakly A-measurable

- (c) If X is separable, then $f: \Omega \to X$ is strongly A-measurable, if and only if it is borel A-measurable.
- (d) Pointwise limit of a sequence of strongly (resp. weakly) A-measurable mappings from Ω to X is strongly (resp. weakly) A-measurable mapping.
- (e) Simple measurable, strongly A-measurable and weakly A-measurable mappings form a vector space.

Definition 97. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure and X be a Banach space. Mapping $f: \Omega \to X$ is *strongly* μ -measurable, if f is μ -a.e. pointwise limit of a sequence of simple measurable functions (that is, there are simple measurable functions (s_n) such that $||s_n(x) - f(x)|| \to 0$ for μ -a.e. $x \in \Omega$). Říkáme, že $f: \Omega \to X$ je *slabě* μ -measurable (resp. *borelovsky* μ -measurable), pokud je slabě \mathcal{A} -měřitelné (resp. borelovsky \mathcal{A} -measurable).

Lemma 98. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X a Banach space and $f: \Omega \to X$. Then f is strongly μ -measurable, if and only if f is borel μ -measurable and there is $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.

Corollary 99. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X a Banach space and $f_n \colon \Omega \to X$, $n \in \mathbb{N}$ is sequence of strongly μ -measurable mappings, which pointwise converges a.e. to $f \colon \Omega \to X$. Then f is strongly measurable.

The end of lecture 19

Theorem 100 (Pettis theorem). Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X a Banach space and $f : \Omega \to X$. Then the following assertions are equivalent:

- (i) f is strongly μ -measurable.
- (ii) f is borel μ -measurable and there is $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.
- (iii) f is weakly μ -measurable and there is $E \subset \Omega$ such that $\mu(E) = 0$ and $f(\Omega \setminus E)$ is separable.

2. Dunford and Pettis integral

Definition 101. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure and X be a Banach space. Function $f : \Omega \to X$ is *weakly integrable*, if for every $x^* \in X^*$ we have $x^* \circ f \in L_1(\mu)$.

If $f : \Omega \to X$ is weakly integrable and $E \subset \Omega$ is measurable, then *Dunford integral* f over the set E is the point $(D) \int_E f d\mu \in X^{**}$ satisfying

$$\left((D) \int_E f \, \mathrm{d}\mu \right) (x^*) = \int_E x^* \circ f \, \mathrm{d}\mu, \quad x^* \in X^*.$$

Proposition 102. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X be a Banach space, $f : \Omega \to X$ be weakly integrable and $E \subset \Omega$ measurable. Then there is a unique $x^{**} \in X^{**}$ such that x^{**} is Dunford integral of f over the set E.

Definition 103. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X be a Banach space and $f : \Omega \to X$ be weakly integrable. If $(D) \int_E f d\mu \in X$ (or more precisely $(D) \int_E f d\mu \in \varepsilon(X) \subset X^{**}$) for every $E \subset \Omega$ measurable, then we say that f is *Pettis integrable* and

$$(P)\int_E f\,\mathrm{d}\mu = (D)\int_E f\,\mathrm{d}\mu$$

is the Pettis integral of f over the set E.

The end of lecture 20

3. Bochner integral

Definition 104. Let (Ω, μ) be a space with a measure and X be a Banach space. Simple, measurable function $f: \Omega \to X$ is *Bochner integrable*, if for every $x \in f(\Omega) \setminus \{0\}$ we have $\mu(f^{-1}(x)) < +\infty$.

If $f: \Omega \to X$ is simple, measurable and Bochner integrable, then for every measurable $E \subset \Omega$ we define the *Bochner integral* of f over the set E as

$$(B)\int_{E} f \,\mathrm{d}\mu = \sum_{x \in f(\Omega) \setminus \{0\}} \mu(f^{-1}(x) \cap E)x$$

Lemma 105. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure and X be a Banach space.

- (i) Bochner integrable simple functions form a vector space and the mapping which assigns to a simple integrable function f its integral $(B) \int_{\Omega} f d\mu$, is linear.
- (ii) If $f: \Omega \to X$ is simple, measurable, then f is Bochner integrable, if and only if the function $t \mapsto ||f(t)||$ is integrable. In this case $||(B) \int_E f d\mu|| \leq \int_E ||f|| d\mu$ for every measurable $E \subset \Omega$.

Definition 106. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X be a Banach space and $f : \Omega \to X$ be strongly μ measurable. We say that f is *bochner integrable*, if there exists a sequence $f_n : \Omega \to X$, $n \in \mathbb{N}$ of simple Bochner integrable
mappings such that $\lim_{n\to\infty} \int_{\Omega} ||f_n - f|| \, d\mu = 0$. Then, for every measurable $E \subset \Omega$ we define the *Bochner integral* of f over Eas

$$(B)\int_E f \,\mathrm{d}\mu = \lim_{n \to \infty} (B)\int_E f_n \,\mathrm{d}\mu.$$

Theorem 107. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure and X be a Banach space.

- (a) The limit defining the Bochner integral exists and does not depend of the choice of the sequence (f_n) .
- (b) Bochner integrable functons form a vector space and the mapping which assigns to every bochner integrable function f its integral $(B) \int_{\Omega} f d\mu$, is linear.
- (c) $||(B) \int_E f d\mu|| \leq \int_E ||f|| d\mu$ for every $E \subset \Omega$ measurable and $f : \Omega \to X$ bochner integrable.

Theorem 108. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X be a Banach space and $f : \Omega \to X$ be strongly μ -measurable. Then f is bochner integrable, if and only if ||f|| is lebesgue integrable.

Theorem 109 (about majorizable convergence). Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X be a Banach space and $f_n : \Omega \to X$, $n \in \mathbb{N}$ be sequence of strongly μ -measurable mappings. Let $f : \Omega \to X$ be such that $f_n \to f$ pointwise a.e., ane let $g \in L_1(\mu)$ be such that for every $n \in \mathbb{N}$ we have $||f_n(t)|| \leq g(t)$ for a. e. $t \in \Omega$. Then f is bochner integrable and $(B) \int_{\Omega} f d\mu = \lim_{n \to \infty} (B) \int_{\Omega} f_n d\mu$.

Theorem 110 (absolute continuuity of Bochner integral). Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X be a Banach space and $f : \Omega \to X$ be bochner integrable. Then for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||(B) \int_E f d\mu|| < \varepsilon$ whenever $E \subset \Omega$ is such that $\mu(E) < \delta$.

Theorem 111. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X and Y be Banach spaces, $f : \Omega \to X$ bochner integrable and $T \in \mathcal{L}(X, Y)$. Then $T \circ f$ is bochner integrable and for every measurable $E \subset \Omega$ we have

$$(B)\int_{E} T \circ f \,\mathrm{d}\mu = T\bigg((B)\int_{E} f \,\mathrm{d}\mu\bigg).$$

In particular, f is Pettis integrable and $(P) \int_E f d\mu = (B) \int_E f d\mu$ for every measurable $E \subset \Omega$.

The end of lecture 21

4. Lebesgue-Bochner spaces

Definition 112. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X a Banach space and $1 \le p \le \infty$. By $L_p(\mu, X)$ we denote the set of all strongly measurable mappings from Ω into X such that $||f|| \in L_p(\mu)$, factorized by the equality μ -a. e.

Moreover, for $f \in L_p(\mu, X)$ we denote $||f||_{L_p(\mu, X)} = ||t \mapsto ||f(t)|||_{L_p(\mu)}^n$

Theorem 113. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X a Banach space and $1 \le p \le \infty$.

- (a) $L_p(\mu, X)$ is Banach space with norm $||f||_{L_p(\mu, X)}$.
- (b) If X is a Hilbert space, then $L_2(\mu, X)$ is Hilbert space with the scalar product

$$\langle f,g \rangle_{L_2(\mu,X)} = \int_{\Omega} \langle f(t),g(t) \rangle \mathrm{d}\mu$$

Remark: the proof of part (b) was omitted

- **Theorem 114.** Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X a Banach space and $1 \leq p \leq \infty$.
- (a) The set of simple Bochner integrable mappings from Ω into X is dense in $L_p(\mu, X)$.
- (b) If X and $L_p(\mu)$ are separable, then $L_p(\mu, X)$ is separable.

The end of lecture 22

Theorem 115. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X a Banach space, $1 \le p \le \infty$ and q be conjugate exponent to p. Consider the mapping $I: L_q(\mu, X^*) \to L_p(\mu, X)^*$, $I(g) = \varphi_g$, where

$$\varphi_g(f) = \int_{\Omega} g(t) (f(t)) d\mu(t), \quad f \in L_p(\mu, X).$$

Then the following holds.

(a) The mapping I is isometry.

- (b) If (Ω, μ) is atomic and $p \neq 1$, then I is onto. In particular, $\ell_q(J, X^*)$ is isometric to $\ell_p(J, X)^*$ for every set J. Moreover, if μ is σ -additive measure, then the same holds even for p = 1.
- (c) If X is reflexive and $p \neq 1$, then I is onto. If μ is moreover σ -additive measure, then the same holds even for p = 1.

Remark: we proved only the part (a) for $p \neq 1$

Theorem 116. Let $(\Omega, \mathcal{A}, \mu)$ be a space with a complete measure, X be reflexive Banach space and $1 . Then <math>L_p(\mu, X)$ is reflexive.

IV. Convex compact sets

Definition 117. Let C be convex subset of a vector space. We say that nonempty $F \subset C$ is *extremal subset of* C, if no point of F is a nontrivial convex combination of points from C, some of which is not in E, that is, if $\lambda x + (1 - \lambda)y \in F$ for some $x, y \in C$ and $\lambda \in (0, 1)$, then $x, y \in F$.

We say $x \in C$ is an *extreme point of the set* C, if $\{x\}$ is extremal subset of C. The set of all the extreme points of C is denoted as ext C.

Fact 118. Let C be a convex set in a vector space and $F \subset C$. Then the following conditions are equivalent.

- (a) F is an extreme subset of C.
- (b) If $\frac{1}{2}(x+y) \in F$ for some $x, y \in C$, then $x, y \in F$.

The end of lecture 23

Theorem 119 (Krein-Milman). Let X be HLCS and let $K \subset X$ be compact and convex. Then $K = \overline{\text{conv}} \operatorname{ext} K$.

Definition 120. Let $A \subset \mathbb{R}^d$. By $\operatorname{cone}(A)$ we denote the set of all nonnegative linear combinations of points from A, where nonnegative (resp. positive) linear combination of points $x_1, \ldots, x_m \in A$ is of the form $\sum_{i=1}^m \alpha_i x_i$, where $\alpha \ge 0$ (resp. $\alpha > 0$) for every $i \le m$.

Theorem 121. Let $A \subset \mathbb{R}^d$.

- (a) Every nonzero vector from cone(A) can be expressed as a positive linear combination of linearly independent vectors from A.
- (b) Every vector from conv(A) can be expressed as a convex combination of d + 1 vectors from A.
- (c) If A is compact and convex subset, then every point $x \in A$ is a convex combination of at most d + 1 extreme points of the set A.

The end of lecture 24

Example 122. Let K be a Hausdorff compact space and let P(K) be Radon probability measures on K, that is $P(K) = \{\mu \in \mathcal{M}(K); \ \mu \ge 0, \mu(K) = 1\}$. Then $(P(K), w^*) \subset (\mathcal{M}(K), w^*)$ is a compact convex set and $\operatorname{ext} P(K) = \{\delta_x; x \in K\}$.

Definition 123. Let X be HLCS, $K \subset X$ be a compact convex set and $\mu \in P(K)$. A point $x \in K$ is the *barrycenter* of the measure μ (we write $x = r(\mu)$), if for every continuous affine $f : K \to \mathbb{R}$ we have

$$f(x) = \int_{K} f \,\mathrm{d}\mu.$$

Proposition 124. Let X be HLCS, $K \subset X$ be a compact convex set and $\mu \in P(K)$. Then there exists a unique barrycenter $r(\mu) \in K$ of the measure μ .

Theorem 125 (integral representation). Let X be HLCS, $K \subset X$ be a compact convex set and $x \in K$. Then there exists $\mu \in P(K)$ satisfying $r(\mu) = x$ and $\mu(\overline{\text{ext } K}) = 1$.

The end of lecture 25