Nonlinear Differential Equations

Practical 4: Monotone & Continuous Operators

- 1. Let *X* be a Banach space, and $A : X \to X'$ be a nonlinear operator. Then prove the following:
 - (a) A strongly monotone \implies A uniformly monotone
 - (b) A uniformly monotone \implies A strictly monotone
 - (c) A strictly monotone \implies A monotone
 - (d) A uniformly monotone \implies A (nonlinear) coercive
 - (e) A uniformly monotone \implies A stable
 - (f) A Lipschitz continuous \implies A continuous
 - (g) A strongly continuous \implies A continuous
 - (h) A strongly continuous \implies A weakly continuous
 - (i) A weakly continuous \implies A demicontinuous
 - (j) A continuous $\implies A$ demicontinuous
 - (k) A demicontinuous \implies A hemicontinuous
- 2. Let *X* be a Banach space, and $A, B : X \to X'$ be nonlinear operators. Then prove the following:
 - (a) A strongly monotone and B strongly monotone \implies A + B strongly monotone
 - (b) A strongly monotone and B monotone \implies A + B strongly monotone
- 3. Let $A : \mathbb{R}^m \to \mathbb{R}^m$, m > 0, be a symmetric positive definite matrix. Show that the operator $A : \mathbb{R}^m \to \mathbb{R}^m$ defined as

$$\langle Au, v \rangle = (\mathbf{A}u) \cdot v \qquad \text{for all } v \in \mathbb{R}^m$$

is strongly monotone and Lipschitz continuous.

Hint. Consider the eigendecomposition of *A*.

- 4. Let *X* be a Hilbert space, $A : X \to X'$ be strongly monotone and Lipschitz continuous, $f \in X'$ and J_X be the Riesz-isomorphism on *X*.
 - (a) Show that there exists a constant ε such that the mapping $T: X \to X$ defined as

$$T(u) = u - \varepsilon J_X^{-1} (Au - f)$$

is strongly contractive; i.e,

$$||T(x) - T(y)|| \le k||x - y|| \qquad \text{for all } x, y \in X$$

with $k^2 = 1 + \varepsilon^2 L^2 - 2\varepsilon M$. Additionally, specify the condition on ε such that $k \in (0, 1)$.

(b) Compute the optimal value of ε such that the iteration

$$u_{m+1} = u_m - \varepsilon J_X^{-1} (Au_m - f)$$

converges fastest to the *unique* solution of Au = f and the compute the contraction constant k

Hint. From Corollary 2.9 and Banach's fixed point theorem the error is given by

$$||u - u_m|| \le \frac{k^m}{1 - k} ||x_0 - x_1||;$$

hence, the fastest convergence rate is given when k is close to zero.