Horner's Scheme

Numerical Mathematics

8th April 2020

Every polynomial, of degree n, of the form

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

can be written in the form

$$p(x) = (\dots(\underbrace{\underbrace{a_n \ x + a_{n-1}) \ x + a_{n-2}}_{h_n(x)} x + \dots + a_1) \ x + a_0$$

$$\underbrace{\underbrace{h_n(x)}_{h_{n-1}(x)}}_{h_{n-2}(x)}$$

$$\underbrace{h_{n-2}(x)}_{h_0(x)}$$

$$= h_0(x),$$

where

$$h_i(x) = \begin{cases} xh_{i-1}(x) + a_i & \text{if } i > 0, \\ a_n & \text{if } i = 0. \end{cases}$$

This gives us a recursive definition of the Horner's polynomials $h_i(x)$, i = 0, ..., n, and allows use to the following algorithm to compute the polynomial.

Algorithm 1 (Horner's Scheme). For a polynomial $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, we can define the Horner's polynomials $h_i(x)$, i = 0, ..., n by:

$$h_n(x) = a_n$$

 $for \ i = n-1, n-2, \dots, 1, 0 \ do$
 $h_i(x) = xh_{i+1}(x) + a_i$
 $end \ for$
 $p(x) = h_0$

Dividing polynomial by $(x - \alpha)$

We can use the Horner's scheme algorithm to divide a polynomial by $(x - \alpha)$. We first consider the following Theorem:

Theorem 2. Let f and g be polynomials, where $g \neq 0$. Then, there exists polynomials r and s such that

- f = gs + r, and
- either r = 0 or deg(r) < deg(g).

The polynomials s and r which satisfy these conditions are unique.

Proof. See Theorem 4, page 128 of Hoffman & Kunze, *Linear Algebra*, Prentice Hall, 1971.

This theorem proves that long division of a polynomial with real or complex coefficients is possible.

We now consider division of the polynomial by $(x - \alpha)$, this gives that

$$p(x) = (x - \alpha)q(x) + r(x),$$

where q(x) is the polynomial that results from dividing p(x) by $(x - \alpha)$ and r(x) is the remainder of the division. From the previous theorem r(x) must be a constant, as r = 0 or $1 = \deg(x - \alpha) > \deg(r) \implies \deg(r) = 0$ (constant). Then,

$$p(\alpha) = 0 + r(\alpha)$$
 \Longrightarrow $r(x) = p(\alpha)$.

From this we get that

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$= (x - \alpha) \underbrace{(q_{n-1} x^{n-1} + q_{n-2} x^{n-2} + \dots + q_q x + q_0)}_{q(x)} + p(\alpha)$$

$$= p_{n-1} x^m + (q_{n-2} - \alpha q_{n-1}) x^{n-1} + \dots + (q_1 - \alpha q_2) x^2 - (q_0 - \alpha q_1) x - \alpha q_0 + p(\alpha).$$

By equating coefficients we get that

$$\begin{array}{lll} a_{n} = q_{n-1} & \Longrightarrow & q_{n-1} = a_{n} = h_{n}(\alpha) \\ a_{n-1} = q_{n-2} - \alpha q_{n-1} & \Longrightarrow & q_{n-2} = \alpha q_{n-1} + a_{n-1} = \alpha h_{n}(\alpha) + a_{n-1} = h_{n-1}(\alpha) \\ a_{n-2} = q_{n-3} - \alpha q_{n-2} & \Longrightarrow & q_{n-3} = \alpha q_{n-2} + a_{n-2} = \alpha h_{n-1}(\alpha) + a_{n-2} = h_{n-2}(\alpha) \\ \vdots & & \vdots & & \vdots \\ a_{1} = q_{0} - \alpha q_{1} & \Longrightarrow & q_{0} = \alpha q_{1} + a_{1} = \alpha h_{2}(\alpha) + a_{1} = h_{1}(\alpha) \\ a_{0} = p(\alpha) - \alpha q_{0}. \end{array}$$

Then, we get that

$$q(x) = \sum_{i=0}^{n-1} q_i x^i = \sum_{i=0}^{n-1} h_{i+1}(\alpha) x^i = \frac{p(x) - p(\alpha)}{x - \alpha}.$$

Therefore, we can compute the coefficients $q_i = h_{i+1}(x)$ of the polynomial $q(\alpha)$ and remainder $r(x) = p(\alpha)$ resulting from dividing p(x) by $(x - \alpha)$. If α is a root of the polynomial p, then $p(\alpha) = 0$ clearly and roots of the polynomial q are also roots of the equation p(x). This allows us to compute all roots of a polynomial, if we can find a root of any polynomial, for example by Newton's method.

Computing Derivative of Polynomial at Point α by Horner's Scheme

From the above we have that

$$p(\alpha) = (x - \alpha)q(x) + p(\alpha)$$

and, hence, we get that the derivative of p is

$$p'(\alpha) = q(x) + (x - \alpha)q'(x);$$

therefore, we can compute the derivative of p at α as

$$p'(\alpha) = q(\alpha).$$

So, applying the Horner's scheme to the polynomial q at α , we get the following algorithm for computing the derivative of the polynomial p at α :

Algorithm 3. For a polynomial $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, we can compute the derivative at the point α by:

$$c_{n-1} = h_n(lpha)$$

 $oldsymbol{for}\ i = n-2, n-3, \dots, 1, 0 \ oldsymbol{do}$
 $c_i = lpha c_{i+1} + h_{i+1}(lpha)$
 $oldsymbol{end}\ oldsymbol{for}$
 $q(lpha) = p'(lpha) = c_0$

where $h_i(x)$, i = 0, ..., n is computed by Horner's scheme.

Exercises

1. Consider the polynomial

$$p(x) = 6x^4 - 8x^3 - 11x^2 - 3x + 18.$$

- (a) Use Horner's scheme to compute $h_i(2)$, i = 0, ..., n, and, hence, compute p(2).
- (b) Use Horner's scheme to compute the polynomials q(x) and r(x), where

$$p(x) = (x-2)q(x) + r(x).$$

(Divide p(x) by (x-2) using Horner's scheme).

- (c) Use Algorithm 3 to compute the derivative of p(x) at x=2.
- 2. Consider the polynomial

$$p(x) = 3x^4 - 22x^3 - 17x^2 - 6x + 22.$$

- (a) Use Horner's scheme to compute $h_i(-8)$, i = 0, ..., n, and, hence, compute p(-8).
- (b) Use Horner's scheme to compute the polynomials q(x) and r(x), where

$$p(x) = (x+8)q(x) + r(x).$$

(Divide p(x) by (x + 8) using Horner's scheme).

(c) Use Algorithm 3 to compute the derivative of p(x) at x = -8.