Nonlinear Differential Equations

Practical 8: Galerkin Approximation I

1. Let $A : X \to Y$ be *linear* and continuous on Banach spaces X and Y. Show that if there exists a sequence $\{u_n\}$ such that $u_n \rightharpoonup u$ then $Au_n \rightharpoonup Au$.

Hint. Use the fact that there exists a dual operator $A^d \in \mathcal{L}(Y', X')$ to A; see Section 1.3 of notes.

- 2. Let $X_n \subset X$ be a finite dimensional subspace of a separable Banach space $X, A : X \to X'$ and $A_n : X_n \to X'_n$, where $A_n = P_n^d A P_n$ given the *linear* and *continuous* projection $P_n : X \to X_n$. Show:
 - (a) A continuous \implies A_n continuous
 - (b) A weakly continuous $\implies A_n$ weakly continuous
 - (c) A strongly continuous $\implies A_n$ strongly continuous
 - (d) A demicontinuous \implies A_n demicontinuous
 - (e) A hemicontinuous $\implies A_n$ hemicontinuous
 - (f) A Lipschitz continuous $\implies A_n$ Lipschitz continuous
 - (g) A monotone $\implies A_n$ monotone
 - (h) A strongly monotone \implies A_n strongly monotone
- 3. Consider the boundary value problem, on $\Omega = (0, 1) \subset \mathbb{R}$,

$$-\frac{\mathrm{d}}{\mathrm{d}x} \left(\mu(x, |u'(x)|)u'(x) \right) = f \qquad \text{in } (0, 1),$$
$$u(0) = u(1) = 0,$$

where $\mu(x,t) = 1 + e^{-t}$. Note that, there exists $\alpha_1 \ge \alpha_2 > 0$ such that for $t \ge s \ge 0$ and $x \in [0,1]$

$$\alpha_2(t-s) \le \mu(x,t)t - \mu(x,s)s \le \alpha_1(t-s).$$

Let $X = H_0^1(0, 1)$ with norm $\|\cdot\|_X = |\cdot|_{1,2}$, and inner product

$$(u,v)_X \coloneqq \int_0^1 u'v' \,\mathrm{d}x.$$

Then, as this is similar to Examples 2.1 and 3.1 we have a unique weak solution $u \in H_0^1(0,1)$ to the weak formulation

$$a(u,v)\coloneqq \int_0^1 \mu(x,|u'|)u'v'\,\mathrm{d}x = \int_0^1 fv\,\mathrm{d}\boldsymbol{x} \eqqcolon \langle F,v\rangle \qquad \text{for all }v\in H^1_0(0,1),$$

and that there exists a $A \in H^{-1}(0,1)$ such that $\langle Au, v \rangle = a(u,v)$. Dividing the interval (0,1) into n + 1 intervals of equal length h = 1/(n+1) with nodes $x_i = ih, i = 0, \ldots, n+1$, see Figure 1, we can define a finite dimensional subspace

$$X_n \coloneqq \{v \in H_0^1(0,1) : v|_{(x_i,x_{i+1})} \in P_1(x_i,x_{i+1}), i = 0,\dots,n, v(0) = 0, v(1) = 0\} \subset H_0^1(0,1),$$

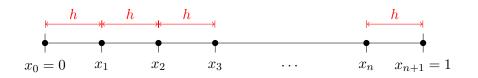


Figure 1: Finite element mesh for interval (0, 1) with n + 1 nodes

where $P_1(x_i, x_{i+1})$ is the space of polynomials of degree one on the interval (x_i, x_{i+1}) . We can define the basis functions $\{\phi_i\}_{i=1}^n$ of X_n as

$$\phi_i(x) = \begin{cases} 1 + \frac{(x - x_i)}{h} & \text{if } x_{i-1} \le x \le x_i, \\ 1 - \frac{(x - x_i)}{h} & \text{if } x_i \le x \le x_{i+1}, \\ 0 & \text{otherwise.} \end{cases}$$

Define the iterative Galerkin finite element approximation, similar to Example 3.1, to find a sequence $\{u_n^{(m)}\}_{m\geq 0} \subset X_n$ which converges to the approximation $u_n \in X_n$ for a starting $u_n^{(0)}$. Furthermore, state the iteration as a algebraic linear system for n = 10.