Nonlinear Differential Equations

Practical 4: Monotone & Continuous Operators

- 1. Let *X* be a Banach space, and $A : X \to X'$ be a nonlinear operator. Then prove the following:
 - (a) A strongly monotone \implies A uniformly monotone

Solution: *A* is strongly monotone; hence, $\langle Au - Av, u - v \rangle \ge M ||u - v||^2$, where L > 0 is a constant. Define a function a(t) = Mt; then,

$$\langle Au - Av, u - v \rangle \ge a(\|u - v\|)\|u - v\|,$$

a(0) = 0, $\lim_{t\to\infty} a(t) = \infty$, and a is strictly increasing. Therefore, A is uniformly monotone.

(b) A uniformly monotone \implies A strictly monotone

Solution: As *A* uniformly monotone $\langle Au - Av, u - v \rangle \ge a(||u - v||)||u - v||$ where a(0) = 0 and *a* is strictly increasing. Then,

$$u \neq v \implies ||u - v|| > 0 \implies a(||u - v||)||u - v|| > 0.$$

Therefore, $\langle Au - Av, u - v \rangle \ge a(||u - v||) ||u - v|| > 0$ for $u \ne v$ and, hence, A is strictly monotone.

(c) A strictly monotone \implies A monotone

Solution: For $u \neq v \langle Au - Av, u - v \rangle > 0$ as *A* is strictly monotone. If u = v; then Au = Av and hence $\langle Au - Av, u - v \rangle = \langle 0, 0 \rangle = 0.$ Therefore, $\langle Au - Av, u - v \rangle \ge 0$ for all $u, v \in X$.

(d) A uniformly monotone \implies A (nonlinear) coercive

Solution:

$$\lim_{\|u\|\to+\infty} \frac{\langle Au, u\rangle}{\|u\|} = \lim_{\|u\|\to+\infty} \left(\frac{\langle Au - A0, u - 0\rangle - \langle A0, u\rangle}{\|u\|}\right)$$
$$= \lim_{\|u\|\to+\infty} \frac{\langle Au - A0, u - 0\rangle}{\|u\|} - \lim_{\|u\|\to+\infty} \frac{\langle A0, u\rangle}{\|u\|}$$

By dual norm definition

$$\|A0\| = \sup_{v \in X} \frac{\langle A0, v \rangle}{\|v\|} \ge \frac{\langle A0, v \rangle}{\|v\|} \quad \text{for all } v \in X \qquad \Longrightarrow \qquad \|A0\| \|v\| \ge \langle A0, v \rangle;$$

and by fact that *A* is uniformly monotone

$$\lim_{\|u\|\to+\infty} \frac{\langle Au, u \rangle}{\|u\|} \ge \lim_{\|u\|\to+\infty} \frac{a(\|u-0\|)\|u-0\|}{\|u\|} - \lim_{\|u\|\to+\infty} \frac{\|A0\|\|u\|}{\|u\|}$$
$$= \lim_{\|u\|\to+\infty} a(\|u\|) - \|A0\|$$
$$= +\infty.$$

Hence, *A* is coercive.

(e) A uniformly monotone \implies A stable

Solution: For $u \neq v$

$$\|Au - Av\| = \sup_{v \in X} \frac{\langle Au - Av, v \rangle}{\|v\|} \ge \frac{\langle Au - Av, u - v \rangle}{\|u - v\|} \ge \frac{a(\|u - v\|)\|u - v\|}{\|u - v\|}.$$

as A is uniformly monotone. Hence, $||Au - Av|| \ge a(||u - v||)$ where a is strictly increasing, a(0) = 0 and $\lim_{t\to\infty} a(t) = +\infty$. For u = v then ||Au - Av|| = ||0|| = 0 = a(0) = a(||0||) = a(||u - v||).

(f) A Lipschitz continuous \implies A continuous

Solution: Given a sequence $\{u_n\}$ such that $u_n \to u$ then $\lim_{n\to\infty} ||u_n - u|| = 0$. Then, $\lim_{n\to\infty} ||Au| \le \lim_{n\to\infty} ||u_n - u|| = 0$.

$$\lim_{n \to \infty} \|Au_n - Au\| \le \lim_{n \to \infty} L \|u_n - u\| = 0;$$

hence, the sequence $Au_n \rightarrow Au$.

(g) A strongly continuous \implies A continuous

Solution: Given a sequence $\{u_n\}$ we note that $u_n \to u \implies u_n \rightharpoonup u$ as for all $\ell \in X'$

 $\langle \ell, u_n - u \rangle \le \|\ell\| \|u_n - u\| \to 0.$

Then, from strong continuity $u_n \rightharpoonup u \implies Au_n \rightarrow Au$. Combining theses gives that $u_n \rightarrow u \implies Au_n \rightarrow Au$; hence, A is continuous.

(h) A strongly continuous \implies A weakly continuous

Solution: Given a sequence $\{u_n\}$, strong continuity and fact weak convergence implies strong convergence gives that

 $u_n \rightharpoonup u \implies Au_n \rightarrow Au \implies Au_n \rightharpoonup Au;$

hence, A is weakly continuous.

(i) A weakly continuous \implies A demicontinuous

Solution: Given a sequence $\{u_n\}$, weakly continuity and fact weak convergence implies strong convergence gives that

$$u_n \to u \implies u_n \rightharpoonup u \implies Au_n \rightharpoonup Au;$$

hence, A is demicontinuous.

(j) A continuous $\implies A$ demicontinuous

Solution: Given a sequence $\{u_n\}$, continuity and fact weak convergence implies strong convergence gives that

$$u_n \to u \implies Au_n \to Au \implies Au_n \rightharpoonup Au;$$

hence, A is demicontinuous.

(k) A demicontinuous \implies A hemicontinuous

Solution: If *A* is demicontinuous; then, for a sequence $\{z_n\}$

$$z_n \to z \implies Az_n \to Az \iff \langle Az_n - Az, v \rangle \to 0 \text{ for all } v \in X.$$

Select $s_n, s \in [0, 1]$ such that $s_n \to s$ and set $z_n = u + s_n v$; then,

$$\lim_{n \to \infty} \langle A(u + s_n v), w \rangle = \langle A(u + sv), w \rangle \quad \text{for all } w \in X.$$

Hence, hemicontinuity follows as $\langle A(u+tv),w\rangle$ is continuous for $t\in[0,1]$ if and only if

$$\lim_{n \to \infty} \langle A(u + s_n v), w \rangle = \langle A(u + sv), w \rangle \quad \text{for all } w \in X.$$

- 2. Let *X* be a Banach space, and $A, B : X \to X'$ be nonlinear operators. Then prove the following:
 - (a) A strongly monotone and B strongly monotone \implies A + B strongly monotone

Solution: As *A* and *B* are strongly monotone; then, there exists positive constants M_A and M_B such that

$$\langle Au - Av, u - v \rangle \ge M_A ||u - v||,$$

$$\langle Bu - Bv, u - v \rangle \ge M_B ||u - v||.$$

Then,

$$\langle (A+B)u - (A+B)v, u-v \rangle = \langle Au - Av, u-v \rangle + \langle Bu - Bv, u-v \rangle$$

$$\geq (M_A + M_B) ||u-v||^2.$$

Then, A + B is strongly monotone with constant $M_A + M_B$.

(b) A strongly monotone and B monotone \implies A + B strongly monotone

Solution: As *A* is strongly monotone and *B* monotone; then, there exists a positive constant M_A such that

$$\langle Au - Av, u - v \rangle \ge M_A ||u - v||$$

 $\langle Bu - Bv, u - v \rangle \ge 0.$

Then,

$$\langle (A+B)u - (A+B)v, u-v \rangle = \langle Au - Av, u-v \rangle + \underbrace{\langle Bu - Bv, u-v \rangle}_{\geq 0}$$
$$\geq \langle Au - Av, u-v \rangle$$
$$\geq M_A ||u-v||^2.$$

Then, A + B is strongly monotone with constant M_A .

3. Let $A : \mathbb{R}^m \to \mathbb{R}^m$, m > 0, be a symmetric positive definite matrix. Show that the operator $A : \mathbb{R}^m \to \mathbb{R}^m$ defined as

$$\langle Au, v \rangle = (\mathbf{A}u) \cdot v \qquad \text{for all } v \in \mathbb{R}^m$$

is strongly monotone and Lipschitz continuous.

Hint. Consider the eigendecomposition of *A*.

Solution: As A is symmetric then we can decompose it as $A = Q\Lambda Q^{\top}$, where Q is orthogonal and Λ is diagonal with $\Lambda_{ii} = \lambda_i$, i = 1, ..., m with λ_i is the *i*th eigenvalue of A. Additionally, as A is symmetric positive definite, for the eigenvalue λ_i and matching eigenvector $x_i \in \mathbb{R}^m$

$$0 < x_i^{\top}(\mathbf{A}x_i) = x_i^{\top}(\lambda_i x_i) = \lambda_i x_i^T x_i = \lambda ||x_i||^2.$$

As $||x_i|| \ge 0$ then $\lambda_i > 0$ for all $\lambda_i \in \sigma(A)$. So all eigenvalues are strictly positive; hence, $\min_{\lambda \in \sigma(A)} \lambda_i > 0$. We can now show that *A* is strongly monotone and Lipschitz continuous using the natural vector 2-norm $||\cdot||_2$ on \mathbb{R}^m :

strongly monotone:

$$\begin{split} \langle Au - Av, u - v \rangle &= (\mathbf{A}u - \mathbf{A}v)^{\top} (u - v) \\ &= (u - v)^{\top} \mathbf{A}^{\top} (u - v) \\ &= (u - v)^{\top} Q^{\top} \Lambda Q (u - v) \\ &= \sum_{i=1}^{m} \left((u - v)^{\top} Q^{\top} \right)_{i} \lambda_{i} \left(Q (u - v) \right)_{i} \\ &\geq \left(\min_{\lambda \in \sigma(\mathbf{A})} \lambda \right) \sum_{i=1}^{m} \left((u - v)^{\top} Q^{\top} \right)_{i} \left(Q (u - v) \right)_{i} \\ &= \left(\min_{\lambda \in \sigma(\mathbf{A})} \lambda \right) (u - v)^{\top} Q^{\top} Q (u - v) \\ &= M \| u - v \|_{2}^{2} \end{split}$$

where $Q^{\top}Q = I$ as Q is orthogonal, and $M = \min_{\lambda \in \sigma(A)} \lambda$.

Practical 4

Lipschitz continuous:

$$\begin{split} \|\boldsymbol{A}\boldsymbol{u} - \boldsymbol{A}\boldsymbol{v}\|_{2}^{2} &= (\boldsymbol{A}\boldsymbol{u} - \boldsymbol{A}\boldsymbol{v})^{\top}(\boldsymbol{A}\boldsymbol{u} - \boldsymbol{A}\boldsymbol{v}) \\ &= (\boldsymbol{u} - \boldsymbol{v})^{\top}\boldsymbol{Q}^{T}\boldsymbol{\Lambda}\boldsymbol{Q}(\boldsymbol{A}\boldsymbol{u} - \boldsymbol{A}\boldsymbol{v}) \\ &\leq \left(\max_{\lambda\in\sigma(\boldsymbol{A})}\lambda\right)(\boldsymbol{u} - \boldsymbol{v})^{\top}\boldsymbol{Q}^{T}\boldsymbol{Q}(\boldsymbol{A}\boldsymbol{u} - \boldsymbol{A}\boldsymbol{v}) \\ &= \left(\max_{\lambda\in\sigma(\boldsymbol{A})}\lambda\right)(\boldsymbol{u} - \boldsymbol{v})^{\top}(\boldsymbol{A}\boldsymbol{u} - \boldsymbol{A}\boldsymbol{v}) \\ &\leq L\|\boldsymbol{u} - \boldsymbol{v}\|_{2}\|\boldsymbol{A}\boldsymbol{u} - \boldsymbol{A}\boldsymbol{v}\|_{2} \end{split}$$

where $L = \max_{\lambda \in \sigma(A)} \lambda > 0$. Divide both sides by ||Au - Av|| completes the proof.

- 4. Let *X* be a Hilbert space, $A : X \to X'$ be strongly monotone and Lipschitz continuous, $f \in X'$ and J_X be the Riesz-isomorphism on *X*.
 - (a) Show that there exists a constant ε such that the mapping $T: X \to X$ defined as

$$T(u) = u - \varepsilon J_X^{-1} (Au - f)$$

is strongly contractive; i.e,

$$\|T(x) - T(y)\| \le k \|x - y\| \qquad \text{for all } x, y \in X$$

with $k^2 = 1 + \varepsilon^2 L^2 - 2\varepsilon M$. Additionally, specify the condition on ε such that $k \in (0, 1)$.

Solution: For simplicity we assume the inner product is symmetric. As *A* is strongly monotone and Lipschitz continuous, and by the definition of the Riesz-isomorphism,

$$\begin{split} \|T(u) - T(v)\|^2 &= (u - v - \varepsilon J_X^{-1}(Au - Av), u - v - \varepsilon J_X^{-1}(Au - Av)) \\ &= (u - v, u - v) - 2\varepsilon(u - v, J_X^{-1}(Au - Av)) \\ &+ \varepsilon^2(J_X^{-1}(Au - Av), J_X^{-1}(Au - Av)) \\ &= \|u - v\|^2 - 2\varepsilon\langle Au - Av, u - v \rangle + \varepsilon^2 \|Au - Av\|^2 \\ &\leq \|u - v\|^2 - 2\varepsilon M \|u - v\|^2 + \varepsilon^2 L^2 \|u - v\|^2 \\ &= k^2 \|u - v\|^2. \end{split}$$

Taking the square root of both sides completes the proof. We require that $k^2 \ge 0$; hence, we require that

$$1+\varepsilon^2L^2-2\varepsilon M>0.$$

Note that as

$$M||u - v||^{2} \le \langle Au - Av, u - v \rangle \le ||Au - Av|| ||u - v|| \le L||u - v||^{2}$$

we have that M < L; hence,

$$1 + \varepsilon^2 L^2 - 2\varepsilon M \ge 1 + \varepsilon^2 L^2 - 2\varepsilon L = (1 - \varepsilon L)^2 > 0$$

Practical 4

providing $\varepsilon L \neq 1$; i.e., $\varepsilon \neq L^{-1}$. Additionally, we require that $k^2 < 1$; hence, we require that $\varepsilon^2 L^2 - 2\varepsilon M < 0$.

If we consider $\varepsilon^2 L^2 - 2\varepsilon M = 0$ we have that

$$\varepsilon(\varepsilon L^2 - 2M) = 0;$$

hence, $\varepsilon^2 L^2 - 2\varepsilon M = 0$ when $\varepsilon = 0$ or $\varepsilon = 2L^{-2}$; therefore, $\varepsilon^2 L^2 - 2\varepsilon M < 0$ if $\varepsilon \in (0, 2ML^{-2})$.

(b) Compute the optimal value of ε such that the iteration

$$u_{m+1} = u_m - \varepsilon J_X^{-1} (Au_m - f)$$

converges fastest to the *unique* solution of Au = f and the compute the contraction constant k

Hint. From Corollary 2.9 and Banach's fixed point theorem the error is given by

$$||u - u_m|| \le \frac{k^m}{1 - k} ||x_0 - x_1||;$$

hence, the fastest convergence rate is given when k is close to zero.

Solution: We want to minimise the constant *k*; i.e, defining

$$\varphi(\varepsilon) \coloneqq 1 + \varepsilon^2 L^2 - 2\varepsilon M$$

we want to minimise $\varphi(\varepsilon)$; then, we consider

$$0 = \varphi'(\varepsilon) = 2\varepsilon L^2 - 2M \implies \varepsilon = \frac{M}{L^2}.$$

Therefore,

$$k^2 = \varphi(\varepsilon) = 1 - \frac{M^2}{L^2}$$

Note, that this is only valid if $M \neq L$; otherwise k = 0.