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Section 1

Introduction

Scott Congreve DGFEM Adaptive Refinement Bath, Apr. 12 2019 3/33



Helmholtz Equation

Let @ C RY, d = 2,3 be a bounded polygonal/polyhedral domain. We
seek u: Q — C such that

—Au—Ku=0 in Q,
u=20 onlp, (sound-soft scattering)
Vu-n=0 on Iy, (sound-hard scattering)
Vu-n—+ ikdu = gg on g,
where
P
c

is the wavenumber (w is the frequency of the wave, L is the measure of
the domain, and c is the speed of sound in the material). Wavenumber is
related to the wave length
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FEM for Helmholtz

Multiplying by a test function and integrating by parts gives the weak
formulation: Find u € H(Q) such that

/(Vu-VV—kqu)dx—i—/ iku-n\7ds:/ gr-nvds
Q R [

for all v € H1(Q). Well-posedness: [Melenk, 1995]
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FEM for Helmholtz

Multiplying by a test function and integrating by parts gives the weak
formulation: Find u € H(Q) such that

/(VU'VV—kqu)dx—i—/ iku-n\7ds:/ gr-nvds
Q Mr Mr

for all v € H1(Q). Well-posedness: [Melenk, 1995]
We want to search for a solution in a finite dimensional subspace of
H(Q). To that end we subdivide the domain  into a mesh 7}, of
non-overlapping elements K, where each element has a size hg.

We can denote by F}, FF and FP all interior, Robin boundary, and

Dirichlet boundary edges/faces, respectively.
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FEM for Helmholtz

We can now define a subspace on this mesh:

VEC(Th) = {v e H(Q) : vlk € Sq(K). K € Tp} € HY(Q),

then we can define the continuous Galerkin finite element method
(CGFEM):

Find up € VqCG(77,) such that

/(VU'VV—kqu)dx—i—/ iku-n\7ds:/ gr-nvds
Q Mr Ir

for all vy, € VqCG(77,).
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FEM for Helmholtz

We can now define a subspace on this mesh:
VEC(Th) = {v e H(Q) : vlk € Sq(K). K € Tp} € HY(Q),

then we can define the continuous Galerkin finite element method
(CGFEM):
Find up € VqCG(77,) such that

/(VU'VV—kqu)dx—i—/ iku-n\7ds:/ gr-nvds
Q Mr Ir

for all vy, € VqCG(77,).

We can also define a discontinuous Galerkin finite element method
(DGFEM), where the space of functions is discontinuous over element
boundaries:

VPC(Th) = {v € L2(Q) : v|k € Sq(K),K € Ta} ¢ HY(Q).

Here we integrate by parts elementwise and introduce fluxes on the
edges/faces,
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FEM for Helmholtz

Problems with FEM:

m Number of degrees of freedom required to obtain given accuracy
increases with wave number k.

m Error: best approximation + phase lag:
IVh(u = un)li29) S (kh)P + k(kh)*
convergence like the best approximation when k(kh)?P < (kh)P, i.e.

h< k—i1/p (resolution condition)
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Section 2

Trefftz DG (TDGFEM) for Helmholtz
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Trefftz FEM Spaces

Polynomial DG Finite Element Spaces: D§FEM uses polynomial basis
functions defined on a reference element K:

VPC(Ty) == {v € L3(Q) : v|k o Fx € Sqr(K), K € Th}.
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Trefftz FEM Spaces

Polynomial DG Finite Element Spaces: DGFEM uses polynomial basis
functions defined on a reference element K:

VPC(Ty) == {v € L3(Q) : v|k o Fx € Sqr(K), K € Th}.

Trefftz Finite Element Space: Use basis functions defined element-wise
based on functions in the kernel of the Helmholtz operator.
First define the local Trefftz spaces

T(K) = {v|x : —Au — k*u =0}
and let

T(Th) ={v e ®(Q):v|x € T(K),K € Tp}.
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Trefftz FEM Spaces

Polynomial DG Finite Element Spaces: DGFEM uses polynomial basis
functions defined on a reference element K:

VPC(Ty) == {v € L3(Q) : v|k o Fx € Sqr(K), K € Th}.

Trefftz Finite Element Space: Use basis functions defined element-wise
based on functions in the kernel of the Helmholtz operator.
First define the local Trefftz spaces

T(K) = {v|x : —Au — k*u =0}
and let
T(Th) ={v e ®(Q):v|x € T(K),K € Tp}.

We let V,(K) C T(K) be a finite dimensional local space; then, the
Trefftz FE Space is given by

Vo(Th) ={v e T(Tn) : vk € Vo(K),K € Th}.
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Trefftz FE Spaces

For Helmholtz we can use the following basis functions:

ikd-x

Plane Waves: x — e , where d is a direction vector.

T4 08 06 04 02 0 02 04 08 08 1
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Trefftz FE Spaces

For Helmholtz we can use the following basis functions:

Plane Waves: x — ekd* \where d is a direction vector.

Circular/Spherical Waves x +— Jy(k|x|)e™ (in 2D), where 6 is the angle
of x in polar coordinates, £ € Z, and J; is the Bessel
function of the first kind of order £.

: - !

- Bl
4 08 06 04 02 0 02 04 06 08 1 4 08 06 04 D02 0 02 04 06 08 1
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Plane Waves

Pk
Vo(K) = {v cv(x) = Zage"kdf'(x*”),ag € C}

(=1

where py is the number of degrees of freedom
for the element K, dy, £ = 1,..., pk are px
(roughly) evenly spaced unit direction vectors,
and xx is the centre of the element.
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Plane Waves

Pk
Vo(K) = {v cv(x) = Zage"kd"(x*”),ag € C}

(=1

where py is the number of degrees of freedom
for the element K, dy, £ = 1,..., pk are px
(roughly) evenly spaced unit direction vectors,
and xx is the centre of the element.

Number of directions can be selected to give the
same accuracy as a high-order polynomial DG
method of order g with less degrees of freedom.

Basis Functions ‘ 2D ‘ 3D

DG (Pq) (a+1)(a+2)/2 | (a+1)(a+2)(a+3)/6
DG (Qq) (q+1) (q+1)°
Trefftz DG 2g+1 (g +1)?

Number of Degrees of Freedom
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Plane Waves

(g =23):

Pk
Vo(K) = {v cv(x) = Zage"kd"(x*”),ag eC
2D

} Direction Vectors
/=1

where py is the number of degrees of freedom
for the element K, dy, £ = 1,..., pk are px
(roughly) evenly spaced unit direction vectors,
and xx is the centre of the element.

Number of directions can be selected to give the

same accuracy as a high-order polynomial DG 3D
method of order g with less degrees of freedom.

Basis Functions ‘ 2D ‘ 3D

DG (Pq) (a+1)(a+2)/2 | (a+1)(a+2)(a+3)/6

DG (Qq) (g+1) (g+1)°

Trefftz DG 2g+1 (g +1)?

Number of Degrees of Freedom

oan L\ ~morclo
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TDG/DG FEM Comparison

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)
u(r,0) = J1(kr) cos(6)
for k =20 on the domain Q = (0, 1) x (—1/2,1/2).

T ot 02 03 04 05 06 07 08 09 1
x

Analytical Solution
(Real Part)
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TDG/DG FEM Comparison

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)
u(r,0) = J1(kr) cos(6)

for k =20 on the domain Q = (0, 1) x (—1/2,1/2).
We solve using both a DGFEM (solid line) and Trefftz DGFEM (dashed).

—a—Qq=3
—=—q-4
o —=—q=5
102 |—=—q=6

1010 L

T ot 02 03 04 05 06 07 08 09 1
X

Analytical Solution lu— unplli2(@) vs. h
(Real Part) (h-refinement)
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TDG/DG FEM Comparison

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)
u(r,0) = J1(kr) cos(6)

for k = 20 on the domain Q = (0,1) x (—1/2,1/2).
We solve using both a DGFEM (solid line) and Trefftz DGFEM (dashed).

—e—q=3
—a—q=4
—a—q=5
—a-q=6

1070
102 10° 10 10° 10°

# DoFs
lu — uppll12(0) vs. Degrees of Freedom

(h-refinement)
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T G FEM Comparison

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)
u(r,0) = J1(kr) cos(6)

for k = 20 on the domain Q = (0,1) x (—1/2,1/2).
We solve using both a DGFEM (solid line) and Trefftz DGFEM (dashed).

10° 10°
—a—q=3
——q-4
102 102
L 10* L 10
s 5
fin] fin}
4 g 4 g
—=—h=1/4
-8 8|l |—=—h=1/8
10 10 R 2 1e
—=—h=1/32
h=1/64
10710 10710
102 10° 10* 10° 10° 10' 102 10° 10* 10°
# DoFs # DoFs
lu — uppll12(0) vs. Degrees of Freedom  [[u — upp||;2(q) vs. Degrees of Freedom
(h-refinement) (p-refinement)
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TDG/DG FEM Comparison

Compared to standard DGFEM, plane wave-based Trefftz DGFEM has one
major disadvantage:

For small mesh sizes, small wavenumbers, and high number of basis
functions (plane wave directions) the basis functions are ill conditioned.
[Huttunen, Monk, Kaipio (2002); Luostari, Huttunen, Monk (2013)]

hp-TDGFEM Adaptive Refinement

Bath, Apr. 12 2019 14 /33



TDG/DG FEM Comparison

Compared to standard DGFEM, plane wave-based Trefftz DGFEM has one
major disadvantage:

For small mesh sizes, small wavenumbers, and high number of basis
functions (plane wave directions) the basis functions are ill conditioned.
[Huttunen, Monk, Kaipio (2002); Luostari, Huttunen, Monk (2013)]

It has been numerically shown that the condition number of the local mass
matrix (Mk) on an element behaves like

100!

although a modified Gram-Schmidt orthogonalization does improve the
conditioning. [C., Gedicke, Perugia (2017)]
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TDGFEM for Helmholtz

Given a mesh 7, on Q we derive the TDGFEM as follows.
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TDGFEM for Helmholtz

Given a mesh 7, on Q we derive the TDGFEM as follows.

m Multiply by test functions and integrate by parts, element-wise, twice
(ultra weak formulation):

/(—Au—k2u)\7 dx =0
K
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TDGFEM for Helmholtz

Given a mesh 7, on Q we derive the TDGFEM as follows.

m Multiply by test functions and integrate by parts, element-wise, twice
(ultra weak formulation):

/(Vu-VV—kqu)dx - Vu-ngvds =0
K oK
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TDGFEM for Helmholtz

Given a mesh 7, on Q we derive the TDGFEM as follows.

m Multiply by test functions and integrate by parts, element-wise, twice
(ultra weak formulation):

/u(—AV—k2\7) dx+/ uVv-ngds — Vu-ngvds =0
K K oK
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TDGFEM for Helmholtz

Given a mesh 7, on Q we derive the TDGFEM as follows.

m Multiply by test functions and integrate by parts, element-wise, twice
(ultra weak formulation):

/u(—A\'/—k2\7) dx+/ uVv-ngds — Vu-ngvds =0
K K oK
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TDGFEM for Helmholtz

Given a mesh 7, on Q we derive the TDGFEM as follows.

m Multiply by test functions and integrate by parts, element-wise, twice
(ultra weak formulation):

/u(—A\'/—k2\7) dx+/ uVv-ngds — Vu-ngvds =0
K K oK

m Replace continuous functions by discrete approximations
(Unps Vip € Vp(Th)) and traces by numerical fluxes

u— ﬁhp, Vu— ik&hp.
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TDGFEM for Helmholtz

Given a mesh 7, on Q we derive the TDGFEM as follows.

m Multiply by test functions and integrate by parts, element-wise, twice
(ultra weak formulation):

/ u(—AV — k?7) dx+/ uVv-ngds — Vu-nkvds =0
K oK oK
m Replace continuous functions by discrete approximations

(Unps Vip € Vp(Th)) and traces by numerical fluxes

u— ﬁhp, Vu— ik&hp.

mveV T, CT(Th) = —-AV—-k¥v=0inK.
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TDGFEM for Helmholtz

Given a mesh 7, on Q we derive the TDGFEM as follows.

m Multiply by test functions and integrate by parts, element-wise, twice
(ultra weak formulation):

/u(—A\'/—k2\7) dx+/ uVv-ngds — Vu-ngvds =0
K K oK

m Replace continuous functions by discrete approximations
(Unps Vip € Vp(Th)) and traces by numerical fluxes

u— ﬁhp, Vu— ik&hp.

mveV T, CT(Th) = —-AV—-k¥v=0inK.

/ ﬁhpvvhp-nK ds — / ik&hp-nKVhp ds =0, for all K € 7.
oK oK
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TDGFEM for Helmholtz

vt +vo 4, :
{v} = — [vI=vaT+v n—, V scalar-valued functions v.
+ p—
T+ T - .
{r} = — 1= 7.nt +77-n7, V vector-valued functions 7.
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TDGFEM for Helmholtz

vt + v~ .
{v} = — [vl]=vint +v n—, V scalar-valued functions v.
+ p—
T+ T - .
{} = — [*]=7"-n* +77-n~, V vector-valued functions 7.

Numerical Fluxes

{Vhunp} — aikupp] on interior faces,
ik hp =  Vitpp — (1 = 0) (Vhupp + ikduppn — grn)  on faces on Ig,
Vhupp — aikuppn on faces on Ip,
Lunp} — BUiK) [V hunp] on interior faces,
Uhp = { upp — 0 ((ik9) "V hupp-n + upp — (ik9) 'gr) on faces on lg,
0 on faces on p,

with flux parameters o, 3, 0 < § < 1/2.
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TDGFEM for Helmholtz

Trefftz Discontinuous Galerkin FEM for Helmholtz

Find upp € V,(Th) such that,

Ah(uhp7 Vhp) = Eh(vhp)a

for all vip, € Vp(Th), where

Aol ) =/ﬂ (U} Vh7] ds — /ﬂ B(ik) " [V pu] [V 7] ds
—/ {th} vl ds—l—/ﬂu}? aik[u]-[v] ds
+ [0
/ oV pu-nv ds+/f5(1 — 0)ikduv ds,

/ (ikv)~ gRVhV-nds+/ (1—9)grv ds.
FR FR
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Flux Parameters

Penalty Type Q@ I} 0
DG-type aqy /khy | Pkhi/qi | dkhic/q;
Gittelson, Hiptmair & Perugia, 2009

Constant a b d
Hiptmair, Moiola & Perugia, 2011

UWVF 1/2 1/2 1/2
Cessenat & Després, 1998

Non-Uniform Mesh ahmax/hyc | Phmax/hy | Ahmax/hy

Hiptmair, Moiola & Perugia, 2014
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Section 3

Adaptive Refinement
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Plane Wave Direction Refinement

Selecting plane wave directions which align with the wave direction of the
analytical solution can reduce the error.

Several existing approaches exist for selecting plane wave directions:
m Ray-tracing — requires a source term. [Betcke & Phillips, 2012]
m Approximate
Ve(xo)
ike(Xo) ’
where e is the error. [Gittelson, 2008 (Master’s Thesis)]

m Adding an extra unknown (the optimal angle of rotation) to the basis
functions. [Amara, Chaudhry, Diaz, Djellouli & Fiedler, 2014]
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Plane Wave Direction Refinement

Selecting plane wave directions which align with the wave direction of the
analytical solution can reduce the error.

Several existing approaches exist for selecting plane wave directions:
m Ray-tracing — requires a source term. [Betcke & Phillips, 2012]
m Approximate
Ve(xo)
ike(xo)’
where e is the error. [Gittelson, 2008 (Master’s Thesis)]
m Adding an extra unknown (the optimal angle of rotation) to the basis
functions. [Amara, Chaudhry, Diaz, Djellouli & Fiedler, 2014]

We propose using the Hessian of the numerical solution, based on work on
anisotropic meshes for standard FE [Formaggia & Perotto, 2001, 2003].
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Plane Wave Direction Refinement

Plane Wave Refinement Algorithm (2D)

Let (A1, v1), (A2, v2) be the eigenpairs of H(Re(up(xk))), and

(111, wi), (p2, wa) the eigenpairs of H(Im(up(xk))) s.t. [A1] > [A2],
|p1| > |p2|; then, for constant C > 1, we can select the first plane wave
direction as follows:

M| > Clo| | || > Clpa| | [Ma] > Clpal | |pa] > ClA] || First PW

v v v X 41
v v X v w1
7 4 X X v
v X v X Vi
v X X = =
X v X v w1
X 4 - X -
X X = = =

[C., Houston, Perugia (2018)]
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Plane Wave Direction Refinement

If v is the eigenvector, then the direction of propagation could be either v
or —v (unknown orientation). Consider the impedance on the boundary of
a ball (radius § around xx) and compare to the plane wave
u(x) = e’kd"(x=xk) for the cases when d = v and d = —v.

22/33
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Plane Wave Direction Refinement

If v is the eigenvector, then the direction of propagation could be either v
or —v (unknown orientation). Consider the impedance on the boundary of

a ball (radius ¢ around xx) and compare to the plane wave
u(x) = e/kd-(x=xk) for the cases when d = v and d = —v.

Evaluating at xx + dv we note that the
normal is v, so we can calculate

Vup(xk +0v) - v+ ikup(xk + 0v)
ikuh(xK + 5V) '

22/33
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Plane Wave Direction Refinement

If v is the eigenvector, then the direction of propagation could be either v
or —v (unknown orientation). Consider the impedance on the boundary of

a ball (radius ¢ around xx) and compare to the plane wave
u(x) = e/kd-(x=xk) for the cases when d = v and d = —v.

Evaluating at xx + dv we note that the
normal is v, so we can calculate

Vup(xk +0v) - v+ ikup(xk + 0v)
ikuh(xK + 5V) '

We can compare this to the impedance for u:

Vu(xk +0v)-v 2, ifd=wv,
. +1=
iku(xk + 0v)

22/33
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Plane Wave Direction Refinement

If v is the eigenvector, then the direction of propagation could be either v
or —v (unknown orientation). Consider the impedance on the boundary of

a ball (radius ¢ around xx) and compare to the plane wave
u(x) = e/kd-(x=xk) for the cases when d = v and d = —v.

Evaluating at xx + dv we note that the
normal is v, so we can calculate

Vup(xk +0v) - v+ ikup(xk + 0v)
ikuh(xK + 5V) '

We can compare this to the impedance for u:

Vu(xk +0v)-v )2, ifd=v,
iku(xk + dv) o, ifd=—v.

22/33
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Plane Wave Direction Refinement

To test the direction refinement, we consider the solution

u(x,y) = Hgl)(k\/(x +0.25)2 + y2?),

with k = 20, on the domain Q = (0,1)2.

WM
>k\

| \\ AN
_ \\\\\\
\\\|\\\\ \\\\\\\\\\
\I\\I\\\\\ R

120 140 160 180 200 220 240 260 00 02 0.4 0.6 0.8 1
# DoFs X

|u — uppll2(q) vs. DoF First PW Direction (p = 3)
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Plane Wave Direction Refinement

To test the direction refinement, we consider the solution

u(x,y) = Hgl)(k\/(x +0.25)2 + y2?),

with k = 20, on the domain Q = (0,1)2.

0.9 f w P
EN 10° >z:zl D \\\\\\}%%\\}\\
N
2l AN \\\\\\\\ \\\\\\\\\\
1 i

120 140 160 180 200 220 240 260 00 0.2 0.4 0.6 0.8 1
# DoFs X

|u — uppll2(q) vs. DoF First PW Direction (p = 4)
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Plane Wave Direction Refinement

To test the direction refinement, we consider the solution

u(x,y) = Hgl)(k\/(x +0.25)2 + y2?),

with k = 20, on the domain Q = (0,1)2.

120 140 160 180 200 220 240 260
# DoFs

|u — uppll2(q) vs. DoF First PW Direction (p = 5)
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Plane Wave Direction Refinement

To test the direction refinement, we consider the solution

u(x,y) = Hgl)(k\/(x +0.25)2 + y2?),

with k = 20, on the domain Q = (0,1)2.

SN
Ty B\
m\\ \mmm

120 140 160 180 200 220 240 260 00 . 0.8 1
# DoFs X

|u — uppll2(q) vs. DoF First PW Direction (p = 6)
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Plane Wave Direction Refinement

To test the direction refinement, we consider the solution

u(x,y) = Hgl)(k\/(x +0.25)2 + y2?),

with k = 20, on the domain Q = (0,1)2.

SN
Ty B\
m\\ \mmm

|u — uppll2(q) vs. DoF First PW Direction (p = 7)

120 140 160 180 200 220 240 260
# DoFs
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Plane Wave Direction Refinement

To test the direction refinement, we consider the solution

u(x,y) = Hgl)(k\/(x +0.25)2 + y2?),

with k = 20, on the domain Q = (0,1)2.

SN
Ty B\
m\\ \mmm

120 140 160 180 200 220 240 260 00 . 0.8 1
# DoFs X

|u — uppll2(q) vs. DoF First PW Direction (p = 8)
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hp-Refinement

An a posteriori error bounds exists for the h-version of the method in R,

A posteriori Error Bound — h-version Only

For the TDGFEM, with the constant flux parameters, the following error
bound holds:

= un 22y < C(k,dg){H Ves Lus] |

L2(FIUFD) ﬁ” [[VUh]]HLz (Fl)

2
L2(FF)

where s depends on the regularity of the solution to the adjoint problem
(z € H*t35(Q)).

_|_

2 ‘ (51/2hs (gR —Vu,-ng + /kﬁuh)

[Kapita, Monk & Warburton, 2015]
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hp-Refinement

A posteriori Error Bound — hp-version

We propose the following potential a posteriori error bound with constants
derived numerical to ensure the bound is efficient:

1/2 1/2 1/2
Ju uhp||Lz(Q)<C{kH Lonel || o

g -3
+ 18202 a5 [V el 32 7,

ul

for smooth solution of the adjoint.

522" (gr — Vi np + ikup)

2
L2(FF)

[C., Houston, Perugia (2018)]
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hp-adaptive Refinement

Modified hp-refinement Strategy [Melenk & Wohlmuth, 2001]

Let 7p o be the initial mesh, 7p ; the mesh after i refinements, 7k ; the

error indicator for K € Tp;, and nf(rfid the predicted error for K € Tj ;.

for K € 75 do
if K is marked for refinement then
if 12 ;> (nis")? then
h-refinement: Subdivide K into N sons Ks,s €0,..., N
red 2 .
(77%5141)2 — 77 (3) o 77i2<,iv i<s<N
else

p-refinement: gk < gk + 1

d
(17??1:3+1)2 — W’p??%(,i

end if
else
d d
(M i41)? = (e )2
end if

end for
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Adaptive Refinement

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)

u(x,y) = H§ (k) (x +1a)2 + y2),

on the domain Q = (0, 1)? with suitable Robin BCs.
Consider h- and hp-refinement for k = 20.

—o—No dir. adapt.
102 - Dir. adapt. refined
- Dir. adapt. all elems.

Relative L° Error
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L2-Error & Error Bound

20

[$)]

Effectivity
5
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—x Dir. adapt. refined
-&-Dir. adapt. all elems.

5 10 15
Mesh Number
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Adaptive Refinement

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)

u(x,y) = H§ (k) (x +1a)2 + y2),

on the domain Q = (0, 1)? with suitable Robin BCs.
Consider h- and hp-refinement for k = 20.
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o
10 >
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[}
o
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Adaptive Refinement

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)

u(x,y) = H (ky/(x + Ya)2 + y2),

on the domain Q = (0, 1)? with suitable Robin BCs.

Consider h- and hp-refinement for k = 20.
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Adaptive Refinement

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)

u(x,y) = H§ (k) (x +1a)2 + y2),

on the domain Q = (0, 1)? with suitable Robin BCs.
Consider h- and hp-refinement for k = 50.

10° 20+
—o-No dir. adapt. —o-No dir. adapt.
- Dir. adapt. refined - Dir. adapt. refined
- Dir. adapt. all elems. - Dir. adapt. all elems.
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Adaptive Refinement

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)

u(x,y) = H§ (k) (x +1a)2 + y2),

on the domain Q = (0, 1)? with suitable Robin BCs.
Consider h- and hp-refinement for k = 50.

10° 20 -
—o-No dir. adapt. -o-No dir. adapt.
—% Dir. adapt. p-refined - Dir. adapt. p-refined
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Adaptive Refinement

Consider the smooth (analytic) solution (for Acoustic Wave Propagation)

u(x,y) = H (ky/(x + Ya)2 + y2),

on the domain Q = (0, 1)? with suitable Robin BCs.
Consider h- and hp-refinement for k = 50.
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Adaptive Refinement

Consider the 3D smooth (analytic) solution (for Acoustic Wave

Propagation)

U(X) — eikd-x7

on the domain Q = (0,1)3, where d; = 1/v3 for i = 1,2, 3, with suitable

60

20 -

—o—No dir. adapt.

% Dir. adapt. refined
15 - Dir. adapt. all elems.

Effectivity
5

Robin BCs.
Consider h- and hp-refinement for k = 20.
107
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Adaptive Refinement

Consider the 3D smooth (analytic) solution (for Acoustic Wave
Propagation)

U(X) — eikd-x7
on the domain Q = (0,1)3, where d; = 1/v3 for i = 1,2, 3, with suitable
Robin BCs.

Consider h- and hp-refinement for k = 20.

10! 20
i —o—No dir. adapt. —6-No dir. adapt.
i — Dir. adapt. p-refined — Dir. adapt. p-refined
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Adaptive Refinement

Consider the 3D smooth (analytic) solution (for Acoustic Wave
Propagation)

U(X) — eikd-x7
on the domain Q = (0,1)3, where d; = 1/v3 for i = 1,2, 3, with suitable
Robin BCs.
Consider h- and hp-refinement for k = 50.
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Adaptive Refinement

Consider the 3D smooth (analytic) solution (for Acoustic Wave
Propagation)

U(X) — eikd-x7
on the domain Q = (0,1)3, where d; = 1/v3 for i = 1,2, 3, with suitable
Robin BCs.
Consider h- and hp-refinement for k = 50.
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Adaptive Refinement

Consider the non-smooth solution (for Acoustic Wave Propagation)
u(r,0) = Jays(kr)sin(24/3),

on the domain L-shaped domain Q = (—1,1)2\ (0,1) x (—1,1), with
suitable Robin BCs.
Consider h- and hp-refinement for k = 20.

10° 20+
—o-No dir. adapt. —o-No dir. adapt.
- Dir. adapt. refined - Dir. adapt. refined
- Dir. adapt. all elems. 15 - Dir. adapt. all elems.

_.
<

Relative L° Error
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n
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Adaptive Refinement

Consider the non-smooth solution (for Acoustic Wave Propagation)
u(r,0) = Jays(kr)sin(24/3),

on the domain L-shaped domain Q = (—1,1)2\ (0,1) x (—1,1), with
suitable Robin BCs.
Consider h- and hp-refinement for k = 20.
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Adaptive Refinement

Consider the non-smooth solution (for Acoustic Wave Propagation)
u(r,0) = Jays(kr)sin(24/3),

on the domain L-shaped domain Q = (—1,1)2\ (0,1) x (—1,1), with
suitable Robin BCs.
Consider h- and hp-refinement for k = 20.
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Adaptive Refinement

Consider the non-smooth solution (for Acoustic Wave Propagation)
u(r,0) = Jays(kr)sin(24/3),

on the domain L-shaped domain Q = (—1,1)2\ (0,1) x (—1,1), with
suitable Robin BCs.
Consider h- and hp-refinement for k = 50.
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Adaptive Refinement

Consider the non-smooth solution (for Acoustic Wave Propagation)
u(r,0) = Jays(kr)sin(24/3),
on the domain L-shaped domain Q = (—1,1)2\ (0,1) x (—1,1), with

suitable Robin BCs.

Consider h- and hp-refinement for k = 50.
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Adaptive Refinement

Consider the non-smooth solution (for Acoustic Wave Propagation)
u(r,0) = Jays(kr)sin(24/3),

on the domain L-shaped domain Q = (—1,1)2\ (0,1) x (—1,1), with
suitable Robin BCs.
Consider h- and hp-refinement for k = 50.
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Adaptive Refinement

We now consider a wavenumber k given by the piecewise constant function

k( ) kl =wn ify§0,
X, =
Y ko = wny if y >0,

where, we w = 11, n; = 2, and np = 1, with appropriate inhomogeneous
Dirichlet boundary condition, such that , for a constant 0 < 6; < 7/2,

Tei(Kix+Kay) if y >0,
U(ny) - eiki(x cos(0;)+y sin(6;)) + Reiki(xcos(0;)—ysin(6;))  if y <0,

where K1 = ky cos(6;), Ko = \/k22 — kZ cos?(0),

_ Ko — ki sin(6;)
- Ko + kq sin(9,-)’

and T=1+R.
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Adaptive Refinement

There exists a critical angle 8., such that when 6; > 0., the wave is
refracted, while 6; < 0.+ results in internal reflection.
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Adaptive Refinement

There exists a critical angle 0., such that when 6; > 0., the wave is
refracted, while 8; < 0 results in internal reflection.
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Adaptive Refinement

There exists a critical angle 8., such that when 6; > 8.,;; the wave is
refracted, while 6; < 0.+ results in internal reflection.
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Adaptive Refinement

There exists a critical angle 0., such that when 6; > 0_,; the wave is
refracted, while 6; < 0, results in internal reflection.
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Adaptive Refinement

There exists a critical angle 0., such that when 6; > 0., the wave is
refracted, while 8; < 0 results in internal reflection.
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Adaptive Refinement

There exists a critical angle 8., such that when 6; > 8.,;; the wave is
refracted, while 6; < 0.+ results in internal reflection.
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Adaptive Refinement

There exists a critical angle 0., such that when 6; > 0., the wave is
refracted, while 8; < 0 results in internal reflection.
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Adaptive Refinement

Consider a scattering problem around an obstacle (kite). We impose

homogeneous Dirichlet boundary conditions on the obstacle, and Robin
boundary condition

gr(x) = Vu; - n+ ikuy, uy = ekdx

with k = 20 and d = —(cos(67/13), sin(67/13)) .
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Adaptive Refinement

Consider a scattering problem around an obstacle (kite). We impose

homogeneous Dirichlet boundary conditions on the obstacle, and Robin
boundary condition

gr(x) = Vu; - n+ iku, uy = elkdx
with k = 20 and d = —(cos(67/13), sin(67/13)) .
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Adaptive Refinement

Consider a scattering problem around an obstacle (kite). We impose

homogeneous Dirichlet boundary conditions on the obstacle, and Robin
boundary condition

gr(x) =Vu - n+ ikuy, uy = e'kdx

with k = 20 and d = —(cos(67/13), sin(67/13)) .
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Adaptive Refinement

Consider a scattering problem around an obstacle (kite). We impose

homogeneous Dirichlet boundary conditions on the obstacle, and Robin
boundary condition

gr(x) =Vu - n+ ikuy, uy = e'kdx

with k = 20 and d = —(cos(67/13), sin(67/13)) .
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Conclusion

Summary:

m With plane wave basis functions it is possible to refine the wave
directions.

m hp-adaptive refinement results in exponential convergence.

m Combining plane wave direction adaptivity with hp-adaptive
refinement often leads to reduced error compared to standard
refinement.

Future Aims:
m Develop robust hp-version a posteriori error bounds..

m Use the eigenvalues/eigenvectors to develop anisotropic p-refinement
(unevenly spaced plane waves).
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