Nonlinear Differential Equations

Practical 2: Compact Operators

1. Let *X*, *Y*, and *Z* be Banach spaces, $L_1 \in \mathcal{L}(X, Y)$, and $L_2 \in \mathcal{L}(Y, Z)$; then, show that if L_1 is compact then $L_2 \circ L_1$ is also compact. Additionally, show that if L_2 is compact then $L_2 \circ L_1$ is compact.

Solution:

• If L_1 is compact then every bounded sequence $\{x_n\} \subset \mathcal{D}(L_1) \subset X$ has a convergent subsequence in Y; i.e., there exists a sequence $\{L_1(x_{n_k})\}$ such that

$$\lim L_1(x_{n_k}) = y \in Y.$$

Additionally, as L_2 is a continuous linear map the limit of the sequence applying L_2 to this sequence has limit $L_2(y)$; i.e.,

$$\lim L_2(L_1(x_{n_k})) = L_2(y) \in Z.$$

Therefore, every bounded sequence in $\{x_n\} \subset \mathcal{D}(L_2 \circ L_1)$ has a convergent subsequence $\{L_2(L_1(x_{n_k}))\}$ in Z; hence, $L_2 \circ L_1$ is a compact operator.

- As L₁ is a continuous linear operator it is a bounded operator; then, the bounded subset K ⊂ D(L₁) is mapped to a bounded subset L₁(K) ⊂ Y. Then as L₂ is compact this bounded subset is mapped to a precompact subset of Z. Therefore, the image of a bounded subset K ⊂ D(L₂ ∘ L₁) under L₂ ∘ L₁ is a precompact subset of Z; hence, L₂ ∘ L₁ is a compact operator.
- 2. Let *X* and *Y* be Banach spaces. Show that a compact linear operator $L \in \mathcal{L}(X, Y)$ maps every weakly convergent sequence into a strongly convergent sequence.

Solution: Let there exists a sequence $x_n \rightarrow x$; then, $\ell(x_n) \rightarrow \ell(x)$ for all $\ell \in X'$. Define $\hat{x}_n \in X''$ by $\hat{x}_n(\ell) = \ell(x_n)$ for all $\ell \in X'$. For a fixed $\ell \in X'$ the sequence $\{\ell(x_n)\}$ is a *bounded* strongly convergent sequence; i.e., $\sup \|\ell(x_n)\| < \infty \implies \sup \|\hat{x}_n(\ell)\| < \infty$. By *uniform boundedness principal*

$$\sup \|\widehat{x}_n(\ell)\| < \infty \ \forall \ell \in X' \quad \Longleftrightarrow \quad \sup \|\widehat{x}_n\| < \infty.$$

Hence, $\sup ||x_n|| = \sup ||\widehat{x}_n|| < \infty$ which implies the sequence x_n is bounded. Define $y_n = Lx_n$ and y = Lx; then

$$\langle \ell, y_n \rangle - \langle \ell, y \rangle = \langle \ell, L(x_n - x) \rangle = \langle L^d \ell, x_n - x \rangle$$

for any $\ell \in Y'$. As $L^d \ell \in X'$ then $\langle L^d \ell, x_n - x \rangle \to 0$; hence $y_n \rightharpoonup y$.

Practical 2

Finally, we assume that $y_n \neq y$ strongly. Then, $\exists \varepsilon > 0$ and a subsequence $\{y_{n_k}\}$ such that $||y_{n_k} - y|| \ge \varepsilon$. The sequence $\{x_{n_k}\}$ is bounded and *L* is compact; hence, a convergence subsequence of $\{y_{n_k}\}$ exists in *Y* with limit $\tilde{y} \neq y$. Strong convergence implies weak convergence, so this subsequence weakly converges to \tilde{y} , but this contradicts the fact that $y_n \rightharpoonup y \neq \tilde{y}$. Hence, by contradiction, $y_n \rightarrow y$.

3. For the Banach spaces X, Y, and $L \in \mathcal{L}(X, Y)$ then the *dual operator* $L^d \in \mathcal{L}(Y', X')$ is uniquely determined for every $\ell \in Y', \ell \in Y' \mapsto L^d \ell \in X'$, by

$$\langle \ell, Lx \rangle_{Y' \times Y} = \langle L^d \ell, x \rangle_{X' \times X}$$
 for all $x \in X$.

Show that a linear operator $L \in \mathcal{L}(X, Y)$ is compact if and only if the dual operator $L^d \in \mathcal{L}(Y', X')$ is compact.

Solution:

 $L \operatorname{compact} \Longrightarrow L^d \operatorname{compact}$ Let $\{\ell\} \subset Y', K$ be a bounded subset of X, and $\widehat{K} = \overline{L(K)}$. Then $f_n = \ell|_{\widehat{K}} \in C(\widehat{K})$ is bounded and equicontinuous, so by *Arzelà*-*Ascoli* it has a convergent subsequence $\{f_{n_k}\}$ in $C(\widehat{K})$. Then

$$||L^{d}\ell_{n_{i}} - L^{d}\ell_{n_{k}}|| = \sup_{x \in K} ||\ell_{n_{i}}(x) - \ell_{n_{k}}(x)|| = \sup_{X \in \widehat{K}} ||f_{n_{i}}(x) - f_{n_{k}}(x)||.$$

Hence, $\{L^d \ell\}$ is a Cauchy sequence and, hence, converges $\implies L^d$ is compact.