Nonlinear Differential Equations Practical 10: Potential Operators

1. Show that every monotone and potential operator is demicontinuous (Lemma 3.18).

Hint. Use Lemma 3.14, Theorem 3.16, and Lemma 3.17.

2. Let $A : X \to X'$ be a monotone potential operator. Then, show that $u \in X$ is a solution of $Au = f, f \in X'$, if and only if

$$\int_0^1 \langle Atu, u \rangle \, \mathrm{d}t - \langle f, u \rangle = \min_{v \in X} \left[\int_0^1 \langle Atv, v \rangle \, \mathrm{d}t - \langle f, v \rangle \right].$$

(Lemma 3.19)

3. Let $A : X \to X'$ be a strictly monotone, coercive, potential operator with potential F. For any $f \in X'$ prove that there exists a unique solution $u \in X$ of Au = f which minimises the potential of the problem G = F - f and that

$$G(u) \equiv F(u) - \langle f, u \rangle$$

= $\min_{v \in X} \left(\int_0^1 \langle Atv, v \rangle \, \mathrm{d}t - \langle f, v \rangle \right)$
= $-\int_0^1 \langle f, A^{-1}tf \rangle \, \mathrm{d}t + \int_0^1 \langle AtA^{-1}0, A^{-1}0 \rangle \, \mathrm{d}t.$

(Corollary 3.25)