20.12.2024 — Homework 4

Finite Element Methods 1

Due date: 7th January 2025

Submit a PDF/scan of the answers to the following questions before the deadline via the *Study Group Roster* (*Záznamník učitele*) in SIS, or hand-in directly at the practical class on the 7th January 2025.

1. (2 points) Let *T* be an *n*-simplex in \mathbb{R}^n and let $\lambda_1, \ldots, \lambda_{n+1}$ be the barycentric coordinates with respect to the vertices of *T*. Prove the formula

$$\int_{T} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \cdots \lambda_{n+1}^{\alpha_{n+1}} \,\mathrm{d}\boldsymbol{x} = \frac{\alpha_{1}! \alpha_{2}! \cdots \alpha_{n+1}! n!}{(\alpha_{1} + \alpha_{2} + \cdots + \alpha_{n+1} + n)!} |T|, \quad \forall \alpha_{1}, \dots, \alpha_{n+1} \in \mathbb{N}_{0}.$$

Hint. Transform the integral over T to an integral over the reference simplex \hat{T} .

Solution:

Let F_T be an invertible mapping which maps the unit *n*-simplex \hat{T} onto the *n*-simplex *T*. Then,

$$I \coloneqq \int_{T} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \cdots \lambda_{n+1}^{\alpha_{n+1}} d\boldsymbol{x}$$

= $\frac{|T|}{|\widehat{T}|} \int_{\widehat{T}} \widehat{\lambda}_{1}^{\alpha_{1}} \widehat{\lambda}_{2}^{\alpha_{2}} \cdots \widehat{\lambda}_{n+1}^{\alpha_{n+1}} d\widehat{\boldsymbol{x}}$
= $\frac{|T|}{|\widehat{T}|} \int_{\widehat{T}} \widehat{x}_{1}^{\alpha_{1}} \widehat{x}_{2}^{\alpha_{2}} \cdots \widehat{x}_{n}^{\alpha_{n}} \left(1 - \sum_{i=1}^{n} \widehat{x}_{i}\right)^{\alpha_{n+1}} d\widehat{\boldsymbol{x}}$

Since

$$\widehat{T} = \left\{ \widehat{x} \in \mathbb{R}^{n} : \widehat{x}_{i} \in [0, 1], i = 1, \dots, n, \sum_{i=1}^{n} \widehat{x}_{i} \le 1 \right\}$$
$$= \left\{ \widehat{x} \in \mathbb{R}^{n} : \widehat{x}_{1} \in [0, 1], \widehat{x}_{2} \in [0, 1 - \widehat{x}_{1}], \\\widehat{x}_{3} \in [0, 1 - (\widehat{x}_{1} + \widehat{x}_{2})], \dots, \widehat{x}_{n} \in \left[0, 1 - \sum_{i=1}^{n-1} \widehat{x}_{i}\right] \right\}$$

the integral becomes

$$I = \frac{|T|}{|\widehat{T}|} \int_0^1 \widehat{x}_1^{\alpha_1} \cdots \int_0^{1 - \sum_{i=1}^{n-2} \widehat{x}_i} \widehat{x}_{n-1}^{\alpha_{n-1}} \int_0^{1 - \sum_{i=1}^{n-1} \widehat{x}_i} \widehat{x}_n^{\alpha_n} \left(1 - \sum_{i=1}^n \widehat{x}_i\right)^{\alpha_{n+1}} d\widehat{x}_n d\widehat{x}_{n-1} \dots d\widehat{x}_1.$$

We consider a more generic integral

$$\int_0^c \xi^\alpha (c-\xi)^\beta \,\mathrm{d}\xi,$$

for $\alpha,\beta\in\mathbb{N}_0$ and $c\in[0,1].$ If $\beta=0$ then

$$\int_0^c \xi^\alpha (c-\xi)^\beta \,\mathrm{d}\xi = \frac{c^{\alpha+1}}{\alpha+1};$$

and when $\beta>0$

$$\int_0^c \xi^{\alpha} (c-\xi)^{\beta} d\xi = \int_0^c \left(\frac{\xi^{\alpha+1}}{\alpha+1}\right)' (c-\xi)^{\beta} d\xi = \int_0^c \frac{\xi^{\alpha+1}}{\alpha+1} \beta (c-\xi)^{\beta-1} d\xi = \dots$$
$$= \int_0^c \frac{\xi^{\alpha+\beta}}{(\alpha+1)\dots(\alpha+\beta)} \beta! d\xi$$
$$= \frac{\alpha!\beta!}{(\alpha+\beta+1)!} c^{\alpha+\beta+1}.$$

Thus, we have be selecting $\alpha = \alpha_n$, $\beta = \alpha_{n+1}$, $\xi = \hat{x}_n$ and $c = 1 - \sum_{i=1}^{n-1} \hat{x}_i$ that

$$\int_{0}^{1-\sum_{i=1}^{n-1}\widehat{x}_{i}} \widehat{x}_{n}^{\alpha_{n}} \left(1-\sum_{i=1}^{n}\widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{d}\widehat{x}_{n} = \frac{\alpha_{n}!\alpha_{n+1}!}{(\alpha_{n}+\alpha_{n+1}+1)!} \left(1-\sum_{i=1}^{n-1}\widehat{x}_{i}\right)^{\alpha_{n}+\alpha_{n+1}+1}$$

Similarly, we have that

$$\begin{split} \int_{0}^{1-\sum_{i=1}^{n-2}\widehat{x}_{i}} \widehat{x}_{n-1}^{\alpha_{n-1}} \int_{0}^{1-\sum_{i=1}^{n-1}\widehat{x}_{i}} \widehat{x}_{n}^{\alpha_{n}} \left(1-\sum_{i=1}^{n}\widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{d}\widehat{x}_{n} \, \mathrm{d}\widehat{x}_{n-1} \\ &= \frac{\alpha_{n}!\alpha_{n+1}!}{(\alpha_{n}+\alpha_{n+1}+1)!} \int_{0}^{1-\sum_{i=1}^{n-2}\widehat{x}_{i}} \widehat{x}_{n-1}^{\alpha_{n-1}} \left(1-\sum_{i=1}^{n-1}\widehat{x}_{i}\right)^{\alpha_{n}+\alpha_{n+1}+1} \mathrm{d}\widehat{x}_{n-1} \\ &= \frac{\alpha_{n}!\alpha_{n+1}!}{(\alpha_{n}+\alpha_{n+1}+1)!} \frac{\alpha_{n-1}!(\alpha_{n}+\alpha_{n+1}+1)!}{(\alpha_{n-1}+\alpha_{n}+\alpha_{n+1}+2)!} \left(1-\sum_{i=1}^{n-2}\widehat{x}_{i}\right)^{\alpha_{n-1}+\alpha_{n}+\alpha_{n+1}+2} \\ &= \frac{\alpha_{n-1}!\alpha_{n}!\alpha_{n+1}!}{(\alpha_{n-1}+\alpha_{n}+\alpha_{n+1}+2)!} \left(1-\sum_{i=1}^{n-2}\widehat{x}_{i}\right)^{\alpha_{n-1}+\alpha_{n}+\alpha_{n+1}+2} . \end{split}$$

Recursively, we get that for k = 1, ..., n,

$$\int_{0}^{1-\sum_{i=1}^{n-k}\widehat{x}_{i}} \widehat{x}_{n-k+1}^{\alpha_{1}} \cdots \int_{0}^{1-\sum_{i=1}^{n-1}\widehat{x}_{i}} \widehat{x}_{n}^{\alpha_{n}} \left(1-\sum_{i=1}^{n}\widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{d}\widehat{x}_{n} \,\mathrm{d}\widehat{x}_{n-1} \dots \,\mathrm{d}\widehat{x}_{n-k+1}$$
$$= \frac{\alpha_{n-k+1}! \dots \alpha_{n+1}!}{(\alpha_{n-k+1}+\dots+\alpha_{n+1}+k)!} \left(1-\sum_{i=1}^{n-k}\widehat{x}_{i}\right)^{\alpha_{n-k+1}+\dots+\alpha_{n+1}+k}.$$

Therefore, we have that

$$\int_{\widehat{T}} \widehat{x}_1^{\alpha_1} \widehat{x}_2^{\alpha_2} \cdots \widehat{x}_n^{\alpha_n} \left(1 - \sum_{i=1}^n \widehat{x}_i \right)^{\alpha_{n+1}} \mathrm{d}\widehat{\boldsymbol{x}} = \frac{\alpha_1! \dots \alpha_{n+1}!}{(\alpha_1 + \dots + \alpha_{n+1} + n)!}.$$

By setting $\alpha_1 = \cdots = \alpha_{n+1} = 0$ we have that

$$|\widehat{T}| = \int_{\widehat{T}} 1 \,\mathrm{d}\widehat{x} = \frac{1}{n!};$$

hence,

$$I = \frac{\alpha_1! \dots \alpha_{n+1}! n!}{(\alpha_1 + \dots + \alpha_{n+1} + n)!} |T|.$$

2. (2 points) Let $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$ be a finite element, and let $l, m \in \mathbb{N}_0$ and $r, q \in [1, \infty]$ be such that $l \leq m$ and $\widehat{P} \subset W^{l,r}(\widehat{T}) \cap W^{m,q}(\widehat{T})$. For any $T \in \mathcal{T}_h$, let (T, P_T, Σ_T) be a finite element which is affine-equivalent to $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$. Then, there exists a positive constant C, depending only on $\widehat{T}, \widehat{P}, l, m, r, q$, and n such that

$$|v|_{m,q,T} \le C \frac{h_T^l}{\varrho_T^m} |T|^{\frac{1}{q} - \frac{1}{r}} |v|_{l,r,T}, \quad \text{for all } v \in P_T, T \in \mathcal{T}_h.$$

$$(2.1)$$

Let X_h be the finite element space corresponding to \mathcal{T}_h and the finite elements (T, P_T, Σ_T) . Introduce the seminorms

$$|v|_{m,q,h} = \left(\sum_{T \in \mathcal{T}_h} |v|_{m,q,T}^q\right)^{1/q} \quad \text{if } q < \infty, \qquad |v|_{m,\infty,h} = \max_{T \in \mathcal{T}_h} |v|_{m,\infty,T}.$$

Let \mathcal{T}_h satisfy

$$\frac{h_T}{\varrho_T} \le \sigma, \qquad \text{for all } T \in \mathcal{T}_h,$$

and the *inverse* assumption

$$\exists \kappa > 0: \qquad \frac{h}{h_T} \le \kappa \quad \text{for all } T \in \mathcal{T}_h,$$

where $h = \max_{T \in \mathcal{T}_h} h_T$. Prove that the *inverse inequality*

$$|v_h|_{m,q,h} \le Ch^{l-m+\min(0,n/q-n/r)} |v_h|_{l,r,h}, \quad \text{for all } v_h \in X_h,$$

where *C* is a positive constant depending only on \hat{T} , \hat{P} , *l*, *m*, *r*, *q*, *n*, σ , κ , and Ω . *Hint*. The following inequalities may be useful.

Hölder Inequality For any non-negative numbers a_1, \ldots, a_n and b_1, \ldots, b_n

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}$$

for any $p, q \in (1, \infty)$ satisfying 1/p + 1/q = 1.

Jensen Inequality For any non-negative numbers a_1, \ldots, a_n

$$\left(\sum_{i=1}^{n} a_i^q\right)^{1/q} \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p}$$

for any $p, q \in (0, \infty)$ satisfying $p \leq q$.

Solution:

From (2.1), the fact that there exists constants σ and C_2 such that for all $T \in \mathcal{T}_h$

$$\frac{h_T}{\varrho_T} \le \sigma$$
 and $|T| \le C_2 h_T^n$ (from Homework 3, q.2(a)),

and the *inverse assumption* we have that

$$|v_h|_{m,q,T} \le \overline{C}h^{l-m}h^{n/q-n/r}|v_h|_{l,r,T}, \quad \text{for all } v_h \in X_h, T \in \mathcal{T}_h,$$

where \overline{C} depends only on \widehat{T} , \widehat{P} , l, m, r, q, n, σ , and κ . We also note that from Homework 3, q.2(a) there exists a constant C_1 such that $C_1h_T^n \leq |T|$ and, hence,

$$\operatorname{card} \mathcal{T}_h \leq \frac{|\Omega|}{\min_{T \in \mathcal{T}_h} |T|} \leq \frac{|\Omega|}{C_1 \min_{T \in \mathcal{T}_h} h_T^n} \leq \frac{|\Omega| \kappa^n}{C_1} h^{-n} = \widetilde{C} h^{-n},$$

where \widetilde{C} depends only on n, σ , κ , and Ω .

We now consider four separate cases:

• $q = \infty$: There exists a $T_0 \in \mathcal{T}_h$ such that $|v_h|_{m,\infty,h} = |v_h|_{m,\infty,T_0}$; therefore,

$$v_h|_{m,\infty,h} \le \overline{C}h^{l-m}h^{-n/r}|v_h|_{l,r,T_0} \le \overline{C}h^{l-m-n/r}|v_h|_{l,r,h}$$

•
$$r = \infty$$
:

$$\begin{aligned} |v_{h}|_{m,q,h} \leq \overline{C}h^{l-m}h^{n/q} \left(\sum_{T \in \mathcal{T}_{h}} |v|_{l,\infty,T}^{q}\right)^{1/q} \\ \leq \overline{C}h^{l-m}h^{n/q} \left(\operatorname{card} \mathcal{T}_{h}\right)^{1/q} |v_{h}|_{l,\infty,h} \leq \overline{C}\widetilde{C}^{1/q}h^{l-m}|v_{h}|_{l,\infty,h} \end{aligned}$$
• $r \leq q < \infty$: By Jensen inequality

$$|v_{h}|_{m,q,h} \leq \overline{C}h^{l-m+n/q-n/r} \left(\sum_{T \in \mathcal{T}_{h}} |v|_{l,r,T}^{q}\right)^{1/q} \leq \overline{C}h^{l-m+n/q-n/r}|v_{h}|_{l,r,h}$$
• $q < r < \infty$: By Hölder inequality

$$|v_{h}|_{m,q,h} \leq \overline{C}h^{l-m+n/q-n/r} \left(\sum_{T \in \mathcal{T}_{h}} 1 \cdot |v|_{l,r,T}^{q}\right)^{1/q} \leq \overline{C}h^{l-m+n/q-n/r}|v_{h}|_{l,r,h}$$

$$\leq \overline{C}h^{l-m+n/q-n/r} \left(\left(\sum_{T \in \mathcal{T}_{h}} 1\right)^{1-q/r} \left(\sum_{T \in \mathcal{T}_{h}} |v|_{l,r,T}^{q/q}\right)^{q/r}\right)^{1/q} \leq \overline{C}h^{l-m+n/q-n/r} \left(\sum_{T \in \mathcal{T}_{h}} 1\right)^{1-q/r} \left(\sum_{T \in \mathcal{T}_{h}} |v|_{l,r,T}^{q/q}\right)^{q/r} \right)^{1/q}$$

3. (2 points) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with Lipschitz-continuous boundary $\partial \Omega$ and consider the weak formulation of a boundary value problem for a second order elliptic partial differential equation with Dirichlet boundary conditions u_b on $\partial \Omega$: find $u_h \in H^1(\Omega)$ such that

$$u - \widetilde{u}_b \in H^1_0(\Omega), \qquad a(u, v) = \langle f, v \rangle \quad \forall v \in H^1_0(\Omega),$$

where \tilde{u}_b is a function satisfying the Dirichlet boundary conditions; i.e. $\tilde{u}_b|_{\partial\Omega} = u_b$. Assume that the bilinear form $a(\cdot, \cdot)$ satisfies the condition

$$a(v,v) \ge \alpha \|v\|_{1,\Omega}^2 \qquad \forall v \in H_0^1(\Omega),$$

for some constant $\alpha > 0$.

Let $X_h \subset H^1(\Omega)$ be a finite element space and let

$$V_h = \{ v_h \in X_h : \Phi(v_h) = 0 \ \forall \Phi \in \Sigma_h^{\partial \Omega} \},\$$

where $\Sigma_h^{\partial\Omega}$ is the set of degrees of freedom of X_h corresponding to the nodes on the boundary of Ω ; i.e., the boundary degrees of freedom. Assume that $V_h \subset H_0^1(\Omega)$, let

 $\widetilde{u}_{bh} \in X_h$ be a function approximating \widetilde{u}_b and consider the discrete problem: Find $u_h \in X_h$ such that

$$u_h - \widetilde{u}_{bh} \in V_h, \qquad a(u_h, v_h) = \langle f, v_h \rangle \quad \forall v \in V_h.$$

Show that u_h does not depend on how \widetilde{u}_{bh} is defined for interior degrees of freedom; i.e., show that u_h does not depend on the values $\Phi(\widetilde{u}_{bh})$ for $\Phi \in \Sigma_h \setminus \Sigma_h^{\partial\Omega}$.

Solution:

From the statement of the problem we have a function $\tilde{u}_{bh} \in X_h$ approximating \tilde{u}_b with corresponding approximate solution $u_h \in X_h$ which satisfies

$$u_h - \widetilde{u}_{bh} \in V_h, \qquad a(u_h, v_h) = \langle f, v_h \rangle \quad \forall v_h \in V_h.$$
 (3.1)

We now consider a different approximation $\overline{u}_{bh} \in X_h$ to \widetilde{u}_b with different values for interior degrees of freedom to \widetilde{u}_{bh} but the same of boundary; i.e., $\Phi(\widetilde{u}_{bh}) = \Phi(\overline{u}_{bh})$ for $\Phi \in \Sigma_h^{\partial\Omega}$. With this approximation, we obtain a corresponding approximate solution $\overline{u}_h \in X_h$ which satisfies

$$\overline{u}_h - \overline{u}_{bh} \in V_h, \qquad a(\overline{u}_h, v_h) = \langle f, v_h \rangle \quad \forall v_h \in V_h.$$
(3.2)

We note that $\widetilde{u}_{bh} - \overline{u}_{bh} \in X_h$ and $\Phi(\widetilde{u}_{bh} - \overline{u}_{bh}) = 0 \implies \widetilde{u}_{bh} - \overline{u}_{bh} \in V_h$; additionally,

$$u_h - \overline{u}_h = (u_h - \widetilde{u}_{bh}) - (\overline{u}_h - \overline{u}_{bh}) + (\widetilde{u}_{bh} - \overline{u}_{bh}) \in V_h \subset H^1_0(\Omega).$$

From (3.1)–(3.2) we have that

 $a(u_h - \overline{u}_h, v_h) = 0 \quad \forall v_h \in V_h \implies a(u_h - \overline{u}_h, u_h - \overline{u}_h) = 0.$

Additionally, we have that

$$a(v,v) \ge \alpha \|v\|_{1,\Omega}^2 \qquad \forall v \in H_0^1(\Omega);$$

therefore

$$0 = a(u_h - \overline{u}_h, u_h - \overline{u}_h) \ge \alpha \|u_h - \overline{u}_h\|_{1,\Omega}^2 \ge 0.$$

Hence we have that

$$|u_h - \overline{u}_h||_{1,\Omega} = 0 \qquad \Longrightarrow \qquad u_h = \overline{u}_h.$$

So, regardless of the values selected for the interior degrees of freedom we get the same solution; i.e., u_h does not depend on how \tilde{u}_{bh} is defined for interior degrees of freedom.