Nonlinear Differential Equations

Practical 7: Semimonotone Operators

Let *X* be a real, separable, reflexive Banach space and $B: X \times X : \to X'$ be a map such that

$$Au = B(u, u)$$
 for all $u \in X$.

The operator $A: X \to X'$ is called *semimonotone* if and only if the following hold.

a) For all $u, v \in X$

$$\langle B(u,u) - B(u,v), u - v \rangle \ge 0.$$

- b) For each $u \in X$, the operator $v \mapsto B(u,v)$ is hemicontinuous and bounded from X to X', and, for each $v \in X$, the operator $u \mapsto B(u,v)$ is hemicontinuous and bounded from X to X'.
- c) If $u_n \rightharpoonup u$ in X and

$$\lim_{n \to \infty} \langle B(u_n, u_n) - B(u_n, u), u_n - u \rangle = 0;$$

then, $B(u_n, v) \rightharpoonup B(u, v)$ in X' for all $v \in X$,

d) Let $v \in X$, $u_n \rightharpoonup u$ in X, and $B(u_n, v) \rightharpoonup w$ in X' as $n \to \infty$; then,

$$\lim_{n \to \infty} \langle B(u_n, v), u_n \rangle = \langle w, u \rangle.$$

e) A is bounded.

Exercises

1. Let $A: X \to X'$ be a semimonotone operator on a real, separable, reflexive Banach space X, and $B: X \times X \to X'$ the associated map. Assume that $u_n \rightharpoonup u$, $B(u_n, u) \rightharpoonup w$ and

$$\lim_{n\to\infty} \sup \langle B(u_n, u_n), u_n - u \rangle \le 0.$$

(a) Show that

$$\lim_{n \to \infty} \langle B(u_n, u_n) - B(u_n, u), u_n - u \rangle = 0;$$

i.e, show that the condition of property c) of a semimonotone operator is satisfied.

Solution: By property a), $B(u_n, u) \rightharpoonup w$, and d)

$$0 \leq \liminf_{n \to \infty} \langle B(u_n, u_n) - B(u_n, u), u_n - u \rangle$$

$$\leq \limsup_{n \to \infty} \langle B(u_n, u_n) - B(u_n, u), u_n - u \rangle$$

$$= \limsup_{n \to \infty} \langle B(u_n, u_n), u_n - u \rangle - \limsup_{n \to \infty} \langle B(u_n, u), u_n \rangle + \limsup_{n \to \infty} \langle B(u_n, u), u \rangle$$

$$= \limsup_{n \to \infty} \langle B(u_n, u_n), u_n - u \rangle - \langle w, u \rangle + \langle w, u \rangle.$$

Then, by $\limsup_{n\to\infty} \langle B(u_n,u_n), u_n-u\rangle \leq 0$,

$$\lim_{n \to \infty} \langle B(u_n, u_n) - B(u_n, u), u_n - u \rangle = 0.$$

(b) Hence, show that

$$\langle B(u,u), u-w \rangle \leq \liminf_{n \to \infty} \langle B(u_n,u_n), u_n-u \rangle$$
 for all $w \in X$;

i.e., A is a pseudo-monotone operator.

Hint. *Similar to question 3 from last week.*

Solution: Let z = u + t(w - u) and, by property a) and c),

$$\langle B(u_n, u_n) - B(u_n, z), u_n - z \rangle \ge 0$$

$$\lim_{n \to \infty} \inf \{ \langle B(u_n, u_n), u - w \rangle \ge \lim_{n \to \infty} \inf \{ \langle B(u_n, z), u - w \rangle - \langle B(u_n, u_n), u_n - u \rangle + \langle B(u_n, z), u_n - u \rangle \}$$

$$= \lim_{n \to \infty} \inf \{ \langle \langle B(u_n, z), u - w \rangle - \langle \langle B(u_n, u), u_n - u \rangle + \langle \langle B(u_n, z), u_n - u \rangle \} \}$$

As property c) holds from the previous question; then, $B(u_n, v) \rightarrow B(u, v)$ in X' for all $v \in X$. Therefore, by property d),

$$B(u_n, u) \to B(u, u) \qquad \Longrightarrow \qquad \lim_{n \to \infty} \langle B(u_n, u), u_n \rangle = \langle B(u, u), u \rangle \qquad (1.1)$$

$$B(u_n, z) \to B(u, z) \qquad \Longrightarrow \qquad \lim_{n \to \infty} \langle B(u_n, z), u_n \rangle = \langle B(u, z), u \rangle \qquad (1.2)$$

$$B(u_n, z) \to B(u, z) \qquad \Longrightarrow \qquad \lim_{n \to \infty} \langle B(u_n, z), u_n \rangle = \langle B(u, z), u \rangle$$
 (1.2)

Hence,

$$\liminf_{n\to\infty} \langle B(u_n, u_n), u - w \rangle \ge \liminf_{n\to\infty} \langle B(u_n, z), u - w \rangle = \langle B(u, z), u - w \rangle.$$

As B is hemicontinuous in the second argument by property b) let $t \to 0$, and by previous question and (1.1) $\lim_{n\to\infty}\langle B(u_n,u_n),u_n\rangle = \lim_{n\to\infty}\langle B(u_n,u_n),u\rangle$; therefore,

$$\langle B(u,u), u-w \rangle \leq \liminf_{n \to \infty} \langle B(u_n,u_n), u_n-w \rangle$$
 for all $w \in X$.

2. Consider a quasilinear PDE of order 2k, $k \in \mathbb{N}$ of the form

$$\begin{split} \sum_{|\alpha| \leq k} (-1)^{\alpha} \partial^{\alpha} a_{\alpha}(\boldsymbol{x}, \delta_{k} u(\boldsymbol{x})) &= f(\boldsymbol{x}) & \text{in } \Omega, \\ \frac{\partial^{i} u}{\partial \boldsymbol{n}^{i}} &= 0 & \text{on } \partial \Omega, i = 1, \dots, k-1, \end{split}$$

where Ω is a bounded Lipschitz domain. Let $a_{\alpha}: \Omega \times \mathbb{R}^{\kappa} \to \mathbb{R}$, for each multi-index $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \leq k$, satisfies the Carathéodory condition **(B1)**, growth condition **(B2)**, and coercivity condition (C2) from Theorem 2.19, as well as the following:

(II) The highest order terms are *strictly monotone* with respect to the highest order derivatives; i.e.,

$$\sum_{|\alpha|=k} \left(a_{\alpha}(\boldsymbol{x}, \eta, \xi) - a_{\alpha}(\boldsymbol{x}, \eta, \widehat{\xi}) \right) (\xi_{\alpha} - \widehat{\xi}_{\alpha}) > 0,$$

for all $\eta \in \mathbb{R}^{\widetilde{\kappa}}$, $\xi, \widehat{\xi} \in \mathbb{R}^{\widetilde{\kappa} - \kappa}$, where

$$\widetilde{\kappa} = \frac{(n+k-1)!}{n!(k-1)!}$$

is the number of multi-indices of length $|\alpha| \le k - 1$.

(I2) The highest order terms are *coercive* with respect to the highest order derivatives; i.e.,

$$\lim_{|\xi| \to \infty} \sup_{\eta \in D} \sum_{|\alpha| = k} \frac{a_{\alpha}(\boldsymbol{x}, \eta, \xi)}{|\xi| + |\xi|^{p-1}} == \infty,$$

for almost all $x \in \Omega$ and bounded sets $D \subset \mathbb{R}^{\tilde{\kappa}}$.

Let $A: W_0^{k,p}(\Omega) \to W^{-k,q}(\Omega)$, Au = B(u,u), where

$$\langle B(w,u),v\rangle = \int_{\Omega} \sum_{|\alpha|=k} a_{\alpha}(\boldsymbol{x},\delta_{k-1}w(\boldsymbol{x}),\widehat{\delta}_{k}u(\boldsymbol{x}))\partial^{\alpha}v \,d\boldsymbol{x} + \int_{\Omega} \sum_{|\alpha|< k-1} a_{\alpha}(\boldsymbol{x},\delta_{k}w(\boldsymbol{x}))\partial^{\alpha}v \,d\boldsymbol{x}.$$

(a) Show that for all $u, v \in W_0^{k,p}(\Omega)$

$$\langle B(u,u) - B(u,v), u - v \rangle \ge 0;$$

i.e., prove property a) of a semimonotone operator.

Solution: For $u \neq v$, by (I1),

$$\langle B(u,u) - B(u,v), u - v \rangle$$

$$= \int_{\Omega} \sum_{|\alpha|=k} \left(a_{\alpha}(\boldsymbol{x}, \delta_{k-1}u(\boldsymbol{x}), \widehat{\delta}_{k}u(\boldsymbol{x})) - a_{\alpha}(\boldsymbol{x}, \delta_{k-1}u(\boldsymbol{x}), \widehat{\delta}_{k}v(\boldsymbol{x})) \right) \partial^{\alpha}(u - v) d\boldsymbol{x}$$

$$> 0.$$

For u = v, $\langle B(u, u) - B(u, v), u - v \rangle = 0$ trivially.

(b) Show that for each $u\in W^{k,p}_0(\Omega)$, the operator $v\mapsto B(u,v)$ is hemicontinuous and bounded from $W^{k,p}_0(\Omega)$ to $W^{-k,q}(\Omega)$; i.e., prove the first part of property b) of a semi-monotone operator.

Solution: Let $\{t_n\} \in \mathbb{R}$ be a sequence such that $t_n \to 0$; then, as $a_{\alpha}(\boldsymbol{x}, \eta)$, $|\alpha| \le k$, is continuous for all $\eta \in \mathbb{R}^{\kappa}$

$$\langle B(w, u + t_n v), z \rangle = \int_{\Omega} \sum_{|\alpha| = k} a_{\alpha}(\boldsymbol{x}, \delta_{k-1} w(\boldsymbol{x}), \widehat{\delta}_k u(\boldsymbol{x}) + t_n \widehat{\delta}_k v(\boldsymbol{x})) \partial^{\alpha} z(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$+ \int_{\Omega} \sum_{|\alpha| \le k-1} a_{\alpha}(\boldsymbol{x}, \delta_k w(\boldsymbol{x})) \partial^{\alpha} v \, d\boldsymbol{x}$$

$$\to \int_{\Omega} \sum_{|\alpha| = k} a_{\alpha}(\boldsymbol{x}, \delta_{k-1} w(\boldsymbol{x}), \widehat{\delta}_k u(\boldsymbol{x})) \partial^{\alpha} z(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$+ \int_{\Omega} \sum_{|\alpha| \le k-1} a_{\alpha}(\boldsymbol{x}, \delta_k w(\boldsymbol{x})) \partial^{\alpha} v \, d\boldsymbol{x} = \langle B(w, u), z \rangle$$

Hence, $v \mapsto B(u, v)$ is hemicontinuous. By **(B2)**

$$\begin{aligned} |\langle B(w,u),v\rangle| &\leq \int_{\Omega} \sum_{|\alpha|=k} |a_{\alpha}(\boldsymbol{x},\delta_{k-1}w(\boldsymbol{x}),\widehat{\delta}_{k}u(\boldsymbol{x}))| |\partial^{\alpha}v| \,\mathrm{d}\boldsymbol{x} \\ &+ \int_{\Omega} \sum_{|\alpha|\leq k-1} |a_{\alpha}(\boldsymbol{x},\delta_{k}w(\boldsymbol{x}))| |\partial^{\alpha}v| \,\mathrm{d}\boldsymbol{x} \\ &\leq C \int_{\Omega} \sum_{|\alpha|=k} \left(g_{\alpha}(\boldsymbol{x}) + \sum_{|\beta|\leq k-1} |\partial^{\beta}w|^{p-1} + \sum_{|\beta|=k} |\partial^{\beta}u|^{p-1} \right) |\partial^{\alpha}v| \,\mathrm{d}\boldsymbol{x} \\ &+ \int_{\Omega} \sum_{|\alpha|\leq k-1} \left(g_{\alpha}(\boldsymbol{x}) + \sum_{|\beta|\leq k} |\partial^{\beta}w|^{p-1} \right) |\partial^{\alpha}v| \,\mathrm{d}\boldsymbol{x} \\ &\leq C \left(\sum_{|\alpha|=k} ||g_{\alpha}||_{0,q} + ||w||_{k,p}^{p/q} + |u|_{k,p}^{p/q} \right) ||v||_{k,p} \end{aligned}$$

hence,

$$||B(w,u)||_{-k,q} = \sup_{v \in W_0^{k,p}(\Omega)} \frac{|\langle B(w,u), v \rangle|}{||v||_{k,p}} \le C \left(\sum_{|\alpha|=k} ||g_\alpha||_{0,q} + ||w||_{k,p}^{p/q} + |u|_{k,p}^{p/q} \right). \tag{2.1}$$

As $g_a \in L^q(\Omega)$ and $w, u \in W_0^{k,p}(\Omega)$ this is bounded.

(c) Show that for each $v \in W_0^{k,p}(\Omega)$, the operator $u \mapsto B(u,v)$ is hemicontinuous and bounded from $W_0^{k,p}(\Omega)$ to $W^{-k,q}(\Omega)$; i.e., prove the second part of property b) of a semimonotone operator.

Solution: Let $\{t_n\} \in \mathbb{R}$ be a sequence such that $t_n \to 0$; then, as $a_{\alpha}(\boldsymbol{x}, \eta)$, $|\alpha| \leq k$, is continuous for all $\eta \in \mathbb{R}^{\kappa}$,

$$\langle B(w+t_n v, u), z \rangle = \int_{\Omega} \sum_{|\alpha|=k} a_{\alpha}(\boldsymbol{x}, \delta_{k-1} w(\boldsymbol{x}) + t_n \delta_{k-1} v(\boldsymbol{x}), \widehat{\delta}_k u(\boldsymbol{x})) \partial^{\alpha} z(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$+ \int_{\Omega} \sum_{|\alpha| \leq k-1} a_{\alpha}(\boldsymbol{x}, \delta_k w(\boldsymbol{x}) + t_n \delta_k v(\boldsymbol{x})) \partial^{\alpha} v \, d\boldsymbol{x}$$

$$\to \int_{\Omega} \sum_{|\alpha|=k} a_{\alpha}(\boldsymbol{x}, \delta_{k-1} w(\boldsymbol{x}), \widehat{\delta}_k u(\boldsymbol{x})) \partial^{\alpha} z(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$+ \int_{\Omega} \sum_{|\alpha| \leq k-1} a_{\alpha}(\boldsymbol{x}, \delta_k w(\boldsymbol{x})) \partial^{\alpha} v \, d\boldsymbol{x} = \langle B(w, u), z \rangle$$

Hence, $u \mapsto B(u, v)$ is hemicontinuous. Boundedness follows directly from (2.1).

(d) Show that *A* is bounded; i.e., prove property e) of a semimonotone operator.

Solution: From Lemma 2.14.

(e) Show that *A* is coercive.

Solution: From Lemma 2.18.

(f) Assume properties c) and d) of a semimonotone operator applies for A without proof. Hence, show that a solution $u \in W^{k,p}_0(\Omega)$ of the weak formulation

Practical 7

$$a(u,v) \coloneqq \int_{\Omega} \sum_{|\alpha| \le k} a_{\alpha}(\boldsymbol{x}, \delta_k u(\boldsymbol{x})) \partial^{\alpha} v \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} f v \, \mathrm{d}\boldsymbol{x}, \qquad \text{for all } v \in W_0^{k,p}(\Omega),$$

exists for each right-hand side $f \in L^q(\Omega)$, 1/p + 1/q = 1.

Solution: As we have shown that $A: X \to X'$, where

$$\langle Au, v \rangle = a(u, v)$$

is semimonotone and coercive; then, by Lemma 2.34 the equation Au=F has a solution $u\in W^{k,p}_0(\Omega)$ for every $F\in W^{-k,q}(\Omega)$. Furthermore, for every $f\in L^q(\Omega)$ we can show that for

$$\langle F, v \rangle = \int_{\Omega} f v \, \mathrm{d} \boldsymbol{x}$$

 $F\in W^{-k,q}(\Omega)$. Therefore, for every $f\in L^q(\Omega)$ there exists a weak solution $u\in W^{k,p}_0(\Omega)$ to the weak formulation.