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Nonlinear Differential Equations
Practical 4: Monotone & Continuous Operators

1. Let X be a Banach space, and A : X → X ′ be a nonlinear operator. Then prove the
following:

(a) A strongly monotone =⇒ A uniformly monotone

Solution: A is strongly monotone; hence, ⟨Au − Av, u − v⟩ ≥ M∥u − v∥2, where
L > 0 is a constant. Define a function a(t) = Mt; then,

⟨Au−Av, u− v⟩ ≥ a(∥u− v∥)∥u− v∥,

a(0) = 0, limt→∞ a(t) = ∞, and a is strictly increasing. Therefore, A is uniformly
monotone.

(b) A uniformly monotone =⇒ A strictly monotone

Solution: As A uniformly monotone ⟨Au−Av, u− v⟩ ≥ a(∥u− v∥)∥u− v∥ where
a(0) = 0 and a is strictly increasing. Then,

u ̸= v =⇒ ∥u− v∥ > 0 =⇒ a(∥u− v∥)∥u− v∥ > 0.

Therefore, ⟨Au − Av, u − v⟩ ≥ a(∥u − v∥)∥u − v∥ > 0 for u ̸= v and, hence, A is
strictly monotone.

(c) A strictly monotone =⇒ A monotone

Solution: For u ̸= v ⟨Au−Av, u− v⟩ > 0 as A is strictly monotone. If u = v; then
Au = Av and hence

⟨Au−Av, u− v⟩ = ⟨0, 0⟩ = 0.

Therefore, ⟨Au−Av, u− v⟩ ≥ 0 for all u, v ∈ X .

(d) A uniformly monotone =⇒ A (nonlinear) coercive

Solution:

lim
∥u∥→+∞

⟨Au, u⟩
∥u∥

= lim
∥u∥→+∞

(
⟨Au−A0, u− 0⟩ − ⟨A0, u⟩

∥u∥

)
= lim

∥u∥→+∞

⟨Au−A0, u− 0⟩
∥u∥

− lim
∥u∥→+∞

⟨A0, u⟩
∥u∥

By dual norm definition

∥A0∥ = sup
v∈X

⟨A0, v⟩
∥v∥

≥ ⟨A0, v⟩
∥v∥

for all v ∈ X =⇒ ∥A0∥∥v∥ ≥ ⟨A0, v⟩;
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and by fact that A is uniformly monotone

lim
∥u∥→+∞

⟨Au, u⟩
∥u∥

≥ lim
∥u∥→+∞

a(∥u− 0∥)∥u− 0∥
∥u∥

− lim
∥u∥→+∞

∥A0∥∥u∥
∥u∥

= lim
∥u∥→+∞

a(∥u∥)− ∥A0∥

= +∞.

Hence, A is coercive.

(e) A uniformly monotone =⇒ A stable

Solution: For u ̸= v

∥Au−Av∥ = sup
v∈X

⟨Au−Av, v⟩
∥v∥

≥ ⟨Au−Av, u− v⟩
∥u− v∥

≥ a(∥u− v∥)∥u− v∥
∥u− v∥

.

as A is uniformly monotone. Hence, ∥Au − Av∥ ≥ a(∥u − v∥) where a is strictly
increasing, a(0) = 0 and limt→∞ a(t) = +∞.
For u = v then ∥Au−Av∥ = ∥0∥ = 0 = a(0) = a(∥0∥) = a(∥u− v∥).

(f) A Lipschitz continuous =⇒ A continuous

Solution: Given a sequence {un} such that un → u then limn→∞∥un − u∥ = 0.
Then,

lim
n→∞

∥Aun −Au∥ ≤ lim
n→∞

L∥un − u∥ = 0;

hence, the sequence Aun → Au.

(g) A strongly continuous =⇒ A continuous

Solution: Given a sequence {un} we note that un → u =⇒ un ⇀ u as for all
ℓ ∈ X ′

⟨ℓ, un − u⟩ ≤ ∥ℓ∥∥un − u∥ → 0.

Then, from strong continuity un ⇀ u =⇒ Aun → Au. Combining theses gives
that un → u =⇒ Aun → Au; hence, A is continuous.

(h) A strongly continuous =⇒ A weakly continuous

Solution: Given a sequence {un}, strong continuity and fact weak convergence
implies strong convergence gives that

un ⇀ u =⇒ Aun → Au =⇒ Aun ⇀ Au;

hence, A is weakly continuous.

(i) A weakly continuous =⇒ A demicontinuous
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Solution: Given a sequence {un}, weakly continuity and fact weak convergence
implies strong convergence gives that

un → u =⇒ un ⇀ u =⇒ Aun ⇀ Au;

hence, A is demicontinuous.

(j) A continuous =⇒ A demicontinuous

Solution: Given a sequence {un}, continuity and fact weak convergence implies
strong convergence gives that

un → u =⇒ Aun → Au =⇒ Aun ⇀ Au;

hence, A is demicontinuous.

(k) A demicontinuous =⇒ A hemicontinuous

Solution: If A is demicontinuous; then, for a sequence {zn}

zn → z =⇒ Azn ⇀ Az ⇐⇒ ⟨Azn −Az, v⟩ → 0 for all v ∈ X.

Select sn, s ∈ [0, 1] such that sn → s and set zn = u+ snv; then,

lim
n→∞

⟨A(u+ snv), w⟩ = ⟨A(u+ sv), w⟩ for all w ∈ X.

Hence, hemicontinuity follows as ⟨A(u + tv), w⟩ is continuous for t ∈ [0, 1] if and
only if

lim
n→∞

⟨A(u+ snv), w⟩ = ⟨A(u+ sv), w⟩ for all w ∈ X.

2. Let X be a Banach space, and A,B : X → X ′ be nonlinear operators. Then prove the
following:

(a) A strongly monotone and B strongly monotone =⇒ A+B strongly monotone

Solution: As A and B are strongly monotone; then, there exists positive constants
MA and MB such that

⟨Au−Av, u− v⟩ ≥ MA∥u− v∥,
⟨Bu−Bv, u− v⟩ ≥ MB∥u− v∥.

Then,

⟨(A+B)u− (A+B)v, u− v⟩ = ⟨Au−Av, u− v⟩+ ⟨Bu−Bv, u− v⟩
≥ (MA +MB)∥u− v∥2.

Then, A+B is strongly monotone with constant MA +MB .

(b) A strongly monotone and B monotone =⇒ A+B strongly monotone
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Solution: As A is strongly monotone and B monotone; then, there exists a posi-
tive constant MA such that

⟨Au−Av, u− v⟩ ≥ MA∥u− v∥.
⟨Bu−Bv, u− v⟩ ≥ 0.

Then,

⟨(A+B)u− (A+B)v, u− v⟩ = ⟨Au−Av, u− v⟩+ ⟨Bu−Bv, u− v⟩︸ ︷︷ ︸
≥0

≥ ⟨Au−Av, u− v⟩
≥ MA∥u− v∥2.

Then, A+B is strongly monotone with constant MA.

3. Let A : Rm → Rm, m > 0, be a symmetric positive definite matrix. Show that the operator
A : Rm → Rm defined as

⟨Au, v⟩ = (Au) · v for all v ∈ Rm

is strongly monotone and Lipschitz continuous.

Hint. Consider the eigendecomposition of A.

Solution: As A is symmetric then we can decompose it as A = QΛQ⊤, where Q is or-
thogonal and Λ is diagonal with Λii = λi, i = 1, . . . ,m with λi is the ith eigenvalue of A.
Additionally, as A is symmetric positive definite, for the eigenvalue λi and matching
eigenvector xi ∈ Rm

0 < x⊤i (Axi) = x⊤i (λixi) = λix
T
i xi = λ∥xi∥2.

As ∥xi∥ ≥ 0 then λi > 0 for all λi ∈ σ(A). So all eigenvalues are strictly positive;
hence, minλ∈σ(A) λi > 0. We can now show that A is strongly monotone and Lipschitz
continuous using the natural vector 2-norm ∥·∥2 on Rm:

strongly monotone:

⟨Au−Av, u− v⟩ = (Au−Av)⊤(u− v)

= (u− v)⊤A⊤(u− v)

= (u− v)⊤Q⊤ΛQ(u− v)

=

m∑
i=1

(
(u− v)⊤Q⊤

)
i
λi (Q(u− v))i

≥
(

min
λ∈σ(A)

λ

) m∑
i=1

(
(u− v)⊤Q⊤

)
i
(Q(u− v))i

=

(
min

λ∈σ(A)
λ

)
(u− v)⊤Q⊤Q(u− v)

= M∥u− v∥22
where Q⊤Q = I as Q is orthogonal, and M = minλ∈σ(A) λ.
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Lipschitz continuous:

∥Au−Av∥22 = (Au−Av)⊤(Au−Av)

= (u− v)⊤QTΛQ(Au−Av)

≤
(

max
λ∈σ(A)

λ

)
(u− v)⊤QTQ(Au−Av)

=

(
max

λ∈σ(A)
λ

)
(u− v)⊤(Au−Av)

≤ L∥u− v∥2∥Au−Av∥2

where L = maxλ∈σ(A) λ > 0. Divide both sides by ∥Au − Av∥ completes the
proof.

4. Let X be a Hilbert space, A : X → X ′ be strongly monotone and Lipschitz continuous,
f ∈ X ′ and JX be the Riesz-isomorphism on X .

(a) Show that there exists a constant ε such that the mapping T : X → X defined as

T (u) = u− εJ−1
X (Au− f)

is strongly contractive; i.e,

∥T (x)− T (y)∥ ≤ k∥x− y∥ for all x, y ∈ X

with k2 = 1+ε2L2−2εM . Additionally, specify the condition on ε such that k ∈ (0, 1).

Solution: For simplicity we assume the inner product is symmetric. As A is
strongly monotone and Lipschitz continuous, and by the definition of the Riesz-
isomorphism,

∥T (u)− T (v)∥2 = (u− v − εJ−1
X (Au−Av), u− v − εJ−1

X (Au−Av))

= (u− v, u− v)− 2ε(u− v, J−1
X (Au−Av))

+ ε2(J−1
X (Au−Av), J−1

X (Au−Av))

= ∥u− v∥2 − 2ε⟨Au−Av, u− v⟩+ ε2∥Au−Av∥2

≤ ∥u− v∥2 − 2εM∥u− v∥2 + ε2L2∥u− v∥2

= k2∥u− v∥2.

Taking the square root of both sides completes the proof.
We require that k2 ≥ 0; hence, we require that

1 + ε2L2 − 2εM > 0.

Note that as

M∥u− v∥2 ≤ ⟨Au−Av, u− v⟩ ≤ ∥Au−Av∥∥u− v∥ ≤ L∥u− v∥2

we have that M < L; hence,

1 + ε2L2 − 2εM ≥ 1 + ε2L2 − 2εL = (1− εL)2 > 0
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providing εL ̸= 1; i.e., ε ̸= L−1. Additionally, we require that k2 < 1; hence, we
require that

ε2L2 − 2εM < 0.

If we consider ε2L2 − 2εM = 0 we have that

ε(εL2 − 2M) = 0;

hence, ε2L2 − 2εM = 0 when ε = 0 or ε = 2L−2; therefore, ε2L2 − 2εM < 0 if
ε ∈ (0, 2ML−2).

(b) Compute the optimal value of ε such that the iteration

um+1 = um − εJ−1
X (Aum − f)

converges fastest to the unique solution of Au = f and the compute the contraction
constant k
Hint. From Corollary 2.9 and Banach’s fixed point theorem the error is given by

∥u− um∥ ≤ km

1− k
∥x0 − x1∥;

hence, the fastest convergence rate is given when k is close to zero.

Solution: We want to minimise the constant k; i.e, defining

φ(ε) := 1 + ε2L2 − 2εM

we want to minimise φ(ε); then, we consider

0 = φ′(ε) = 2εL2 − 2M =⇒ ε =
M

L2
.

Therefore,

k2 = φ(ε) = 1− M2

L2
.

Note, that this is only valid if M ̸= L; otherwise k = 0.
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