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Every polynomial, of degree n, of the form
p(z) = ag + a1x + asx® + - + a,a”

can be written in the form

hn ()
hn—1 ()
B2 ()
hi(x)
ho (x)
= ho(z),

where

hi(z) = {xhi_l(x) +a; 1fz > 0,

an if ¢ = 0.

This gives us a recursive definition of the Horner’s polynomials h;(x), i = 0,...,n, and allows use

to the following algorithm to compute the polynomial.
Algorithm 1 (Horner’s Scheme). For a polynomial p(x) = ag + a1x + agx® + - - - + a,z™, we can
define the Horner’s polynomials h;(x), i =0,...,n by:

hn(x) = ay,

fori=n—-1n-2,...,1,0 do

hi(x) = zhit1(x) + a;
end for
p(z) = ho

Dividing polynomial by (z — «)

We can use the Horner’s scheme algorithm to divide a polynomial by (x — «). We first consider
the following Theorem:

Theorem 2. Let f and g be polynomials, where g # 0. Then, there exists polynomials v and s
such that

o f=gs+r, and
o cither r =0 or deg(r) < deg(g).
The polynomials s and r which satisfy these conditions are unique.

Proof. See Theorem 4, page 128 of Hoffman & Kunze, Linear Algebra, Prentice Hall, 1971. O



This theorem proves that long division of a polynomial with real or complex coefficients is
possible.
We now cousider division of the polynomial by (z — «), this gives that

p(z) = (z = a)g(z) +r(z),

where ¢(z) is the polynomial that results from dividing p(z) by (z — «) and r(z) is the remainder
of the division. From the previous theorem r(z) must be a constant, as r = 0 or 1 = deg(z — a) >
deg(r) = deg(r) = 0 (constant). Then,

pla) =04+ r(a) = r(z) = p(a).
From this we get that

p(z) = apa™ + an_12" 'V + -+ a1z + ap

= (2 — @) (12" " + qn2x™ 2 + - + T + q0) +p(a)

q(x)
= Pp—12™ + (Gn-2 — Aqu_1)z" '+ + (1 — aq2)2? — (g0 — aq1)z — ago + p(a).

By equating coeflicients we get that

Gp = (n—1 — gn—1 = Gn = hn(a)
Gp—1 = Ggn—2 — QQp—1 - Qn—2 =Qqp_1+ ap_1 = ahn(a) +an_1 = hn—l(a)
Un—2 = qn-3 — QGp_2 == Gn-3 = QQn—2 + an_2 = ahy_1(a) + an_o = hy_2()
a; = qo — aq = qo = aqi + a1 = ahg(a) + a1 = hi(a)

ap = p(a) — aqo.

Then, we get that

S = S _ p(@) ~p(e)
q(x) = Z gzt = Z hivi(a)x' = %.
=0 =0

Therefore, we can compute the coefficients ¢; = h;y1(x) of the polynomial ¢(«) and remainder
r(z) = p(«) resulting from dividing p(z) by (z — «). If « is a root of the polynomial p, then
p(a) = 0 clearly and roots of the polynomial ¢ are also roots of the equation p(x). This allows
us to compute all roots of a polynomial, if we can find a root of any polynomial, for example by
Newton’s method.

Computing Derivative of Polynomial at Point o by Horner’s
Scheme

From the above we have that
pla) = (z — a)q(z) + p(a)
and, hence, we get that the derivative of p is
p'(a) =q(@) + (z — a)d (2);
therefore, we can compute the derivative of p at « as
p'(a) = q(a).

So, applying the Horner’s scheme to the polynomial ¢ at a, we get the following algorithm for
computing the derivative of the polynomial p at «:



Algorithm 3. For a polynomial p(x) = ag+a1x+asx®+- - +a,a™, we can compute the derivative
at the point o by:
Cp—1 = hn(a)
fori=n—-2n-3,...,1,0 do
¢ = aciy1 + hiyi(a)

end for

q(ar) = p'(a) = co
where h;(z), 1 =0,...,n is computed by Horner’s scheme.
Exercises

1. Consider the polynomial
p(z) = 62* — 82 — 112? — 3z + 18.

(a) Use Horner’s scheme to compute h;(2), ¢ =0,...,n, and, hence, compute p(2).

(b) Use Horner’s scheme to compute the polynomials ¢(x) and r(z), where

p(z) = (x = 2)q(z) + r(z).

(Divide p(z) by (x — 2) using Horner’s scheme).
(¢) Use Algorithm 3 to compute the derivative of p(z) at z = 2.

2. Consider the polynomial
p(z) = 3o — 2223 — 172% — 62 + 22.

(a) Use Horner’s scheme to compute h;(—8), 4 =0,...,n, and, hence, compute p(—8).

(b) Use Horner’s scheme to compute the polynomials ¢(x) and r(z), where

p(x) = (z +8)q(z) + r(z).

(Divide p(z) by (z + 8) using Horner’s scheme).
(c) Use Algorithm 3 to compute the derivative of p(z) at z = —8.



