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Nonlinear Differential Equations
Practical 8: Galerkin Approximation I

1. Let A : X → Y be linear and continuous on Banach spaces X and Y . Show that if there
exists a sequence {un} such that un ⇀ u then Aun ⇀ Au.

Hint. Use the fact that there exists a dual operator Ad ∈ L(Y ′, X ′) to A; see Section 1.3 of notes.

Solution: As A is linear there exists Ad ∈ L(Y ′, X ′) such that for v ∈ Y ′

⟨v,Ax⟩Y ′×Y = ⟨Adv, x⟩X′×X ∀x ∈ X.

Therefore, from un ⇀ u, we have that for all v ∈ Y ′

⟨v,Aun −Au⟩ = ⟨v,A(un − u)⟩ = ⟨Adv, un − u⟩ → 0;

hence, Aun ⇀ Au.

2. Let Xn ⊂ X be a finite dimensional subspace of a separable Banach space X , A : X → X ′

and An : Xn → X ′
n, where An = P d

nAPn given the linear and continuous projection Pn :
X → Xn. Show:

(a) A continuous =⇒ An continuous

Solution: Let um → u in Xn; then, Pnun → Pnu as Pn is continuous. From A
continuous we get that APnum → APnu, and finally as P d

n is also continuous
Anum = P d

nAPnun → P d
nAPnu = Anu.

(b) A weakly continuous =⇒ An weakly continuous

Solution: Let um ⇀ u in Xn; then, as Pn is linear and continuous, by Question 1
Pnum ⇀ Pnu. From A weakly continuous we get that APnum ⇀ APnu, and
finally as P d

n is also linear and continuous Anum = P d
nAPnum ⇀ P d

nAPnu = Anu
by Question 1.

(c) A strongly continuous =⇒ An strongly continuous

Solution: Let um ⇀ u in Xn; then, as Pn is linear and continuous, by Question 1
Pnum ⇀ Pnu. From A strongly continuous we get that APnum → APnu, and
finally as P d

n is also linear and continuous Anum = P d
nAPnum → P d

nAPnu = Anu .

(d) A demicontinuous =⇒ An demicontinuous

Solution: Let um → u in Xn; then, Pnun → Pnu as Pn is continuous. From A
demicontinuous we get that APnum ⇀ APnu, and finally as P d

n is linear and con-
tinuous Anum = P d

nAPnum ⇀ P d
nAPnu = Anu by Question 1.
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(e) A hemicontinuous =⇒ An hemicontinuous

Solution: Let tm → 0 then, for all v ∈ Xn,

⟨An(u+ tmv), v⟩ = ⟨P d
nAPn(u+ tmv), v⟩

= ⟨A(Pnu+ tmPnv), Pnv⟩ → ⟨APnu, Pnv⟩ = ⟨Anu, v⟩.

(f) A Lipschitz continuous =⇒ An Lipschitz continuous

Solution: For all u, v, w ∈ Xn

⟨Anu−Anv, w⟩ = ⟨P d
n(APnu−APnv), w⟩

= ⟨APnu−APnv, Pnw⟩
≤ ∥APnu−APnv∥X′∥Pnw∥X
≤ L∥Pn(u− v)∥X∥Pnw∥X
= L∥u− v∥Xn∥w∥Xn .

Then,

∥Anu−Anv∥X′
n
= sup

w∈Xn

|⟨Anu−Anv, w⟩|
∥w∥Xn

≤ L∥u− v∥Xn .

(g) A monotone =⇒ An monotone

Solution: For all u, v ∈ Xn,

⟨Anu−Anv, u−v⟩ = ⟨P d
n(APnu−APnv), u−v⟩ = ⟨APnu+APnv, Pnu−Pnv⟩ ≥ 0.

(h) A strongly monotone =⇒ An strongly monotone

Solution: For all u, v ∈ Xn,

⟨Anu−Anv, u− v⟩ = ⟨P d
n(APnu−APnv), u− v⟩

= ⟨APnu+APnv, Pnu− Pnv⟩
≥ M∥Pn(u− v)∥2X
= M∥u− v∥Xn .

3. Consider the boundary value problem, on Ω = (0, 1) ⊂ R,

− d

dx

(
µ(x, |u′(x)|)u′(x)

)
= f in (0, 1),

u(0) = u(1) = 0,

where µ(x, t) = 1 + e−t. Note that, there exists α1 ≥ α2 > 0 such that for t ≥ s ≥ 0 and
x ∈ [0, 1]

α2(t− s) ≤ µ(x, t)t− µ(x, s)s ≤ α1(t− s).
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Figure 1: Finite element mesh for interval (0, 1) with n+ 1 nodes

Let X = H1
0 (0, 1) with norm ∥·∥X = |·|1,2, and inner product

(u, v)X :=

∫ 1

0
u′v′ dx.

Then, as this is similar to Examples 2.1 and 3.1 we have a unique weak solution u ∈
H1

0 (0, 1) to the weak formulation

a(u, v) :=

∫ 1

0
µ(x, |u′|)u′v′ dx =

∫ 1

0
fv dx =: ⟨F, v⟩ for all v ∈ H1

0 (0, 1),

and that there exists a A ∈ H−1(0, 1) such that ⟨Au, v⟩ = a(u, v). Dividing the interval
(0, 1) into n + 1 intervals of equal length h = 1/(n+1) with nodes xi = ih, i = 0, . . . , n + 1,
see Figure 1, we can define a finite dimensional subspace

Xn := {v ∈ H1
0 (0, 1) : v|(xi,xi+1) ∈ P1(xi, xi+1), i = 0, . . . , n, v(0) = 0, v(1) = 0} ⊂ H1

0 (0, 1),

where P1(xi, xi+1) is the space of polynomials of degree one on the interval (xi, xi+1). We
can define the basis functions {ϕi}ni=1 of Xn as

ϕi(x) =


1 + (x−xi)/h if xi−1 ≤ x ≤ xi,

1− (x−xi)/h if xi ≤ x ≤ xi+1,

0 otherwise.

Define the iterative Galerkin finite element approximation, similar to Example 3.1, to find
a sequence {u(m)

n }m≥0 ⊂ Xn which converges to the approximation un ∈ Xn for a starting
u
(0)
n . Furthermore, state the iteration as an algebraic linear system for n = 10.

Solution: Following Example 3.1, we can define the iterative Galerkin FEM: Given an
initial guess u(0)n ∈ Xn we iterate for m = 0, 1, 2, . . . and find u

(m+1)
n such that

(u(m+1)
n , v)X = (u(m)

n , v)X − α2

α1
⟨Au(m)

n − F, v⟩ ∀v ∈ Xn.

Using the definition of the basis functions, and defining

u(m)
n =

n∑
j=1

β(m)
n ϕj , for m = 0, 1, 2, . . .

where β(m) = (β
(m)
1 , . . . , β

(m)
n ) ∈ Rn, m = 0, 1, 2, . . . , we can define as a linear system:

find β(m+1) ∈ Rn such that

n∑
j=1

β(m+1)
n (ϕj , ϕi)X =

n∑
j=1

β(m)
n (ϕj , ϕi)X − α2

α1

〈
A

 n∑
j=1

β
(m)
j ϕj

− F, ϕi

〉
,
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for j = 1, . . . , n. Alternatively, as

Mβ(m+1) = Mβ(m) − α2

α1
F (β(m))

where M ∈ Rn×n and F : Rn → Rn are defined for i, j = 1, . . . , n,

Mi,j = (ϕj , ϕi)X =

∫ 1

0
ϕ′
jϕ

′
i dx

Fi(β
(m)) =

〈
A

 n∑
j=1

β
(m)
j ϕj

− F, ϕi

〉

=

∫ 1

0

1 + exp

−

∣∣∣∣∣∣
n∑

j=1

β
(m)
j ϕj

∣∣∣∣∣∣
 n∑

j=1

β
(m)
j ϕ′

jϕ
′
i dx−

∫ 1

0
fϕi dx.

Noting that

ϕi(
′x) =


1/h if xi−1 ≤ x ≤ xi,

−1/h if xi ≤ x ≤ xi+1,

0 otherwise.

Expanding these definitions, we have that

Mi,i =

∫ xi

xi−1

ϕ′
jϕ

′
i dx+

∫ xi+1

xi

ϕ′
jϕ

′
i dx =

2

h

Mi,i+1 =

∫ xi+1

xi

ϕ′
i+1ϕ

′
i dx = −1

h

Mi,i−1 =

∫ xi

xi−1

ϕ′
i−1ϕ

′
i dx = −1

h

Mi,j = 0, if j ̸∈ {i− 1, i, i+ 1}.

Therefore, for n = 10, h = 1
11 , and

M = 11



2 −1 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 0 −1 2


.

We note that Fi(β
(m)) would probably need computation via numerical quadrature (or

similar) at each iteration due to the nonlinearity.
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