Regularity

1. For a function $u: \Omega \rightarrow \mathbb{R}$ defined on some open $\Omega \subset \mathbb{R}^{n}$ denote its difference quotients (for given $\delta>0,0 \neq h \in \mathbb{R}$) by 1

$$
D_{h}^{i} u(x)=\frac{u\left(x+h e_{i}\right)-u(x)}{h}, \quad x \in \Omega_{\delta}:=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>\delta\},|h|<\delta .
$$

Find $u \in L^{1}(\Omega)$ satisfying $u \notin W_{\text {loc }}^{1,1}(\Omega)$ such that there is $C>0$ with

$$
\forall i=1, \ldots, n, 0 \neq h \in \mathbb{R}, \delta>|h|:\left\|u_{h, i}\right\|_{L^{1}\left(\Omega_{\delta}\right)} \leq C
$$

Remark. This example shows that the theorem saying "bounded difference quotients in L^{p} imply weak derivative in $L^{p \prime \prime}$, which is used in the proof of regularity for linear elliptic problems, does not hold for $p=1$.
2. (Harnack's inequality using the mean value formula)

Let Ω be open and $K \subset \Omega$ compact. Show that there extists a $C>0$ such that every positive harmonic function, that is $u: \Omega \rightarrow \mathbb{R}$ satisfying $u>0$ and $\Delta u=0$ in Ω, satisfies the Harnack's inequality

$$
\sup _{x \in K} u(x) \leq C \inf _{x \in K} u(x) .
$$

You may use without proof that u satisfies the following mean value formula

$$
\forall B(x, r) \subset \Omega: u(x)=\frac{1}{|B(x, r)|} \int_{B(x, r)} u(y) \mathrm{d} y
$$

[^0]
[^0]: ${ }^{1}$ The reason we are considering the domain Ω_{δ} instead of Ω is merely technical - we need $u\left(x+h e_{i}\right)$ to be defined, i.e. $x+h e_{i} \in \Omega$.

