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Overview of standard meshes

For finite element (and similar) methods we partition the domain into a mesh consisting
of elements.

In 2D we use triangles (simplices) and quads:
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Overview of standard meshes

For classical conforming or non-conforming finite element methods we generally limit
meshes to these standard elements, as it is possible to construct basis functions such that
the functions are continuous over the whole domain, or for non-conforming methods met
certain conditions on the edges (or similar).

The construction these functions is such that we know their definition over the whole
element.
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Overview of standard meshes

For classical conforming or non-conforming finite element methods we generally limit
meshes to these standard elements, as it is possible to construct basis functions such that
the functions are continuous over the whole domain, or for non-conforming methods met
certain conditions on the edges (or similar).

The construction these functions is such that we know their definition over the whole
element.

For example, for triangles we can create (linear) basis functions for a conforming finite
element method by using the hat functions of each vertex:
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Polytopic meshes

The idea of polytopic elements is instead to construct meshes consisting of

m general simple polygonal elements in 2D, where each polygon has a finite number of
straight line segments,

m general polyhedral elements in 3D with of a finite number of simple polygonal faces.
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Polytopic meshes

The idea of polytopic elements is instead to construct meshes consisting of

m general simple polygonal elements in 2D, where each polygon has a finite number of
straight line segments,

m general polyhedral elements in 3D with of a finite number of simple polygonal faces.

We call these meshes and elements polygonal (2D), polyhedral (3D), or polytopic (in
general).
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Hexagonal Voronoi Escher-like
[Paulino & Gain, 2015]

Scott Congreve (Charles University) Agglomeration of polytopic meshes



CHARLES UN

Methods on polytopic meshes e

Voronoi cell finite element method (VCFEM)

Conforming polygonal finite element method ((conforming) PFEM)
n-Sided polygonal smoothed finite element method (nSFEM)
Polygonal scaled boundary finite element method (PSBFEM)

Base forces element method (BFEM)

Boundary element based FEM (BEM-based FEM)

Mimetic finite difference (MFD)

Virtual element method (VEM)

Virtual node method (VNM)

Discontinuous Galerkin finite element method (DGFEM)
Trefftz/Hybrid Trefftz polygonal finite element (T-FEM or HT-FEM)
Trefftz Discontinuous Galerkin finite element method (TDGFEM)
Hybrid stress-function (HS-F) polygonal element

Hybrid discontinuous Galerkin methods (HDG)

Hybrid higher-order methods (HHO)

Hybrid finite volume method (HFV)

Weak Galerkin methods (WG)
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Advantages of polygonal meshes

m Easier to capture complex domain geometry, or geometry/material naturally
polygonal in nature (organic cells, carbon allotropes, etc.)
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Advantages of polygonal meshes

m Easier to capture complex domain geometry, or geometry/material naturally
polygonal in nature (organic cells, carbon allotropes, etc.)

m Possible to generate series of hierarchical meshes for unstructured meshes

m FEM on triangular meshes cannot model maximal stretch factors in linear elasticity
due to numerical errors from the deformation; whereas, polygonal meshes can allow
more realistic stretch factors due to greater admissible shape deformations

A=146

Local Stretch
E 5 and above
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[Chi et al., 2015; |
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Advantages of polygonal meshes

m Easier to capture complex domain geometry, or geometry/material naturally
polygonal in nature (organic cells, carbon allotropes, etc.)

m Possible to generate series of hierarchical meshes for unstructured meshes

m FEM on triangular meshes cannot model maximal stretch factors in linear elasticity
due to numerical errors from the deformation; whereas, polygonal meshes can allow

more realistic stretch factors due to greater admissible shape deformations
A=146

Local Stretch
E 5 and above

[Chi et al., 2015; Talischi et al., 2015]

m For some methods a polygonal element can be more stable or give better results.
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Trefftz DGFEM for Helmholtz

Let Q C R?, be a bounded polygonal domain.

—Au—Ku=0 in Q,
u=20 on Ip, (sound-soft scattering)
Vu-n=0 on [y, (sound-hard scattering)
Vu-n+ ikdu = gr on lNg.
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—Au—Ku=0 in Q,
u=20 on Ip, (sound-soft scattering)
Vu-n=0 on [y, (sound-hard scattering)
Vu-n+ ikdu = gr on lNg.

Polynomial DG Finite Element Spaces: DGFEM uses polynomial basis functions defined
on a reference element K:

V:g(,n) = {V € L2(Q) : VlK ofk € PQK(R)7 K e 777}
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Let Q C R?, be a bounded polygonal domain.

—Au—Ku=0 in Q,
u=20 on Ip, (sound-soft scattering)
Vu-n=0 on [y, (sound-hard scattering)
Vu-n+ ikdu = gr on lNg.

Polynomial DG Finite Element Spaces: DGFEM uses polynomial basis functions defined
on a reference element K:

V:g(,n) = {V € L2(Q) : VlK ofk € PQK(R)7 K e 777}

Trefftz Finite Element Space: Use basis functions based on general solutions to the PDE.
First define the local and global Trefftz spaces

T(K) ={vlk: —Au—Ku=0}  T(Tha)={vel’Q):vlkec T(K),K e Ts}.
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Polynomial DG Finite Element Spaces: DGFEM uses polynomial basis functions defined
on a reference element K:

V:g(,n) = {V € L2(Q) : VlK ofk € PQK(R)7 K e 777}

Trefftz Finite Element Space: Use basis functions based on general solutions to the PDE.
First define the local and global Trefftz spaces

T(K) ={vlk: —Au—Ku=0} T(Th)={vel’Q):v|xke T(K),KeTi}
Let V,(K) C T(K) be a finite dimensional local space; then, the Trefftz FE Space is
VEe(Th) = {v € T(Th) : vk € Vp(K),K € Tn}.
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Let Q C R?, be a bounded polygonal domain.

—Au—Ku=0 in Q,
u=20 on Ip, (sound-soft scattering)
Vu-n=0 on [y, (sound-hard scattering)
Vu-n+ ikdu = gr on lNg.

Polynomial DG Finite Element Spaces: DGFEM uses polynomial basis functions defined
on a reference element K:
V:g(,n) = {V € L2(Q) : VlK ofk € PQK(R)7 K e 777}
Trefftz Finite Element Space: Use basis functions based on general solutions to the PDE.
First define the local and global Trefftz spaces
T(K) ={vlk: —Au—Ku=0} T(Th)={vel’Q):v|xke T(K),KeTi}
Let V,(K) C T(K) be a finite dimensional local space; then, the Trefftz FE Space is
Vige(Th) = {v € T(Th) : v € Vp(K), K € Tp}.

We can use plane waves as basis functions x — €% where d is a direction vector. We

can generate p basis functions by using p unique directions (usually roughly evenly
spaced unit vectors).
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Trefftz DGFEM for Helmholtz

Given a mesh 7 on Q we derive the TDGFEM as follows.
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Trefftz DGFEM for Helmholtz

Given a mesh 7 on Q we derive the TDGFEM as follows.
m Multiply by test functions and integrate by parts, element-wise, twice (ultra weak
formulation):

/(—Au—kzu)v dx =0
K
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Trefftz DGFEM for Helmholtz

Given a mesh 7 on Q we derive the TDGFEM as follows.
m Multiply by test functions and integrate by parts, element-wise, twice (ultra weak
formulation):

/(VU-VV—kZUV)dX - Vu-ngvds =0
K oK
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m Multiply by test functions and integrate by parts, element-wise, twice (ultra weak
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Trefftz DGFEM for Helmholtz

Given a mesh 7 on Q we derive the TDGFEM as follows.
m Multiply by test functions and integrate by parts, element-wise, twice (ultra weak
formulation):

/u(—AV—k2\7) dx—|—/ uVv-nkds — Vu-nkvds =0
K oK oK

= Replace continuous functions by discrete approximations (unp, vy € Vi, (7h)) and
traces by numerical fluxes

u — Upp, Vu— ikGhp.
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Trefftz DGFEM for Helmholtz

Given a mesh 7 on Q we derive the TDGFEM as follows.
m Multiply by test functions and integrate by parts, element-wise, twice (ultra weak
formulation):

/u(—AV—k2\7) dx—|—/ uVv-nkds — Vu-nkvds =0
K oK oK

= Replace continuous functions by discrete approximations (unp, vy € Vi, (7h)) and
traces by numerical fluxes

u — Upp, Vu— ikGhp.

B v, € Vo(Th) C T(Th) = —App—KkVp=0in K.
|

/ ﬁth\'/hp-nK ds — / ik&hp-nKVhp ds = 0, for all K € Tp.
oK oK
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Trefftz DGFEM for Helmholtz

Given a mesh 7 on Q we derive the TDGFEM as follows.
m Multiply by test functions and integrate by parts, element-wise, twice (ultra weak
formulation):

/u(—AV—k2\7) dx—|—/ uVv-nkds — Vu-nkvds =0
K oK oK

= Replace continuous functions by discrete approximations (unp, vy € Vi, (7h)) and
traces by numerical fluxes

u — Upp, Vu— ikGhp.

B v, € Vo(Th) C T(Th) = —App—KkVp=0in K.
|
/ ﬁth\'/hp-nK ds — / ik&hp-nKVhp ds = 0, for all K € Tp.

oK oK

Select the numerical fluxes and summation over all elements in the mesh gives the
formulation.
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Trefftz DGFEM for Helmholtz

Given a mesh 7 on Q we derive the TDGFEM as follows.

m Multiply by test functions and integrate by parts, element-wise, twice (ultra weak
formulation):

/u(—AV—k2\7) dx—|—/ uVv-nkds — Vu-nkvds =0
K oK oK

= Replace continuous functions by discrete approximations (unp, vy € Vi, (7h)) and
traces by numerical fluxes

u — Upp, Vu— ikGhp.

B v, € Vo(Th) C T(Th) = —App—KkVp=0in K.
|

/ ﬁth\'/hP~nK ds — / ik&hp-nKVhp ds = 0, for all K € Tp.
oK oK

Select the numerical fluxes and summation over all elements in the mesh gives the
formulation.

The resulting method only has integrals over edges; hence, it can operate on general
polygonal meshes.
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Given a mesh 7 on Q we derive the TDGFEM as follows.
m Multiply by test functions and integrate by parts, element-wise, twice (ultra weak
formulation):
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Trefftz DGFEM for Helmholtz

With plane wave basis functions the condition number of the resulting linear system
blows up as the number of plane wave basis functions increase.
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Trefftz DGFEM for Helmholtz

With plane wave basis functions the condition number of the resulting linear system
blows up as the number of plane wave basis functions increase.

However, numerical experiments on a single n-polygon, for n = 3,45, ..., demonstrate
that the condition number is generally better for higher n (in fact, closer to a circle the
element becomes).
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With plane wave basis functions the condition number of the resulting linear system
blows up as the number of plane wave basis functions increase.

However, numerical experiments on a single n-polygon, for n = 3,45, ..., demonstrate

that the condition number is generally better for higher n (in fact, closer to a circle the
element becomes).
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[C., Gedicke, & Perugia, 2017]
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Agglomeration

As well as directly constructing polygonal meshes, it is also possible to generating mesh
of polytopal elements by agglomeration.
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Agglomeration

As well as directly constructing polygonal meshes, it is also possible to generating mesh
of polytopal elements by agglomeration.
Here, consider an initial, known, mesh of standard (or polytopal) elements, and create a

newer coarser mesh by joining (or agglomerating) neighbouring elements into a polytopal
element:
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Agglomeration

As well as directly constructing polygonal meshes, it is also possible to generating mesh
of polytopal elements by agglomeration.
Here, consider an initial, known, mesh of standard (or polytopal) elements, and create a

newer coarser mesh by joining (or agglomerating) neighbouring elements into a polytopal
element:

This is particularly advantageous if we need multiple, hierarchical, meshes; e.g., for
multiscale or multigrid.

Multiple methods for agglomeration exist. An overview of application of some of these
methods for multigrid is available in [Dargaville, Buchan, Smedley-Stevenson, Smith, &
Pain, 2021].
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One technique for agglomeration is based on graph partitioning methods; e.g., METIS
[Karypis & Kumar, 1999].
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One technique for agglomeration is based on graph partitioning methods; e.g., METIS
[Karypis & Kumar, 1999].
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One technique for agglomeration is based on graph partitioning methods; e.g., METIS

[Karypis & Kumar, 1999].
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One technique for agglomeration is based on graph partitioning methods; e.g., METIS
[Karypis & Kumar, 1999].
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One technique for agglomeration is based on graph partitioning methods; e.g., METIS
[Karypis & Kumar, 1999].
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One technique for agglomeration is based on graph partitioning methods; e.g., METIS
[Karypis & Kumar, 1999].

As this method minimises the edge cuts of the graph, and each edge cut corresponds to
an edge in the agglomerated mesh, this method also minimises the number of edges in
the mesh.
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One technique for agglomeration is based on graph partitioning methods; e.g., METIS
[Karypis & Kumar, 1999].

As this method minimises the edge cuts of the graph, and each edge cut corresponds to
an edge in the agglomerated mesh, this method also minimises the number of edges in
the mesh.

However, it operates with no concept of the mesh geometry; hence, there is no
optimisation or guarantee on the shape, or properties, of the resulting elements.
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Weighted-face agglomeration

Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].
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Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].
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Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].
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Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].

0 0 0 0
0 D O © © © © @
0 © O 0

©
(=)
©
(=)
©

©
©

©

S

5 B
S

5 ©
S

1)
O

Scott Congreve (Charles University) Agglomeration of polytopic meshes 14 /36



CHARLES UNIV
math

Weighted-face agglomeration o

Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].

0 0 0 0
0 D O © © © © @
0 © O 0
OBONONONONONONONO,
0 0 © 0

©

S
5 B
S
oRG
S
f@

1)
O

Scott Congreve (Charles University) Agglomeration of polytopic meshes 14 /36



CHARLES UNIV
math

Weighted-face agglomeration o
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Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].
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Weighted-face agglomeration

Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].
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Weighted-face agglomeration

Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].

It is claimed that this method tends to produce nice agglomerated elements, from a
geometric perspective, and for structured meshes produces something close to a standard
coarsening.
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Weighted-face agglomeration

Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].

It is claimed that this method tends to produce nice agglomerated elements, from a
geometric perspective, and for structured meshes produces something close to a standard
coarsening.

However, how “nice” the elements are can depend largely on which face is selected in the
case that multiple faces have the same weight.

Furthermore, this method can result in elements not being included in an agglomerate,
agglomerates which are completely contained within another agglomerate, and
potentially agglomerated elements which are not continuous or simple polygons.
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Weighted-face agglomeration

Another technique assigns weights to each face, and agglomerates based on the face with
the highest weight; cf., [Jones & Vassilevski, 2001].

It is claimed that this method tends to produce nice agglomerated elements, from a
geometric perspective, and for structured meshes produces something close to a standard
coarsening.

However, how “nice” the elements are can depend largely on which face is selected in the
case that multiple faces have the same weight.

Furthermore, this method can result in elements not being included in an agglomerate,
agglomerates which are completely contained within another agglomerate, and
potentially agglomerated elements which are not continuous or simple polygons.

The number of agglomerates to generate can not be specified, and in order to produce
“coarser" meshes it is necessary to apply the algorithm recursively.
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Refinement for agglomerated elements

With the standard elements it is possible to refine, both isotropically and anisotropically,
the elements fairly simply as the elements can all be divided into standard elements:
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With the standard elements it is possible to refine, both isotropically and anisotropically,
the elements fairly simply as the elements can all be divided into standard elements:
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Refinement for agglomerated elements

With the standard elements it is possible to refine, both isotropically and anisotropically,
the elements fairly simply as the elements can all be divided into standard elements:

With general polygonal elements a standard refinement does not necessarily exist. One
common technique is to join the midpoint of each edge with a point (e.g., barycentre of
the element) inside the element. However, this relies on the element being star-shaped.
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Refinement for agglomerated elements

With the standard elements it is possible to refine, both isotropically and anisotropically,
the elements fairly simply as the elements can all be divided into standard elements:

With general polygonal elements a standard refinement does not necessarily exist. One
common technique is to join the midpoint of each edge with a point (e.g., barycentre of
the element) inside the element. However, this relies on the element being star-shaped.
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With the standard elements it is possible to refine, both isotropically and anisotropically,
the elements fairly simply as the elements can all be divided into standard elements:

With general polygonal elements a standard refinement does not necessarily exist. One
common technique is to join the midpoint of each edge with a point (e.g., barycentre of
the element) inside the element. However, this relies on the element being star-shaped.

With agglomerated elements, however, we have another alternative — each agglomerated
element consists of a patch of elements from the original mesh, so we can refine the
agglomerated element by agglomerating this patch into 2¢ elements.

[Collis & Houston, 2016]

Scott Congreve (Charles University) Agglomeration of polytopic meshes



Methods on polytopic meshes

e Methods on polytopic meshes
m Discontinuous Galerkin finite element method (DGFEM)
m Virtual element method (VEM)
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Methods on polytopic meshes

In this project we will focus on the discontinuous Galerkin finite element method and
virtual element method.
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Methods on polytopic meshes

In this project we will focus on the discontinuous Galerkin finite element method and
virtual element method.

We present a brief overview of both methods for the following boundary-value problem
on an open bounded Lipschitz domain Q € R?, d = 2,3: find u such that

-V . (aVu)=f in Q,
u=20 on 09,

where a(x) is a symmetric tensor which satisfies, for all x € €,
clel’ < &-a(x)¢ < CleP,

where ¢ and C are positive constants. For simplicity, we assume a is piecewise constant
with respect to the mesh.
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In this project we will focus on the discontinuous Galerkin finite element method and
virtual element method.

We present a brief overview of both methods for the following boundary-value problem
on an open bounded Lipschitz domain Q € R?, d = 2,3: find u such that

-V . (aVu)=f in Q,
u=20 on 09,

where a(x) is a symmetric tensor which satisfies, for all x € €,
clel’ < &-a(x)¢ < CleP,

where ¢ and C are positive constants. For simplicity, we assume a is piecewise constant
with respect to the mesh.

In general, we can define both methods by a bilinear form and linear functional as: find
uy € VF such that
AU, vi) = Fiu(vi)

for all v, € Vf, where x is dg or ve depending on the method, on a polygonal mesh 7j,
with the sets of interior and boundary faces, F} and F£, respectively.
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Discontinuous Galerkin FEM

Define the DGFEM finite element space
V:g(ﬁ) = {u € Lz(Q) Dulk € Pp(K),K € 777}7

where P,(K) denotes the space of polynomials of total degree p.
Unlike for standard FEM we define the polynomials on the global
space, rather than a reference element. For polytopals we simply define
basis functions on the bounding box By of the element K € Tp.
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Discontinuous Galerkin FEM

Define the DGFEM finite element space
ng(ﬁ) = {u € L2(Q) Dulk € Pp(K),K € 777}7

where P,(K) denotes the space of polynomials of total degree p.
Unlike for standard FEM we define the polynomials on the global
space, rather than a reference element. For polytopals we simply define
basis functions on the bounding box By of the element K € Tp.

We also define the bilinear form and linear functional

Adg(udg, Vdg) = Z /KaVudg . Vvdg dx — Z /FEaVung . IIVdg]] ds

KETh FeF|uFE
= Y [tV luadds+ S [ olual sl s
FerluFs’F FerluFs”F
Fag(vag) = Z fvag dx,
KeT, 7K

where, on a face F = KT NOK ™, [v] = v|x+nk+ + v|x—ng— and
{7} = 2 (7|k+ + T|k-). o is a penalisation function to be defined.
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Discontinuous Galerkin FEM

To perform the error analysis we need several assumptions and definitions.
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Discontinuous Galerkin FEM

To perform the error analysis we need several assumptions and definitions.

Definition (Covering)

A covering 7;f = {K} for a mesh 7}, is the set of open shape-regular d-simplices K such
that, for each K € 7T, there exists a K € 77,ﬁ such that K C K.
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To perform the error analysis we need several assumptions and definitions.

Definition (Covering)

A covering 7;f = {K} for a mesh 7}, is the set of open shape-regular d-simplices K such
that, for each K € 7T, there exists a K € 77,ﬁ such that K C K.
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To perform the error analysis we need several assumptions and definitions.

Definition (Covering)

A covering 7;” = {K} for a mesh 7}, is the set of open shape-regular d-simplices K such
that, for each K € 7T, there exists a K € 77,ﬁ such that K C K.

Assumption

Assume there exists a mesh covering 7',? of K € Ty and a positive constant O,
independent of the mesh parameters, such that

}r<r1€a71<card K eTh:K'NK#0,K €T} such thatKCIC} < Op,
h

and
hi = diam(K) < Cyiamhk

for each pair K € Tp, and K € TEF with K C K, for a constant Ciiam, uniformly with
respect to the mesh size.

[Cangiani, Dong, Georgoulis, & Houston, 2017]
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Discontinuous Galerkin FEM

We need one of the following assumptions ([Cangiani, Dong, Georgoulis, & Houston, 2017]).
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Discontinuous Galerkin FEM

We need one of the following assumptions ([Cangiani, Dong, Georgoulis, & Houston, 2017]).

Assumption (Limited number of faces)

For each element K € Ty, we define Cx = card {F ceFIUFE FcC 8K}. We assume
that there exists a positive constant Cg, independent of the mesh parameters, such that

max Cx < Cr.
KET,,
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Discontinuous Galerkin FEM

We need one of the following assumptions ([Cangiani, Dong, Georgoulis, & Houston, 2017]).

Assumption (Limited number of faces)
For each element K € Ty, we define Cx = card {F e FIUFE: FcC aK}. We assume

that there exists a positive constant Cg, independent of the mesh parameters, such that

max Cx < Cr.
KeTy

Definition
For each element K € T;, we define a family ]-"bK of all possible d-simplices contained

within K sharing at last one face with K. Moreover, K,,F denotes a simplex belonging to
FX which shares the face F C K with K.

Assumption (Arbitrary number of faces)

There exists a positive constant Cs such that for each K € T, there exists a set of
non-overlapping d-simplices {K}rcax C Ff contained in K, such that for all F C 0K,

he < Cod|KS||F) L
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Discontinuous Galerkin FEM

The previous two assumptions require a different penalisation function:

=~ 2
C, max (C,Nv(pK, K, F)M> if limited number of faces met,
o(x) = Ke{K+,K—} i K|
C, max (C;,,MM) if arbitrary number of faces met.
Ke{K+ K=} hk

where C, is a sufficiently large constant, and Cinv, Cinv,1 are from inverse estimates.
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Discontinuous Galerkin FEM

The previous two assumptions require a different penalisation function:

=~ 2
C, max (C,NV(pK, K, F)%) if limited number of faces met,
o(x) = Ke{K+,K— i |K]|
C, max (C;m,,lw) if arbitrary number of faces met.
Ke{K+,K—} hk

where C, is a sufficiently large constant, and Cinv, Cinv,1 are from inverse estimates.

Theorem (a priori error bound [Cangiani, Dong, Georgoulis, & Houston, 2017])

For u|x € H*(K), sk = min(px + 1, k)

h2(sk 1)
lu— gl < € D —5—55 @k + Gl €ulliuc ey
KeT, Pk
where
2 pk - Pk 1 hf(d .
aK pd Z CmU|F|+aK|K| Z Ciwvo ™ |F| + Z Cno|F| if LNF,
Gk = K Fcok FCoK PK £ oK

=2 1 =i, =i =i =1 g
ax pr hy Frg;g)}({a# S E T Frgzg}((a# + px hk Fné?;}((ah: if ANF,

C/Nv = CINv(pK, K,F), and C,, = m(PK, K,F).
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Virtual element method (VEM)

For simplicity we consider only d = 2. Split the boundary of an element K € T into N
straight edges, with vertex endpoints.
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Virtual element method (VEM)

For simplicity we consider only d = 2. Split the boundary of an element K € T into N
straight edges, with vertex endpoints.

Define for each element E € 7T}, the local virtual space

VE ={ve H'(K)NCYK): —Av € Pp_s(K), v|e € Py(e) Ve € K},
where P_;(K) = {0}.
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Virtual element method (VEM)

For simplicity we consider only d = 2. Split the boundary of an element K € T into N
straight edges, with vertex endpoints.

Define for each element E € 7T}, the local virtual space
VE ={ve H'(K)NCYK): —Av € Pp_s(K), v|e € Py(e) Ve € K},

where P_;(K) = {0}.
We can define the local degrees of freedom for this space as
m Vi values at the vertices of K,

m ER: (k — 1) distinct point values (e.g. at Gauss-Lobatto nodes or evenly spaced) on
each edge e € OK

m Zj: the moments
i/ m(x)v(x)dx for all m € M,_»(K),
IKI J«

where M,_»(K) is the set of (»"~p)/2 scaled monomials forming a basis of P,_»(K).
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For simplicity we consider only d = 2. Split the boundary of an element K € T} into N
straight edges, with vertex endpoints.

Define for each element E € 7T}, the local virtual space

VE ={ve H'(K)NCYK): —Av € Pp_s(K), v|e € Py(e) Ve € K},
where P_;(K) = {0}.
We can define the local degrees of freedom for this space as

m Vi: values at the vertices of K,

m ER: (k — 1) distinct point values (e.g. at Gauss-Lobatto nodes or evenly spaced) on
each edge e € OK

m Zj: the moments
i/ m(x)v(x)dx for all m € M,_»(K),
IKI J«

where M,_»(K) is the set of (»"~p)/2 scaled monomials forming a basis of P,_»(K).

Construct the global space V2 C H(Q) by glueing these local spaces together (by
sharing edge and vertex degrees of freedom) such that Vi |k = V§.
[Beirdo da Veiga et al., 2013; Beirdo da Veiga, Lovadina & Russo, 2017]
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Virtual element method (VEM)

Defining the local bilinear form, for all u,v € H}(Q)
Af(u,v) = / aVu-Vvdx,
K

we can define a projection operator I}, : VE — Pi(K), for all v, € V&, as

A (Ve = M2 vie, w) = 0 Vw € Pp(K)
R(vie — Mhvie) =0,

where R is a projection operator onto Po(K); e.g., Rvie = [0K|™" [, Vie.
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Defining the local bilinear form, for all u,v € H}(Q)
Af(u,v) = / aVu-Vvdx,
K

we can define a projection operator I}, : VE — Pi(K), for all v, € V&, as

A (Ve = M2 Ve, w) = 0 Vw € Pp(K)
R(vie — Mhvie) =0,

where R is a projection operator onto Po(K); e.g., Rvie = [0K| ™" [, Vie.
Define a local discrete bilinear form for all uye, ve € V)

Aer(Uve, Vve) = AK(nf(Uve, nf(vve) + SK(Uve — nf(uvey Vve — nf(Vve)y

where Sk (-, -), called the stabilisation, is any symmetric positive definite bilinear form
such that

@A*(v,v) < Sk(v,v) < aAX(v,v) Vv € V¢ with Niv =0,

for some positive constants ¢y and c;.
[Beirdo da Veiga et al., 2013; Beirdo da Veiga, Lovadina & Russo, 2017]
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Split the stabilisation into interior and edge terms
Sk(u, v) = Sic(u, v) + Sk(u, v),

where the interior term is

Sk(usv) = D x(u)x(v),
XETh
and the edge terms is one of the following:

Sk(usv) = > x(@)x(v) + Y x(u)x(v), (1)

XEVR XEER

Sk(u,v) = hx Osudsv ds. (2)
oK
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Split the stabilisation into interior and edge terms
Sk(u, v) = Sic(u, v) + Sk(u, v),

where the interior term is

Skc(u,v) = Y x(u)x(v),

XETh
and the edge terms is one of the following:
Sk(usv) = > x(@)x(v) + Y x(u)x(v), (1)
XEVE XEER
Sk(u,v) = hx Osulsv ds. (2)

K
Finally, construct the global bilinear form and linear functional

Ave(uve; Vve) = Z Afe(uve, Vve);
KeTh

Fve(Vve) = Z /KfveredX7

KeTh

where f. is the element-wise L?(K)-projection of f onto P,—»(K).
Beirdo da Veiga et al., 2013; Beirdo da Veiga, Lovadina & Russo, 2017
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Virtual element method (VEM)

We require the following assumptions on the mesh. [Beirdo da Veiga, Lovadina & Russo,
2017].

Assumption

There exists a vy > 0 such that all elements K € Ty, are star-shaped with respect to a ball
Bk of radius px > vhk and centre xk.
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Virtual element method (VEM)

We require the following assumptions on the mesh. [Beirdo da Veiga, Lovadina & Russo,
2017].

Assumption

There exists a vy > 0 such that all elements K € Ty, are star-shaped with respect to a ball
Bk of radius px > vhk and centre xk.

For the first stabilisation it is also required that one of the following assumptions is met:

Assumption

There exists a C € N such that N < C for all K € Tp; i.e., the number of edges of K is
bounded.

Assumption

There exists a n > 0 such that or all K € Ty and edges e € OK it holds that he > nhk;
i.e., edges are not too small with respect to the element.
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We require the following assumptions on the mesh. [Beirdo da Veiga, Lovadina & Russo,
2017].

Assumption

There exists a vy > 0 such that all elements K € Ty, are star-shaped with respect to a ball
Bk of radius px > vhk and centre xk.

For the first stabilisation it is also required that one of the following assumptions is met:

Assumption

There exists a C € N such that N < C for all K € Tp; i.e., the number of edges of K is
bounded.

Assumption
There exists a n > 0 such that or all K € Ty and edges e € OK it holds that he > nhk;
i.e., edges are not too small with respect to the element.

The first and third assumption implies the second assumption; however, the second
assumption is a weaker condition than the third.
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Virtual element method (VEM)

Theorem (a priori error bound [Beirdo da Veiga, Lovadina & Russo, 2017])

As long as the first assumption, and either the second or third assumption is met, the
VEM with the first stabilisation has the following error bound, for1 < s < p-+1,

lu— el < C(h)h | ulms(e),

where

C max (Iog (1 + hgh} K)) if the second assumption is met,
C(h) = KETh '

if the third assumption is met,

hmin,k is the length of the smallest edge of K.
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Virtual element method (VEM)

Theorem (a priori error bound [Beirdo da Veiga, Lovadina & Russo, 2017])

As long as the first assumption, and either the second or third assumption is met, the
VEM with the first stabilisation has the following error bound, for1 < s < p-+1,

lu— el < C(h)h | ulms(e),

where
C max (Iog (1 + hgh} K)) if the second assumption is met,
C(h) = KeTh ’

if the third assumption is met,

hmin,k is the length of the smallest edge of K.

Theorem (a priori error bound [Beirdo da Veiga, Lovadina & Russo, 2017])

As long as the first assumption the VEM with the second stabilisation has the following
error bound, for3/2<s<p+1,

[t — tvellpniy < Ch*Hulps()-
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“Uniform” refinement

Solve, using the symmetric interior penalty DGFEM, Poisson’s equation

—Au=f in Q =(0,1)%,
u=20 on 99,

with forcing function f selected such that

u(x,y) = sin(mwx) sin(wy),

We consider, for N = 4,16, 32, 64,128,

1.
2.
3.

sequence of uniform N x N triangular mesh
sequence of unstructured triangulations with roughly 2N? elements,

sequence of meshes agglomerating (both methods) the 128 x 128 uniform mesh into
roughly 2N? elements,

. sequence of meshes agglomerating (both methods) the finest unstructured mesh into

roughly 2N? elements,

sequence of meshes by refining agglomerated (METIS) mesh of 32 elements of the
finest unstructured or 128 x 128 uniform mesh.
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Solve, using the symmetric interior penalty DGFEM, Poisson’s equation

—Au=f in Q =(0,1)%,
u=20 on 99,
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“Uniform” refinement

Solve, using the symmetric interior penalty DGFEM, Poisson’s equation

—Au=f in Q =(0,1)%,
u=20 on 99,

METIS Jones & Vassilevski
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Solve, using the symmetric interior penalty DGFEM, Poisson’s equation

—Au=f in Q =(0,1)%,
u=20 on 99,

METIS Jones & Vassilevski
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Two-grid adaptive refinement

To demonstrate some possibilities for refinement we consider a case where we need to
refine two hierarchical meshes. The fine mesh 7}, is a standard (unstructured)
triangulation, and the coarse mesh is an agglomeration of the fine mesh. We will then
consider the so-called two-grid method for solving the following nonlinear PDE:
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To demonstrate some possibilities for refinement we consider a case where we need to
refine two hierarchical meshes. The fine mesh 7}, is a standard (unstructured)
triangulation, and the coarse mesh is an agglomeration of the fine mesh. We will then
consider the so-called two-grid method for solving the following nonlinear PDE:

Given Q CR?,d = 2,3 and f € L*(Q), find u such that

=V Ap(x, |Vu))Vu} =f in Q,

u=20 onl.

Assumption

1. u€ C(Q x [0,00)) and
2. there exists positive constants m,, and M,, such that

Mﬂ(t_s)glu(xvt)t_u(xas)SSMu(t_s)a tZSZOa x € Q.
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Two-Grid Approximation

1. Construct coarse and fine FE spaces Vi (7x) and Vi (Th).
2. Compute the coarse grid approximation uy € de(ﬁ/) such that
An(un; un, vi) = Fr(vi)

for all viy € V5 (Th).
3. Determine the fine grid approximation uy; € Vi, (7h) such that

An(uH; utg, vih) = Fn(vh)

for all vy € V(7).

[C., Houston, & Wihler 2013]
Here, An(+;+,-) and An(-;,-) are nonlinear in the first term, linear in the last two terms,
and are defined similarly on the fine and coarse meshes, respectively,
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hp-Mesh Adaptation

Given an a posteriori error bound which can be broken into local, elementwise on the fine
mesh, error indicators 1k and £k representing the fine mesh error, and the error caused
by the linearisation, we can create an algorithm for adaptively refining both meshes.

Two-Grid Adaptivity ( )

1. Construct initial coarse and fine FE spaces, with coarse mesh created by
agglomerating the fine mesh.

2. Compute the coarse grid approximation and two-grid solution.
3. Select elements for refinement based on 1k and &x:

3.1 Use {/n% + €2 to determine set R() C ( of elements to refine.

3.2 Choose fine or coarse mesh refinement. For all K € R(()

m if A\rk < mk refine the fine element K, and
B if Acmk < €k refine the coarse element Ky € (, where K € ((Kp).

Perform h-/hp-mesh refinement of the fine space.

Select h- or p-refinement for each coarse element to refine.
Perform h-/hp-refinement of the coarse space.

Goto 2.

SOOI

The constants Ar and Ac are steering parameters.
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Two-grid adaptive refinement

Fine Element Refine

-

[ L
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Two-grid adaptive refinement

Fine Element Refine Coarse Element Refine

-

Refining coarse elements by agglomerating using METIS will attempt to create
agglomerated elements with the same number of child fine elements.

However, we have information about the error for each fine element — can we distribute
the agglomeration using this information?
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Two-grid adaptive refinement e

Fine Element Refine

Refining coarse elements by agglomerating using METIS will attempt to create
agglomerated elements with the same number of child fine elements.

However, we have information about the error for each fine element — can we distribute
the agglomeration using this information?

Possible to assign weights to each vertex and use a graph partitioning algorithm that
balances these weights, rather than the number of elements. [Karypis & Kumar 1998]

We set the weight to the total local error indicator: n% + £%
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Two-grid adaptive refinement

and physics

We let Q = (0,1)%, u(x, |[Vu|) =2+ HIIW and select f so that

u(x,y) =x(1 —x)y(1 —y)(1 - 2y)6720(2x—1)2.

1 1 .
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Aim of project ) il e

© Aim of project
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Aim of project

Existing agglomeration techniques have several drawbacks:
® no real optimisation of the geometry of the elements
no guarantee on the number of edges in the mesh,
no guarantee that the elements will be star-shaped,
no guarantee that about the size of the edges in respect to the size of the elements,

possibilities in some methods for polygons that are not simply connected, or are

completely contained inside other elements,

m for some methods the size of elements can have large variation when agglomerating
from a fairly uniform initial mesh,

m the methods have no concept of the domain geometry, or any a priori knowledge

about the domain/method
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Aim of project

Existing agglomeration techniques have several drawbacks:
® no real optimisation of the geometry of the elements
no guarantee on the number of edges in the mesh,
no guarantee that the elements will be star-shaped,
no guarantee that about the size of the edges in respect to the size of the elements,

possibilities in some methods for polygons that are not simply connected, or are
completely contained inside other elements,
m for some methods the size of elements can have large variation when agglomerating
from a fairly uniform initial mesh,
m the methods have no concept of the domain geometry, or any a priori knowledge
about the domain/method
The aim of this project is to develop an agglomeration technique which address at least
some of these problems. Most notable, the idea will be develop an agglomeration
technique which accounts for the assumptions in the numerical methods used, and
attempts to optimise these assumptions (minimises the constants in the assumptions).
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Aim of project

Existing agglomeration techniques have several drawbacks:
® no real optimisation of the geometry of the elements
no guarantee on the number of edges in the mesh,
no guarantee that the elements will be star-shaped,
no guarantee that about the size of the edges in respect to the size of the elements,

possibilities in some methods for polygons that are not simply connected, or are
completely contained inside other elements,

m for some methods the size of elements can have large variation when agglomerating
from a fairly uniform initial mesh,

m the methods have no concept of the domain geometry, or any a priori knowledge
about the domain/method

The aim of this project is to develop an agglomeration technique which address at least
some of these problems. Most notable, the idea will be develop an agglomeration
technique which accounts for the assumptions in the numerical methods used, and
attempts to optimise these assumptions (minimises the constants in the assumptions).
The weighted graph partitioning in METIS allows for weighting refinement, and handling
domain geometry details, if weights are selected correctly. However, the performance of
the partitioning is greatly effected by the weights. Developing the agglomeration
techniques to allow for some form of weighting to the agglomeration is also desirable.
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Time-dependent problems

We can agglomerate neighbouring elements, or un-agglomerate elements, based on error
estimates for time dependent problems, to make a tracking mesh.
[Cangiani et al., 2018; Cangiani, Georgoulis, & Sutton, 2021]
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Time-dependent problems

We can agglomerate neighbouring elements, or un-agglomerate elements, based on error
estimates for time dependent problems, to make a tracking mesh.
[Cangiani et al., 2018; Cangiani, Georgoulis, & Sutton, 2021]

One of the aims of the project will be see if the agglomeration techniques developed can
be extended to the time dependent cases without affecting the optimisations.
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