Nonlinear Differential Equations

Practical 8: Galerkin Approximation I

1. Let $A : X \to Y$ be *linear* and continuous on Banach spaces X and Y. Show that if there exists a sequence $\{u_n\}$ such that $u_n \rightharpoonup u$ then $Au_n \rightharpoonup Au$.

Hint. Use the fact that there exists a dual operator $A^d \in \mathcal{L}(Y', X')$ to A; see Section 1.3 of notes.

Solution: As *A* is linear there exists $A^d \in \mathcal{L}(Y', X')$ such that for $v \in Y'$

 $\langle v, Ax \rangle_{Y' \times Y} = \langle A^d v, x \rangle_{X' \times X} \qquad \forall x \in X.$

Therefore, from $u_n \rightharpoonup u$, we have that for all $v \in Y'$

$$\langle v, Au_n - Au \rangle = \langle v, A(u_n - u) \rangle = \langle A^d v, u_n - u \rangle \to 0;$$

hence, $Au_n \rightharpoonup Au$.

- 2. Let $X_n \subset X$ be a finite dimensional subspace of a separable Banach space $X, A : X \to X'$ and $A_n : X_n \to X'_n$, where $A_n = P_n^d A P_n$ given the *linear* and *continuous* projection $P_n : X \to X_n$. Show:
 - (a) A continuous $\implies A_n$ continuous

Solution: Let $u_m \to u$ in X_n ; then, $P_n u_n \to P_n u$ as P_n is continuous. From A continuous we get that $AP_n u_m \to AP_n u$, and finally as P_n^d is also continuous $A_n u_m = P_n^d AP_n u_n \to P_n^d AP_n u = A_n u$.

(b) A weakly continuous $\implies A_n$ weakly continuous

Solution: Let $u_m \rightharpoonup u$ in X_n ; then, as P_n is linear and continuous, by Question 1 $P_n u_m \rightharpoonup P_n u$. From A weakly continuous we get that $AP_n u_m \rightharpoonup AP_n u$, and finally as P_n^d is also linear and continuous $A_n u_m = P_n^d AP_n u_m \rightharpoonup P_n^d AP_n u = A_n u$ by Question 1.

(c) A strongly continuous $\implies A_n$ strongly continuous

Solution: Let $u_m \rightharpoonup u$ in X_n ; then, as P_n is linear and continuous, by Question 1 $P_n u_m \rightharpoonup P_n u$. From A strongly continuous we get that $AP_n u_m \rightarrow AP_n u$, and finally as P_n^d is also linear and continuous $A_n u_m = P_n^d AP_n u_m \rightarrow P_n^d AP_n u = A_n u$.

(d) A demicontinuous $\implies A_n$ demicontinuous

Solution: Let $u_m \to u$ in X_n ; then, $P_n u_n \to P_n u$ as P_n is continuous. From A demicontinuous we get that $AP_n u_m \to AP_n u$, and finally as P_n^d is linear and continuous $A_n u_m = P_n^d AP_n u_m \to P_n^d AP_n u = A_n u$ by Question 1.

(e) A hemicontinuous \implies A_n hemicontinuous

Solution: Let $t_m \to 0$ then, for all $v \in X_n$, $\langle A_n(u+t_mv), v \rangle = \langle P_n^d A P_n(u+t_mv), v \rangle$ $= \langle A(P_nu+t_mP_nv), P_nv \rangle \to \langle A P_nu, P_nv \rangle = \langle A_nu, v \rangle.$

(f) A Lipschitz continuous $\implies A_n$ Lipschitz continuous

Solution: For all
$$u, v, w \in X_n$$

$$\langle A_n u - A_n v, w \rangle = \langle P_n^d (AP_n u - AP_n v), w \rangle$$

$$= \langle AP_n u - AP_n v, P_n w \rangle$$

$$\leq \|AP_n u - AP_n v\|_{X'} \|P_n w\|_X$$

$$\leq L \|P_n (u - v)\|_X \|P_n w\|_X$$

$$= L \|u - v\|_{X_n} \|w\|_{X_n}.$$
Then,
$$\|A_n u - A_n v\|_{X'_n} = \sup_{w \in X_n} \frac{|\langle A_n u - A_n v, w \rangle|}{\|w\|_{X_n}} \leq L \|u - v\|_{X_n}.$$

(g) A monotone \implies A_n monotone

Solution: For all
$$u, v \in X_n$$
,
 $\langle A_n u - A_n v, u - v \rangle = \langle P_n^d (AP_n u - AP_n v), u - v \rangle = \langle AP_n u + AP_n v, P_n u - P_n v \rangle \ge 0.$

(h) A strongly monotone \implies A_n strongly monotone

Solution: For all
$$u, v \in X_n$$
,
 $\langle A_n u - A_n v, u - v \rangle = \langle P_n^d (AP_n u - AP_n v), u - v \rangle$
 $= \langle AP_n u + AP_n v, P_n u - P_n v \rangle$
 $\geq M \|P_n(u - v)\|_X^2$
 $= M \|u - v\|_{X_n}.$

3. Consider the boundary value problem, on $\Omega = (0, 1) \subset \mathbb{R}$,

$$-\frac{\mathrm{d}}{\mathrm{d}x} \left(\mu(x, |u'(x)|)u'(x) \right) = f \qquad \text{in } (0, 1),$$
$$u(0) = u(1) = 0,$$

where $\mu(x,t) = 1 + e^{-t}$. Note that, there exists $\alpha_1 \ge \alpha_2 > 0$ such that for $t \ge s \ge 0$ and $x \in [0,1]$

$$\alpha_2(t-s) \le \mu(x,t)t - \mu(x,s)s \le \alpha_1(t-s).$$

Figure 1: Finite element mesh for interval (0, 1) with n + 1 nodes

Let $X = H_0^1(0, 1)$ with norm $\|\cdot\|_X = |\cdot|_{1,2}$, and inner product

$$(u,v)_X \coloneqq \int_0^1 u'v' \,\mathrm{d}x.$$

Then, as this is similar to Examples 2.1 and 3.1 we have a unique weak solution $u \in H^1_0(0,1)$ to the weak formulation

$$a(u,v) \coloneqq \int_0^1 \mu(x,|u'|)u'v' \,\mathrm{d}x = \int_0^1 fv \,\mathrm{d}\boldsymbol{x} \eqqcolon \langle F,v \rangle \qquad \text{for all } v \in H^1_0(0,1),$$

and that there exists a $A \in H^{-1}(0,1)$ such that $\langle Au, v \rangle = a(u,v)$. Dividing the interval (0,1) into n + 1 intervals of equal length h = 1/(n+1) with nodes $x_i = ih, i = 0, \ldots, n+1$, see Figure 1, we can define a finite dimensional subspace

$$X_n \coloneqq \{v \in H_0^1(0,1) : v|_{(x_i,x_{i+1})} \in P_1(x_i,x_{i+1}), i = 0,\dots,n, v(0) = 0, v(1) = 0\} \subset H_0^1(0,1),$$

where $P_1(x_i, x_{i+1})$ is the space of polynomials of degree one on the interval (x_i, x_{i+1}) . We can define the basis functions $\{\phi_i\}_{i=1}^n$ of X_n as

$$\phi_i(x) = \begin{cases} 1 + \frac{(x - x_i)}{h} & \text{if } x_{i-1} \le x \le x_i, \\ 1 - \frac{(x - x_i)}{h} & \text{if } x_i \le x \le x_{i+1}, \\ 0 & \text{otherwise.} \end{cases}$$

Define the iterative Galerkin finite element approximation, similar to Example 3.1, to find a sequence $\{u_n^{(m)}\}_{m\geq 0} \subset X_n$ which converges to the approximation $u_n \in X_n$ for a starting $u_n^{(0)}$. Furthermore, state the iteration as an algebraic linear system for n = 10.

Solution: Following Example 3.1, we can define the iterative Galerkin FEM: Given an initial guess $u_n^{(0)} \in X_n$ we iterate for m = 0, 1, 2, ... and find $u_n^{(m+1)}$ such that

$$(u_n^{(m+1)}, v)_X = (u_n^{(m)}, v)_X - \frac{\alpha_2}{\alpha_1} \langle A u_n^{(m)} - F, v \rangle \qquad \forall v \in X_n.$$

Using the definition of the basis functions, and defining

$$u_n^{(m)} = \sum_{j=1}^n \beta_n^{(m)} \phi_j, \quad \text{for } m = 0, 1, 2, \dots$$

where $\beta^{(m)} = (\beta_1^{(m)}, \dots, \beta_n^{(m)}) \in \mathbb{R}^n$, $m = 0, 1, 2, \dots$, we can define as a linear system: find $\beta^{(m+1)} \in \mathbb{R}^n$ such that

$$\sum_{j=1}^{n} \beta_{n}^{(m+1)}(\phi_{j},\phi_{i})_{X} = \sum_{j=1}^{n} \beta_{n}^{(m)}(\phi_{j},\phi_{i})_{X} - \frac{\alpha_{2}}{\alpha_{1}} \left\langle A\left(\sum_{j=1}^{n} \beta_{j}^{(m)}\phi_{j}\right) - F,\phi_{i} \right\rangle,$$

for $j = 1, \ldots, n$. Alternatively, as

$$\mathbb{M}\boldsymbol{\beta}^{(m+1)} = \mathbb{M}\boldsymbol{\beta}^{(m)} - \frac{\alpha_2}{\alpha_1}\boldsymbol{F}(\boldsymbol{\beta}^{(m)})$$

where $\mathbb{M} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{F} : \mathbb{R}^n \to \mathbb{R}^n$ are defined for $i, j = 1, \dots, n$,

$$M_{i,j} = (\phi_j, \phi_i)_X = \int_0^1 \phi'_j \phi'_i \,\mathrm{d}x$$
$$F_i(\beta^{(m)}) = \left\langle A\left(\sum_{j=1}^n \beta_j^{(m)} \phi_j\right) - F, \phi_i \right\rangle$$
$$= \int_0^1 \left(1 + \exp\left(-\left|\sum_{j=1}^n \beta_j^{(m)} \phi_j\right|\right)\right) \sum_{j=1}^n \beta_j^{(m)} \phi'_j \phi'_i \,\mathrm{d}x - \int_0^1 f \phi_i \,\mathrm{d}x.$$

Noting that

$$\phi_i(x) = \begin{cases} 1/h & \text{if } x_{i-1} \le x \le x_i, \\ -1/h & \text{if } x_i \le x \le x_{i+1}, \\ 0 & \text{otherwise.} \end{cases}$$

Expanding these definitions, we have that

$$\begin{split} M_{i,i} &= \int_{x_{i-1}}^{x_i} \phi'_j \phi'_i \, \mathrm{d}x + \int_{x_i}^{x_{i+1}} \phi'_j \phi'_i \, \mathrm{d}x = \frac{2}{h} \\ M_{i,i+1} &= \int_{x_i}^{x_{i+1}} \phi'_{i+1} \phi'_i \, \mathrm{d}x = -\frac{1}{h} \\ M_{i,i-1} &= \int_{x_{i-1}}^{x_i} \phi'_{i-1} \phi'_i \, \mathrm{d}x = -\frac{1}{h} \\ M_{i,j} &= 0, \end{split} \qquad \qquad \text{if } j \notin \{i-1, i, i+1\}. \end{split}$$

Therefore, for n = 10, $h = \frac{1}{11}$, and

$$\mathbb{M} = 11 \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \end{pmatrix}.$$

We note that $F_i(\beta^{(m)})$ would probably need computation via numerical quadrature (or similar) at each iteration due to the nonlinearity.