Nonlinear Differential Equations

Practical 9: Brouwer Fixed Point

1. Prove Theorem 3.6 from the lecture:

Theorem 3.6. Let X be a finite-dimensional normed linear space $K \subset X$ a closed, convex, and bounded subset, and $f: K \to K$ a continuous mapping. Then, there exists a fixed point of f in K; *i.e.*, $\exists \overline{x} \in K$ such that

$$\overline{x} = f(\overline{x}).$$

Hint. Define

$$x = \sum_{i=1}^{n} \alpha_i x_i$$

where x_1, \ldots, x_n form a basis for X (dim X = n), and $\boldsymbol{\alpha} = \{\alpha_i\}_i^n \in \mathbb{R}^n$. Then, define a linear, continuous operator $T : X \to \mathbb{R}^n$ as $T(x) = \boldsymbol{\alpha}$ (which has a continuous inverse T^{-1}). Defining $K_1 = T(K)$ and $g(\boldsymbol{\alpha}) = T \circ f \circ T^{-1}\boldsymbol{\alpha}$, show that T is a homeomorphism and g has a fixed point, and hence, that f has a fixed point.

- 2. Let the conditions of Theorem 2.11/Corollary 3.8 be met; i.e., $A : X \to X'$ monotone, coercive, and hemicontinuous on a real *separable* reflexive Banach space *X*.
 - (a) Show that if A is strictly monotone that the inverse A^{-1} exists and is strictly monotone, demicontinuous, and bounded.

Hint. For demicontinuous, let $v_n = A^{-1}f_n$, $f_n \to f$. Show sequence $\{v_n\}$ is bounded; hence, there exists a subsequence $v_{n'} \rightharpoonup v$, and show $v = A^{-1}f$. Then, show holds for whole sequence (see Proposition 1.8).

- (b) If *A* is uniformly monotone, show that A^{-1} is continuous.
- (c) If A is strongly monotone, show that A^{-1} is Lipschitz continuous.
- 3. Let $A : X \to X'$ be a bounded operator on a real, separable, reflexive, and infinitedimensional Banach space X and $f \in X'$. Let $\{v_1, v_2, ...\}$ be the basis of X and there exists a R > 0 and $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$

$$\langle Au_n - f, v_k \rangle = 0, \qquad u_n \in X_n, \qquad k = 1, \dots, n,$$
(3.1)

where $X_n = \operatorname{span}\{v_1, \ldots, v_n\}$ has a solution u_n with $||u_n|| \leq R$.

(a) If A satisfies (M), show that there exists a subsequence $\{u_{n'}\}$ of $\{u_n\}$ with $u_{n'} \rightarrow u$ such that $u \in X$ is a solution of Au = f.

Hint. Consider the limit as $n \to \infty$ of (3.1) and show the left hand side of (M) is satisfied.

(b) If A satisfies (S)₀ and is demicontinuous, show that there exists a subsequence {u_{n'}} of {u_n} with u_{n'} → u such that u ∈ X is a solution of Au = f.
Hint. Show left hand side of (S)₀ is satisfied.