Nonlinear Differential Equations

Practical Exercises 7

Due: 11th April 2024

1. Prove only the boundedness of the Nemyckii operator in the following (ignore continuity).

Theorem 3.11. Let $k \in \mathbb{N}$, $p \geq 1$, $r \geq 1$, $f(x,\xi) \in \text{CAR}$ be a function defined on $x \in \Omega \subset \mathbb{R}^n$ and $\xi \in \mathbb{R}^{\kappa}$. Suppose there exists a continuous function $c(t) \geq 0$, defined for $t \geq 0$, and function $g \in L^r(\Omega)$ such that for all $\xi \in \mathbb{R}^{\kappa}$ and for almost all $x \in \Omega$ it holds that

$$|f(x,\xi)| \le c \left(\sum_{|\beta| < k - \frac{n}{p}} |\xi_{\beta}| \right) \left[g(x) + \sum_{k - \frac{n}{p} \le |\beta| \le k} |\xi_{\beta}|^{\frac{q(\beta)}{r}} \right]$$

where

(a) for
$$|\beta| > k - \frac{n}{p}$$

$$q(\beta) = \frac{np}{n - (k - |\beta|)p},$$

(b) for
$$|\beta| = k - \frac{n}{p}$$

$$q(\beta) \ge 1$$
 arbitrary.

Then, for each $u \in W^{k,p}(\Omega)$, $f(x, \delta_k u(x)) \in L^r(\Omega)$ and the Nemyckii operator defined by $f(\mathcal{N}(u)(x) = f(x, u(x)), x \in \Omega)$ is continuous and bounded from $W^{k,p}(\Omega)$ to $L^r(\Omega)$.

Hint. Using the inequality

$$(a+b)^r \le 2^{r-1}(a^r + b^r), \quad a, b > 0, \quad r \in \mathbb{N},$$

show that

$$|f(x,\delta_k u(x))|^r \le c_1 \left| c \left(\sum_{|\beta| < k - \frac{n}{p}} |D^\beta u(x)| \right) \right|^r \left(|g(x)|^r + \sum_{k - \frac{n}{p} \le |\beta| \le k} |D^\beta u(x)|^{q(\beta)} \right),$$

where c_1 is a constant. c is continuous, Ω is bounded and thus by Theorem 3.8 (iii) there exists a constant $c_2 > 0$ such that for all $x \in \overline{\Omega}$

$$|f(x, \delta_k u(x))|^r \le c_1 c_2 \left(|g(x)|^r + \sum_{k - \frac{n}{2} \le |\beta| \le k} |D^{\beta} u(x)|^{q(\beta)} \right).$$

Integrate over Ω to complete the proof.

2. Prove the following.

Theorem 3.12. Let A be a formal differential operator of order 2k,

$$(\mathcal{A}u)(x) = \sum_{|\alpha| \le k} D^{\alpha} a_{\alpha}(x, \delta_k u(x))$$

and let the functions $a_{\alpha} \in \text{CAR}$ satisfy, for almost all $x \in \Omega \subset \mathbb{R}^n$ and all $\xi \in \mathbb{R}^{\kappa}$ the growth condition

$$|a_{\alpha}(x,\xi)| \le c_{\alpha} \left(\sum_{|\beta| < k - \frac{n}{p}} |\xi_{\beta}| \right) \left[g_{\alpha}(x) + \sum_{k - \frac{n}{p} \le |\beta| \le k} |\xi_{\beta}|^{r(\alpha,\beta)} \right]$$

where p > 1 and

(a) $c_{\alpha}(t)$ is a non-negative continuous function of $t \geq 0$, with c_{α} constant for $k - \frac{n}{p} < 0$,

(b) $g_{\alpha} \in L^{s}(\Omega)$, where

$$s = \begin{cases} \frac{q(\alpha)}{q(\alpha) - 1} & \text{if } |\alpha| \ge k - \frac{n}{p}, \\ 1 & \text{if } |\alpha| < k - \frac{n}{p}, \end{cases}$$

$$r(\alpha, \beta) = \begin{cases} \frac{(q(\alpha) - 1)q(\beta)}{q(\alpha)} & \text{if } |\alpha| \ge k - \frac{n}{p}, \\ q(\beta) & \text{if } |\alpha| < k - \frac{n}{p}, \end{cases}$$

$$q(\nu) = \begin{cases} \frac{Np}{N - (k - |\nu|)p} & \text{if } |\nu| > k - \frac{n}{p}, \\ \geq 1 \text{ arbitrary} & \text{if } |\nu| = k - \frac{n}{p}. \end{cases}$$

Then, the operator A defined by the relation

$$\langle Au, v \rangle = \sum_{|\alpha| \le k} \int_{\Omega} a_{\alpha}(x, \delta_k u(x)) D^{\alpha} v(x) dx, \qquad v \in W^{k,p}(\Omega)$$

is bounded and continuous from $W^{k,p}(\Omega)$ to the dual space $(W^{k,p}(\Omega))^*$.

Hint. To estimate integrals of the form

$$\int_{\Omega} a_{\alpha}(x, \delta_k u(x)) D^{\alpha} v(x) \, \mathrm{d}x, \qquad u, v \in W^{k,p}(\Omega), |\alpha| \le k$$

use Theorems 3.8 and 3.11, taking the functions a_{α} instead of f and choose r as follows:

$$r = \begin{cases} \frac{q(\alpha)}{q(\alpha)-1}, & \text{if } |\alpha| \ge k - \frac{n}{p}, \\ 1, & \text{if } |\alpha| < k - \frac{n}{p}. \end{cases}$$