Nonlinear Differential Equations

Practical 9: Brouwer Fixed Point

1. Prove Theorem 3.6 from the lecture:

Theorem 3.6. Let X be a finite-dimensional normed linear space $K \subset X$ a closed, convex, and bounded subset, and $f: K \to K$ a continuous mapping. Then, there exists a fixed point of f in K; *i.e.*, $\exists \overline{x} \in K$ such that

 $\overline{x} = f(\overline{x}).$

Hint. Define

$$x = \sum_{i=1}^{n} \alpha_i x_i,$$

where x_1, \ldots, x_n form a basis for X (dim X = n), and $\boldsymbol{\alpha} = \{\alpha_i\}_i^n \in \mathbb{R}^n$. Then, define a linear, continuous operator $T : X \to \mathbb{R}^n$ as $T(x) = \boldsymbol{\alpha}$ (which has a continuous inverse T^{-1}). Defining $K_1 = T(K)$ and $g(\boldsymbol{\alpha}) = T \circ f \circ T^{-1}\boldsymbol{\alpha}$, show that T is a homeomorphism and g has a fixed point, and hence, that f has a fixed point.

Solution: Using the definition of *T* from the hint, let $K_1 = T(K)$. We need to show that K_1 is convex, bounded, and maps K_1 to itself. We want to show that K_1 is a convex, closed, and bounded subset of \mathbb{R}^n . In order to do that, we first show *T* is a homeomorphism:

T and T^{-1} continuous by definition

T is surjective: $T : K \to K_1$, so clearly true to definition

T is injective: Assume there exists $x, y \in K$, where

$$x = \sum_{i=1}^{n} \alpha_i x_i, \qquad y = \sum_{i=1}^{n} \beta_i x_i$$

with $\alpha, \beta \in \mathbb{R}^n$. If T(x) = T(y); then,

$$\begin{array}{l} \boldsymbol{\alpha} = \boldsymbol{\beta} \\ \Longrightarrow & \alpha_i = \beta_i, \qquad i = 1, \dots, n \\ \Longrightarrow & x = \sum_{i=1}^n \alpha_i x_i = \sum_{i=1}^n \beta_i x_i = y. \end{array}$$

Therefore, $T(x) = T(y) \implies x = y$.

Now, as *T* is a homeomorphism then *T* is a closed map and, hence, it maps the closed set *K* to the closed set K_1 . Furthermore, we can sow K_1 is convex. For all $\alpha, \beta \in K_1$, there exists a $x, y \in K$, such that $\alpha = T(x)$ and $\alpha = T(y)$. As *K* is convex, for $\lambda \in [0, 1]$,

$$\lambda x + (1 - \lambda)y \in K \implies T(\lambda x + (1 - \lambda)y) \in K_1.$$

As

$$x = \sum_{i=1}^{n} \alpha_i x_i, \qquad y = \sum_{i=1}^{n} \beta_i x_i;$$

then,

=

$$\lambda x + (1 - \lambda)y = \sum_{i=1}^{n} (\lambda \alpha_i + (1 - \lambda)\beta_i)x_i$$

$$\implies T(\lambda x + (1 - \lambda)y) = (\lambda \alpha_i + (1 - \lambda)\beta_i)_{i=1}^{n}$$

$$= \lambda \alpha + (1 - \lambda)\beta.$$

Hence, $\lambda \alpha + (1 - \lambda)\beta \in K_1$ and K_1 is convex.

We now have a continuous function $g(\alpha) = T \circ f \circ T^{-1}(\alpha)$ (T, T^{-1} , and f are all continuous) which we can show maps from K_1 to K_1 :

$$\begin{array}{ll} \forall \boldsymbol{\alpha} \in K_1 \quad \exists x \in K & \text{such that} & T^{-1}(\boldsymbol{\alpha}) = x, \\ \forall x \in K \quad \exists y \in K & \text{such that} & f(x) = y, \\ \forall y \in K \quad \exists \boldsymbol{\beta} \in K_1 & \text{such that} & T(y) = \beta, \\ \Rightarrow & \forall \boldsymbol{\alpha} \in K_1 \quad \exists \boldsymbol{\beta} \in K_1 & \text{such that} & g(\boldsymbol{\alpha}) = T \circ f \circ T^{-1}(\boldsymbol{\alpha}) = \beta. \end{array}$$

Therefore, for all $\alpha \in K_1$, $g(\alpha) \in K_1$; i.e., $g: K_1 \to K_1$.

So, $g: K_1 \to K_1$ is a continuous functional on a closed, convex, bounded set $K_1 \subset \mathbb{R}^n$; hence, by Theorem 3.5 there exists a fixed point $\overline{\alpha}$ such that

$$g(\overline{\alpha}) = \overline{\alpha};$$

hence, there exists a $\overline{x} \in K$ such that

$$\overline{x} = T^{-1}(\overline{\alpha}) \qquad \Longrightarrow \qquad \overline{\alpha} = T(\overline{x}).$$

Then, as T is bijective we have that

$$g(\overline{\alpha}) = \overline{\alpha}$$
$$T \circ f \circ T^{-1}(\overline{\alpha}) = T(\overline{x})$$
$$T \circ f(\overline{x}) = T(\overline{x})$$
$$f(\overline{x}) = \overline{x}.$$

Therefore, \overline{x} is a fixed point of f.

- 2. Let the conditions of Theorem 2.11/Corollary 3.8 be met; i.e., $A : X \to X'$ monotone, coercive, and hemicontinuous on a real *separable* reflexive Banach space *X*.
 - (a) Show that if A is strictly monotone that the inverse A^{-1} exists and is strictly monotone, demicontinuous, and bounded.

Hint. For demicontinuous, let $v_n = A^{-1}f_n$, $f_n \to f$. Show sequence $\{v_n\}$ is bounded; hence, there exists a subsequence $v_{n'} \to v$, and show $v = A^{-1}f$. Then, show holds for whole sequence (see Proposition 1.8).

Practical 9

Solution: In the proof we showed that for a strictly monotone operator Au = f has a unique solution for all $f \in X'$; i.e., A is injective and surjective (bijective). This implies that $A^{-1} : X' \to X$ exists.

Then, let $Au_1 = f_1$, $Au_2 = f_2$, with $f_1 \neq f_2 \implies u_1 \neq u_2$, we have that

$$\langle f_1 - f_2, A^{-1}f_1 - A^{-1}f_2 \rangle = \langle Au_1 - Au_2, u_1 - u_2 \rangle > 0;$$

by the fact that A is strictly monotone; hence A^{-1} is strictly monotone. Boundedness of A^{-1} follows from coercivity!

Let $v_n = A^{-1}f_n$, $f_n \to f$; then, $\{v_n\}$ is bounded due to the boundedness of A^{-1} ; hence, exists a subsequence $v_{n'} \to v$. Additionally,

$$\langle f - Aw, v - w \rangle = \lim_{n \to \infty} f_{n'} - Aw, v_{n'} - w \ge 0$$

for all $w \in X$. As A hemicontinuous it follows that $Av = f \implies v = A^{-1}f$. So $v_{n'} \rightharpoonup A^{-1}f$ and by Proposition 1.8 $A^{-1}f_n \rightharpoonup A^{-1}f$; hence demicontinuity is proven.

(b) If *A* is uniformly monotone, show that A^{-1} is continuous.

Solution: As *A* is uniformly monotone, there exists a $a : \mathbb{R} \to \mathbb{R}$ which is strictly increasing with a(0) = 0 such that

$$a(||u - v||)||u - v|| \le \langle Au - Av, u - v \rangle \le ||Au - Av|| ||u - v||;$$

hence,

$$a(||u - v||) \le ||Au - Av||.$$

Then, we have with $Au = f_n$, Av = f that

$$a(||A^{-1}f_n - A^{-1}f||) \le ||f_n - f||.$$

Hence, if $f_n \rightarrow tof$; then

$$a(||A^{-1}f_n - A^{-1}f||) \to 0 \implies ||A^{-1}f_n - A^{-1}f|| \to 0,$$

due to properties of *a*; therefore, $A^{-1}f_n \rightarrow A^{-1}f$

(c) If A is strongly monotone, show that A^{-1} is Lipschitz continuous.

Solution: If *A* is strongly monotone; then, from the above with a(||u - v||) = M||u - v|| we have with $Au = f_1$, $Av = f_2$ that $M||u - v|| \le ||Au - Av|| \implies ||A^{-1}f_1 - A^{-1}f_2|| \le \frac{1}{M}||f_1 - f_2|| \quad \forall f_1, f_2 \in X'.$ Hence, A^{-1} Lipschitz continuous with constant 1/M.

3. Let $A : X \to X'$ be a bounded operator on a real, separable, reflexive, and infinitedimensional Banach space X and $f \in X'$. Let $\{v_1, v_2, ...\}$ be the basis of X and there exists a R > 0 and $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$

$$\langle Au_n - f, v_k \rangle = 0, \qquad u_n \in X_n, \qquad k = 1, \dots, n,$$
(3.1)

where $X_n = \text{span}\{v_1, \dots, v_n\}$ has a solution u_n with $||u_n|| \le R$.

(a) If A satisfies (M), show that there exists a subsequence $\{u_{n'}\}$ of $\{u_n\}$ with $u_{n'} \rightharpoonup u$ such that $u \in X$ is a solution of Au = f.

Hint. Consider the limit as $n \to \infty$ of (3.1) and show the left hand side of (M) is satisfied.

Solution: From the Galerkin approximation we have that $\langle Au_n - f, v \rangle \to 0$ for all $v \in \text{span}\{v_1, v_2, \ldots\}$. As *A* is bounded the sequence $\{Au_n\}$ is bounded; therefore, $Au_n \rightharpoonup f$ in *X'*. As $\{u_n\}$ is bounded in a reflexive Banach space there exists a subsequence $u_{n'} \rightharpoonup u$, and from definition of the Galerkin approximation

$$\langle Au_{n'}, u_{n'} \rangle = \langle f, u_{n'} \rangle \to \langle f, u \rangle.$$

Hence, we have that

$$u_{n'} \rightarrow u, \quad Au_{n'} \rightarrow f, \quad \limsup_{n \rightarrow \infty} \langle Au_{n'}, u_{n'} \rangle \le \langle f, u \rangle \implies Au = f$$

by (M).

(b) If A satisfies $(S)_0$ and is demicontinuous, show that there exists a subsequence $\{u_{n'}\}$ of $\{u_n\}$ with $u_{n'} \rightarrow u$ such that $u \in X$ is a solution of Au = f.

Hint. Show left hand side of $(S)_0$ is satisfied.

Solution: In part (a) we found that

$$u_{n'}
ightarrow u, \quad Au_{n'}
ightarrow f, \quad \lim_{n \to \infty} \langle Au_{n'}, u_{n'} \rangle = \langle f, u \rangle;$$

hence, by (S)₀, $u_{n'} \rightarrow u$. As A is demicontinuous, this implies that $Au_{n'} \rightharpoonup Au$; hence, Au = f.